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Abstract—The simulation of delay faults is an essential task
in design validation and reliability assessment of circuits. Due to
the high sensitivity of current nano-scale designs against smallest
delay deviations, small delay faults recently became the focus
of test research. Because of the subtle delay impact, traditional
fault simulation approaches based on abstract timing models are
not sufficient for representing small delay faults. Hence, timing
accurate simulation approaches have to be utilized, which quickly
become inapplicable for larger designs due to high computational
requirements. In this work we present a waveform-accurate
approach for fast high-throughput small delay fault simulation
on Graphics Processing Units (GPUs). By exploiting parallelism
from gates, faults and patterns, the proposed approach enables
accurate exhaustive small delay fault simulation even for multi-
million gate designs without fault dropping for the first time.

I. INTRODUCTION

Today’s nano-scale circuit manufacturing processes un-
dergo high amounts of random and systematic variation during
production [1]. With the high performance demands and strict
low power requirements near threshold, current designs are run
close to their operational limit and thus are highly sensitive
to delay faults [2]. Slightest deviations in the physical layout
of gates are sufficient to cause so called small delay faults,
that relate to resistive open defects [3] or varying transistor
threshold voltages [4]. A small delay fault is considered as a
manifestation at an input or output pin of a gate that slows
down signal transitions by a small additional amount of time.
The faults may cause signal propagation to exceed the nominal
clock period before eventually attaining a stable output value
(Fig. 1). In contrast to traditional gross delay fault models
(such as transition faults [5]), the delay amount introduced is
much smaller than the clock period, yet able to cause the device
to fail under operating conditions or indicate initial signs of
early life failures (ELF) [6]. Since small delays are hard to
detect and the testing of these faults is quite complex, they
have become the focus of recent test research [7–9].
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Fig. 1. Example of a slow-to-fall small delay fault of size 3 at a reconvergent
fanout gate.

Well-known fault models, like stuck-at or transition faults,
are not sufficient to represent the subtle delay effects of small
delay faults [10, 11]. In case of the reconvergent fanout in the
example of Fig. 1, a slow-to-fall transition fault at the fault
location would cause a constant high (fault-free) output signal
in zero delay simulation and hence go undetected. On the
other hand, the detection probability of a transition fault can
be much larger, since all propagation paths in its output cone

are affected regardless of the actual path delays, resulting in
rather optimistic fault coverages for small delays. The efficient
and accurate simulation of small delays is a non-trivial task
and involves the computation of the circuit timing, which
has higher computational demands than plain logic simulation.
Previous algorithms to evaluate circuit timing typically utilize
a static analysis with bounded gate delays [12–14] or proba-
bilistic approaches [15] to model the delay propagation in the
circuit, which are either too pessimistic or assume robust fault
propagation during simulation. Since not all structures can be
tested robustly, the presence of hazards or reconvergences may
cause the fault detection of tests to be invalidated [11, 16, 17],
which renders these approaches inaccurate. For detailed anal-
ysis of small delays, full waveform evaluation in the time
domain is required to ensure accurate signal timing and to
track all hazards. The authors of [18] proposed a waveform-
based simulator that evaluates the coverage of resistive open
defects by detection intervals in the time domain. Yet, these
algorithms show fairly large runtimes even for small circuits,
since they have been designed for use on regular CPUs.

With the introduction of the general purpose computing
on Graphics Processing Units (GPU), the paradigm of the
many-core processing emerged. GPUs contain many small
processing elements and are able to execute thousands to mil-
lions of threads concurrently in a single-instruction-multiple-
data (SIMD) fashion, making it able to achieve enormous
speedups for compute intensive problems [19]. This has been
pursued in electronic design automation (EDA) applications
for accelerating circuit simulation [20, 21] and parallel fault
simulation [22–27]. However, all these algorithms focus on
acceleration of plain logic simulation and do not provide the
accuracy required for considering small delay faults. In [28] a
first GPU-accelerated logic timing simulator was presented,
capable of processing industrial-sized circuits in the time-
domain at full waveform granularity.

In this work we utilize the computing power of GPUs for
the purpose of accelerating accurate and exhaustive small delay
fault simulation. We propose an efficient approach for timing-
accurate simulation of smallest delay faults that adopts the
fundamental waveform concept of [28]. By exploiting available
dimensions of parallelism and efficient organization, we enable
for the first time exhaustive small delay fault simulation
even without fault dropping for multi-million gate designs to
accurately determine the small delay fault coverage even in
presence of hazards and reconvergent fanouts.

II. FUNDAMENTAL REQUIREMENTS

With the data-parallel programming paradigm, GPU de-
vices are capable of achieving massive computational through-
put for acceleration of high-performance computing appli-
cations [19, 29]. However, this ability comes with certain



restrictions that often pose major problems when mapping
algorithms into code for parallel execution (kernels) with many
threads. First of all, all threads share the same global device
memory of the GPU, which is limited (typically 4–6GB). The
accesses are slow compared to the execution of bare arithmetic
instructions and in addition, the amount of fast local memory
that can be occupied by a single thread is scarce and has
to be used efficiently in order to avoid memory spilling. It
is important that each thread can run independently on its
own working set, as information exchange between different
threads can in general only be achieved through expensive
global memory accesses and thread synchronization barriers.
Furthermore, in accordance to the SIMD paradigm, threads are
executed in batches by the processing elements, where each
thread has to follow the same control flow by executing the
same instruction at any time. The divergence of a thread from
the batch causes an execution branch, which is handled serially
by the thread scheduler and further reduces the execution speed
until the control flow converges again. Also, data transfers and
communication between host and device are performance bot-
tlenecks and have to be minimized or avoided at all cost. Thus,
efficient memory accesses and uniformity of the execution are
of utmost importance for efficient parallelization [19].

Recent GPU-accelerated approaches for simulation of
stuck-at faults [22–27] evaluate independent structures in
the netlist (structural-parallelism) for multiple inputs (data-
parallelism), such as patterns and faults, at once. As a general
principle, each execution thread is assigned a certain structure
(a single gate or a fanout-free region as a whole) and some
input data to operate on independently. The algorithms utilize
efficient gate evaluation based on look-up-tables and further
exploit bit-level parallelism within single threads in order to
increase data-parallelism. In [20] a circuit simulation approach
is presented where the circuit netlist is partitioned into clusters
for independent evaluation of output signals. Each cluster is
simulated in parallel by a separate block of threads that process
levelized gates in parallel. An event-driven solution based on
a different circuit partitioning approach is presented in [21].
However, the independent simulation of the individual circuit
partitions requires the duplication of gates and reduces the
effective global memory of the GPU.

So far, the above mentioned algorithms follow simi-
lar concepts of exploiting parallelism in circuit simulation,
but without the consideration of circuit timing. In [30] the
authors propose a GPU-accelerated statistical static timing
analysis (SSTA) that processes Monte-Carlo instances simul-
taneously. The approach accelerates delay computation by
parallelized generation and statistical evaluation of random
numbers. However, SSTA only performs probabilistic anal-
ysis of the circuit timing and does not consider the actual
propagation of signal transitions, which is not suitable for
determining the detection of a given small delay fault. The
accurate investigation of small delay faults with circuit de-
lays requires waveform-accurate evaluation methods, that are
able to cope with the additional complexity of time. The
authors in [28] proposed a GPU-accelerated time simulator
for power estimation with a two-dimensional execution scheme
that maximizes simulation throughput by exploiting structural
gate- and data-parallelism (Fig. 2). The threads each process
different gates and input waveforms with floating-point timing
accuracy. The algorithm utilizes an efficient data encoding and
storage management to compute full switching histories with
low memory-footprint and synchronization overhead.
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Fig. 2. Waveform principle with two dimensions of parallelism.

The small delay fault simulation approach proposed in this
work simultaneously exploits (a) gate-parallelism, (b) fault-
parallelism and (c) pattern-parallelism as illustrated in Fig. 3.
We adopt the two-dimensional scheme of combining the gate-
and pattern-parallelism from [28], which provides the vehicle
for fast waveform-accurate time simulation. Fault-parallelism
is exploited by evaluating groups of structurally independent
small delay faults in the same simulation instance [31].

a) c)b)

Fig. 3. Dimensions exploited for maximum throughput parallelization: a)
gate-parallelism, b) fault-parallelism and c) pattern-parallelism.

Fig. 4 gives an overview of the proposed simulation ap-
proach. The upper part consists of necessary pre-processing
steps for reading in the netlist, initializing the simulator
and finding fault groups suitable for simulation. The bottom
part comprises the actual simulation process composed of
parallel fault injection and waveform-accurate time simulation
followed by fault detection to capture the output responses at
given sample times. The shaded boxes denote parallel actions.
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Fig. 4. Flow-chart of the overall simulation algorithm.

This work uses a pin-to-pin delay model and considers
individual delay annotations for each input of a cell and
transition polarity. The timing data is obtained from Standard
Delay Format (SDF) files, which are input for the simulator. In
the following, the applied parallelization methods of the small
delay fault simulation will be explained in more detail.



III. GATE-PARALLEL SIMULATION

If two gates are neither in the input- nor in the output-
cone of each other, they are mutually data-independent as the
inputs of any of the gates do not depend on the output of the
other and vice versa. Hence, the order of evaluation is not
subject of matter, in contrast to data-dependent gates, where a
partially ordered evaluation sequence has to be defined in order
provide the necessary input signals for succeeding gates. With
the parallel architectures, the evaluation of data-independent
gates will be performed concurrently.

Fig. 5 depicts the scheme for parallel evaluation of a topo-
logically ordered netlist. The topological ordering partitions the
gates of a netlist into levels depending on their maximum topo-
logical distance to either circuit inputs or outputs. Typically as-
soon-as-possible (ASAP) schedules are used for ordering. All
gates in a partition are mutually data-independent. For every
level, the gate evaluation kernel from [28] is invoked, which
spawns a thread for each gate on the current level. The threads
simultaneously compute the output of their corresponding
gates as a list of temporally ordered signal switches (waveform)
by processing toggle events of input waveforms in a merge-sort
fashion from earliest to latest and store the result in the global
waveform memory. The amount of parallelism that is exploited
per evaluation is restricted by the number of gates residing
on each level and typically mitigates towards the outputs in
an ASAP-scheduled netlist. Furthermore, the runtime of the
simulation depends on the circuit depth, since the levels have
to be evaluated in sequential order by individual evaluation
kernels. If at some point during the simulation a signal is not
input of any of the remaining gates scheduled for evaluation,
the associated waveform is deallocated to free memory [28].
This way the required waveform memory for a simulation
instance is bound by the maximum number of waveforms of
alive signals that have to be stored during the simulation run.

gate 0

gate 1

gate k

thread
(0)

thread
(ki)

thread
(1)

...

thread
(0)

thread
(k0)

thread
(1)

level 0 level i

... ...

thread
(0)

thread
(kd)

thread
(1)

level d

...

topological  evaluation

... ...

ou
tp

ut
s

in
pu

ts

Fig. 5. Parallel evaluation sequence of data-independent gates in a topolog-
ically ordered netlist.

As the amount of waveform storage per signal is con-
strained, overflows might occur during evaluation. If an over-
flow is detected, the simulation run is repeated with intermedi-
ate checks after each level to identify the problem waveforms.
The storage of the overfilled waveforms is then increased and
reallocated before proceeding with the evaluation [28].

IV. FAULT-PARALLEL SIMULATION

In order to reduce the amount of fault locations in advance,
structural collapsing of the fault list is performed by arranging
the faults into equivalence classes. All faults of an equivalence
class show an identical behavior and thus require only a
single representative fault for simulation. For small delay faults
that affect both rising and falling transitions with the same
delay amount, the equivalence rules of transition faults [5] are
applied:

• If a gate has a single input, then the fault locations at
input and output pin of the gate are equivalent.

• If a gate has a single fanout, then the location at
the output pin and the corresponding input pin of the
succeeding gate are equivalent.

These rules can be extended to support collapsing for faults
with different rising and falling delays.

For simulating small delay faults we employ a paralleliza-
tion scheme based on groups of independent faults [31]. If
the output cones of two faults share no common output logic,
they are referred to as output-independent as they propagate
to different parts in the circuit. Since these faults have no
mutual influence, they can be injected in the same simulation
instance for parallel evaluation. In the following, such sets of
output-independent faults will be referred to as fault groups.
In order to find suitable fault groups for a given fault set,
the mutual output-independence of each fault pair has to be
mapped to an output-independency graph. Nodes in this graph
represent faults and each edge connects two nodes iff the
associated faults do not share any output logic. Hence, an
edge indicates the eligibility of faults for parallel simulation.
Each clique in the graph represents a fault group, since all
pairs of nodes of the clique are connected and hence mutually
output-independent. After obtaining a fault group, the faults
can be injected for simulation and all nodes of the clique can be
removed from the graph. For maximum simulation speedup it
is favorable to keep the fault groups large and the group count
low by processing as many faults as possible in parallel in the
least amount of simulation instances. An optimal schedule of
a given fault set requires to repeatedly find a maximum clique
and remove the associated nodes until the remaining graph is
completely empty. However, finding a maximum clique is an
NP-complete problem which is not applicable for multi-million
gate designs.

To allow efficient computation of fault groups for multi-
million gate designs, we follow a heuristic approach as outlined
in Fig. 6. The algorithm takes as input a set of fault locations,
such as a pin of a certain gate. These fault locations are
sorted in topological order from outputs towards inputs, which
are then processed in an as-late-as-possible (ALAP) manner.
Starting from a fault location f , the list of reachable outputs
is first determined by traversing the netlist towards the circuit
outputs. This list is then compared with the reachable outputs
of a group in order to determine any shared outputs. A map is
stored for each group G that holds the reachable outputs of all
faults contained. Initially, the map of a group is empty. If the
outputs of a group G and a fault f are disjoint, f is inserted
into G and the reachable outputs of f are added to the output
map of the group. If a common output has been detected, the
comparison process is repeated for the next group in the list.
In case that none of the currently existing groups is disjoint
with f , a new group will be created.

Once a fault has been inserted into a group, the index of the
group is assigned to the fault location and propagated towards
the inputs by annotating the nodes in the input cone. This
annotation is part of the heuristic and will be used as a starting
group index when trying to find output-independent groups
for further faults. This avoids unnecessary group comparisons
when processing these faults, due to the transitive structural
dependency of succeeding gates, since a fault f cannot be
scheduled at the same time as the faults in its output cone.
Initially, the starting group of every node is initialized with 0.
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For a particular fault location f , the starting group start(f)
is then computed as:

start(f) := max{start(g) | g ∈ {f ∪ fanout(f)}}+ 1

whose value is propagated throughout the support-cone of the
fault location, by forward-propagation towards the primary
outputs followed by a back-propagation to the primary inputs.
The propagation is terminated at nodes that were already
assigned higher group index. Since all faults are processed in
ALAP-order, the starting group of each fault allows to quickly
skip all comparisons of nodes in its output cone.

The time-simulator processes fault groups as a whole by
injecting all faults of a group into a simulation instance. For
each gate in a circuit, the data structure of its timing annotation
is organized as a set D of tuples with pin delay values,
with each tuple representing the delays for rising and falling
transitions at a certain input-pin of the associated gate:

D = {{d0rise, d
0

fall}, {d
1

rise, d
1

fall}, . . . }.

The underlying simulation algorithm (cf. Section III) pro-
cesses transitions with respect to the polarity at the gate
inputs and also annotates pin-to-pin delays at the gate in-
puts. Each small delay fault f is represented by a tuple
f = (loc, {δrise, δfall}) consisting of a particular gate pin as
fault location and a set of delay values for the rising and falling
transition polarity as fault size. The injection of a fault into the
circuit is done by modifying the gate timing descriptions prior
to the simulation as follows:

• For a fault at an input the delay size values are added
to the rising and falling delay values of the associated
pin timing description of the affected gate.

• Faults at a gate output are modeled by injecting the
delay into the delay descriptions of every input pin of
the affected gate.

For the evaluation kernel, the presence of injected faults is
completely transparent and thus causes no additional control-

flow divergence during thread execution. After simulation of
a fault group, all injected small delay faults are removed
by restoring the nominal delay specification of all cells in
the circuit marked as faulty. This way, the injection scheme
causes only few small memory operations and thus keeps data
communication and synchronization overhead at a minimum.

V. PATTERN-PARALLEL SIMULATION

The time simulation algorithm (Section III) adopts a two-
dimensional parallelization concept in which multiple gates are
processed for different stimuli concurrently at a time. For the
two-dimensional simulation, the evaluation kernels invoke a
two-dimensional grid of execution threads as shown in Fig. 7.
Threads in the vertical direction process the different gates on
one topological level in parallel. In the horizontal direction, the
threads each evaluate the same gate, yet operate on different
input stimuli. The threads are scheduled in batches of 32 by
the thread scheduler for simultaneous execution in the multi-
processing cores. Each batch evaluates the exact same gate for
multiple stimuli. In global memory, the necessary waveform
toggle data is aligned in such a way that the memory accesses
of the threads within a batch create fully utilized 128-byte
memory transactions. This efficient coalescing of the wave-
form accesses and caching within thread blocks reduce the
overall amount of global memory transactions and maximizes
computational throughput.
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Fig. 7. Two-dimensional organization of concurrently executed threads.

The number of patterns that can be processed in parallel
depends on the available memory and the memory required for
a single simulation instance (Sec. III). In contrast to the level-
dependent gate-parallelism, the available parallelism obtained
from patterns remains constant throughout the simulation. If
more patterns are provided than the memory can store at the
same time, the simulation is split in a sequence of executions,
each processing a different bunch of patterns. Therefore, larger
memories allow for a higher degree of parallelization as more
stimuli evaluations can be performed concurrently.

For the evaluation of the circuit responses, the signal
values of all output waveforms are captured at a given sample
time T . Again, a two-dimensional kernel grid is used with
each thread traversing the toggle list in its associated output
waveform wave(t) until time T is reached. The waveform
value wave(T ) then represents a captured value. In order to
obtain the information about fault detection, the syndrome
syn(T ) of the waveform is computed during the evaluation
process. Since the simulated small delay faults are of finite
size, the stabilized good value at each output can be acquired
directly from the waveforms at t = ∞ without the need of
an explicit good value simulation. The syndrome waveform
syn(t) of a signal wave(t) is ‘1’ iff the value wave(t) is the
opposite of its final stable value wave(∞):

syn(t) := wave(t)⊕ wave(∞).



Therefore, if a fault has been detected at an output, the
syndrome is ‘1’, otherwise it is ‘0’. The syndrome values of
the batches are encoded as 32-bit strings, which contain the
compressed detection information, and the detection of each
fault is determined by looking up all computed syndromes
of the respective reachable outputs. The output sampling is
not limited to a single capture time. As the output waveforms
remain untouched during the capture process, multiple captures
at different sample times can be evaluated quickly in succes-
sion. Furthermore, individual capture times can be provided
for each output to model skew in the clock distribution tree.

VI. EXPERIMENTAL RESULTS

We compare the runtime of the proposed simulation
approach, against a state-of-the-art commercial event-based
logic-level time-simulator. Our set of benchmark circuits con-
tains the largest designs from ISCAS’89 and ITC’99, as well
as industrial designs provided by NXP. All designs have been
mapped to the NanGate 45nm Open Cell Library [32]. During
this process, the state elements were removed, thus leaving
only the combinational circuit structure. For the evaluation of
each benchmark circuit 10,240 random input stimuli (pairs)
have been generated to be applied in succession. As a fault
set we consider one small delay fault affecting both rising
and falling transitions for each pin (inputs or outputs) of a
gate. Given a specific clock frequency, the size of each small
delay fault has been set halfway between the slack of the
longest and shortest path through each location as obtained
from static timing analysis. All experiments were executed on a

NVIDIA R© GeForce R© GTX
TM

Titan Black consumer GPU card
with 2880 cores, 6GB of global memory and a 900MHz clock.
The host system contains 16 Intel R© Xeon R© processors clocked
at 3.4GHz and 256GB of RAM. However, the peak memory
consumption on the host system never exceeded 10GB.

Table I contains circuit and fault set information of the
designs. The circuit names, their sizes, as well as the logic
depths in gates are given in the first three columns. Columns 4
and 5 show the total number of faults in the universe before
and after removing equivalent faults. The group pre-processing
was able to partition the fault set into groups with average
sizes ranging from 1.2 to 773.2 faults, as shown in column 6
and 7. This factor directly impacts the overall simulation
runtime (inversely proportional), since the total number of
simulation runs to process all faults equals the amount of
fault groups. For circuit p469k, the grouping is less effective,
due to a large number reconvergent fanouts in the circuit. On
the other hand, p378k has less reconvergent fanouts and more
data independent nodes, which allows to reduce the number
of simulation instances by a factor of over 100×. For the
circuits investigated, the runtime of the grouping heuristic,
shown in the last column, ranges from seconds to roughly
over an hour. Compared to the full serial simulation, this is a
negligible amount of time spent for pre-processing, since the
time for simulating the faults is still dominated by the number
of instances. Even in the case of p469k, the small grouping
factor of 1.2 saves almost 15 percent (≈ 22,000) of the total
simulation instances.

Table II compares the runtime results of the presented
simulation approach to the commercial event-based time-
simulator. The first two columns list the circuit names and
the average runtime of the event-based solution for evaluating
a single circuit instance with all input patterns. Similar to [28]

TABLE I. CIRCUIT AND FAULT GROUPING STATISTICS.

Circuit Gates Depth Faults Reduced Groups avg. Runtime

s38417 27.5k 51 58.0k 25.4k 896 28.3 782ms
s38584 25.3k 61 57.7k 31.3k 1120 27.9 707ms
b17 38.5k 104 102.1k 70.3k 8299 8.5 23.33s
b18 131.7k 175 354.5k 240.2k 17.8k 13.5 51.32s
b19 265.1k 180 714.0k 484.3k 18.7k 25.9 3:33m
p35k 46.6k 72 107.8k 57.1k 29.9k 1.9 5:51m
p45k 45.1k 59 103.5k 59.6k 5220 11.4 8.61s
p77k 71.9k 555 174.9k 102.4k 32.2k 3.2 31.49s
p78k 74.9k 45 196.2k 138.3k 894 154.6 3.30s
p89k 90.2k 110 220.8k 132.8k 7000 19.0 19.18s
p100k 96.1k 103 227.9k 137.2k 5220 26.3 23.22s

p267k 272.6k 73 608.1k 303.3k 4947 61.3 1:15m
p330k 348.1k 70 825.3k 458.1k 32.2k 14.2 65:36m
p378k 374.5k 45 981.2k 691.3k 894 773.2 19.52s
p388k 482.4k 222 1.18M 714.1k 11.0k 64.8 4:10m
p418k 442.9k 206 1.01M 561.2k 9291 60.4 1:03m
p469k 97.4k 221 262.8k 154.3k 131.9k 1.2 27:24m
p533k 652.8k 114 1.61M 1.01M 4458 227.5 1:21m
p951k 1.01M 140 2.15M 1.25M 6733 186.2 3:26m
p1522k 1.09M 504 2.57M 1.46M 31.5k 46.4 42:12m

we split the runtimes of the proposed approach in worst-case
and best-case. In a first run, the accelerated time simulator
showed to be 18–832 times faster than the event-based solu-
tion (Col. 4). If the simulation is repeated, the overhead for the
memory management of the waveform reallocation is reduced
and eventually the simulator is able to run at full speed,
showing an increase in speedup. This yields an additional
improvement by factors of up to 38× as shown in columns
five and six. Note that the speedup of the simulation run is
independent of the fault grouping as the presence of faults is
completely transparent to the evaluation kernel. The rightmost
column contains the totaled runtime of the proposed approach
for the exhaustive fault simulation of each fault and every
pattern without fault dropping. Since the fault simulation is the
repeated execution of simulation runs with the same pattern set
applied every time, the memory calibration quickly converges,
which results almost exclusively in full-speed runs. Therefore,
the proposed simulator is able to effectively reduce the runtime
of exhaustive small delay fault simulation.

In Table III we compare the fault coverage of both tran-
sition and small delay faults for the applied random patterns.
Column two shows the exact number of fault locations consid-
ered. Columns three and four contain the number of detected
transition faults and the portion of small delay faults that have
not been detected at the same location (“⊇ SD und.”). As
shown, a fair amount of small delays could not be detected
although the transition fault was detectable, confirming the
well-known fact that transition faults overestimate the small
delay fault coverage.

The last two columns show the detection numbers for small
delay faults respectively. As expected, the small delay fault
coverage is generally lower than the transition fault cover-
age. However, there are also numerable cases of small delay
faults, which are detected despite their corresponding transition
faults being not detected. Here, the small delay faults were
propagated along reconvergent fanouts and caused hazards to
appear at the circuit outputs while the output signals were
being captured as depicted previously in Fig. 1. These faults
showed to be detectable only for smaller (finite) fault sizes that
cannot not be represented by transition faults. Although these
cases seem rare, they are especially important for diagnosis
and failure analysis, thus emphasizing the necessity of fast
and accurate small delay fault simulation for determining the
detection of small delays.



TABLE II. RUNTIME COMPARISON FOR 10,240 PATTERNS.

Circuit
Fault-Free Simulation Exhaustive

Event- Cold-Run (GPU) Re-Run (GPU) GPU Fault

Based Time X Time X Simulation

s38417 2:04m 308ms 402 304ms 407 3:25m
s38584 1:35m 375ms 252 375ms 252 5:47m
b17 3:59m 1.23s 194 422ms 564 0:54h
b18 0:20h 8.84s 130 1.66s 693 8:55h
b19 1:10h 31.23s 132 3.22s 1285 21:60h
p35k 4:06m 1.59s 154 529ms 464 3:45h
p45k 2:54m 1.37s 127 569ms 305 0:44h
p77k 0:22h 13.29s 95 1.36s 930 13:16h
p78k 0:25h 3.58s 409 1.07s 1364 0:28h
p89k 7:58m 1.69s 282 941ms 507 1:36h
p100k 0:11h 4.73s 135 1.07s 600 1:52h

p267k 0:25h 16.41s 89 2.45s 596 3:13h
p330k 1:04h 28.33s 134 3.39s 1126 32:40h
p378k 4:12h 31.19s 483 4.65s 3243 4:08h
p388k 1:37h 1:47m 54 5.36s 1081 29:46h
p418k 0:52h 1:49m 28 4.45s 698 16:13h
p469k 4:09h 17.92s 832 5.49s 2716 154:02h
p533k 3:17h 2:06m 93 7.82s 1507 41:13h
p951k 2:49h 9:04m 18 34.02s 297 135:11h
p1522k 3:34h 0:12h 18 18.74s 683 315:54h

TABLE III. FAULT DETECTION OF TRANSITION FAULTS (TF) AND

SMALL DELAYS (SD) AT SAME LOCATIONS.

Circuit Faults
Transition (TF) Small Delay (SD)

TF det. ⊇ SD und. SD det. ⊇ TF und.

s38417 25384 22971 5726 17258 13
s38584 31303 29630 7735 21903 8
b17 70257 44118 29042 15120 44
b18 240221 159529 68725 91330 526
b19 484292 323084 154521 169240 677
p35k 57076 31810 14453 17447 90
p45k 59619 55040 15194 39876 30
p77k 102407 57887 18143 45473 5729
p78k 138256 138256 12910 125346 0
p89k 132812 95896 35512 60426 42
p100k 137197 128802 35849 93768 815

VII. CONCLUSION

This work presents an approach for enabling fast and
accurate simulation of small delay faults on data-parallel
GPU architectures. The fault simulation is waveform-accurate
and supports individual rising and falling pin-to-pin delay
annotations as well as glitch filtering. It maintains full infor-
mation about hazards and glitches, and allows to determine
the coverage of small delays in the presence of hazards and
reconvergences. Rather than focusing on latency-optimized
evaluation, the proposed method utilizes the many dimensions
of parallelism found in circuit simulation (gates, faults and
patterns) and careful memory management to attain maximum
simulation throughput and speedup. Runtime results of the ap-
proach have shown speedups of up to three orders of magnitude
compared to conventional logic-level timing simulators. With
this significant simulation speedup, the proposed approach
enables for the first time waveform-accurate and exhaustive
small delay fault simulation even without fault dropping for
large industrial designs with more than a million gates.
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