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Abstract—Nanoscale technologies are increasingly susceptible
to aging processes such as Negative-Bias Temperature Instability
(NBTI) which undermine the reliability of VLSI systems. Existing
monitoring techniques can detect the violation of safety margins
and hence make the prediction of an imminent failure possible.
However, since such techniques can only detect measurable
degradation effects which appear after a relatively long period
of system operation, they are not well suited to early aging
prediction and proactive aging alleviation.

This work presents a novel method for the monitoring of
NBTI-induced degradation rate in digital circuits. It enables
the timely adoption of proper mitigation techniques that reduce
the impact of aging. The developed method employs machine
learning techniques to find a small set of so called Representative
Critical Gates (RCG), the workload of which is correlated with
the degradation of the entire circuit. The workload of RCGs is
observed in hardware using so called workload monitors. The
output of the workload monitors is evaluated on-line to predict
system degradation experienced within a configurable (short)
period of time, e.g. a fraction of a second. Experimental results
show that the developed monitors predict the degradation rate
with an average error of only 1.6% at 4.2% area overhead.
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I. INTRODUCTION

As the scaling of technology nodes proceeds, Negative Bias

Temperature Instability (NBTI) becomes a major threat to the

reliability of VLSI devices [1]. NBTI consists in the oxide

degradation of PMOS transistors that results in a gradual shift

in the threshold voltage, which in turn causes an increased

propagation delay. Eventually, NBTI stress may significantly

increase the critical path delay and lead to timing violations.

Traditional approaches for NBTI monitoring measure degra-

dation effects, i.e. provide an aggregated measure of the

degradation that took place over a long period of time. They

can be used to guide reactive techniques that manage the

degradation effects, e.g. by frequency and voltage scaling [2]

or adaptive body biasing [3]. Such monitoring techniques,

however, are unable to track the degradation rate, i.e. the

amount of stress caused by the currently running application.

Degradation rate monitoring is crucial for the timely adoption

of preventive techniques that alleviate aging, such as proactive

frequency and voltage scaling [4] or dynamic cooling [5].

The goal of this work is to enable the monitoring of

NBTI-induced degradation rate in digital circuits, i.e. to

predict the increase of the critical path delay over a short

period of time, long before any measurable degradation takes

place. This kind of monitoring enables the adoption of novel

proactive countermeasures that reduce the degradation rate, e.g.

NBTI-aware scheduling, load balancing, frequency and voltage

scaling, or guide the application of healing patterns [6].

In digital circuits, monitoring of the delay degradation rate is

challenging for three reasons: (1) Direct aging rate estimation

by consecutive measurements of the critical path delay is

impractical over a short period of time as the delay increase

is not measurable. (2) The degradation rate of a digital circuit

depends on the degradation rate of each PMOS transistor on

the current critical path, whereas the critical path may change

over time. (3) The degradation rate of each PMOS transistor

is a function of its state (or duty cycle) which in turn depends

on the currently running application.

In this paper, we describe an innovative monitoring approach

that combines workload monitoring with machine learning

techniques. Our method is based on the monitoring of repre-

sentative critical gates (RCG), the workload of which correlates

with the degradation rate of the entire circuit. We provide an

algorithm for finding a small set of RCGs, a method for the

synthesis of RCG workload monitors, and an algorithm for on-

line prediction of the delay degradation rate. Our experimental

results show that the developed monitoring scheme predicts

the degradation rate with an average error of only 1.6% at the

expense of a modest 4.2% area overhead.

The rest of this paper is organized as follows: In the next

section, we give the problem statement together with an

overview of the developed monitoring scheme. Section III

defines critical gates and provides the algorithm to select

representative critical gates (RCGs). The synthesis of workload

monitors for RCGs is described in Section IV. Section V deals

with the construction of regression models that are used on-line

to predict the degradation rate. The accuracy and overhead of

the monitoring scheme is evaluated in Section VI.

II. OVERVIEW

A. Problem Statement

NBTI causes a gradual increase in gate delays and results

in performance degradation of digital circuits. The aging rate

at time t is defined as δD(t)/δt, where D(t) is the length of

the critical path at time t. The NBTI-induced aging rate is a

function of many technology parameters, temperature, and the

duty cycle of transistors, i.e. the ratio between transistor stress

time to the total operating time.

NBTI is a long term phenomenon which impacts the

circuit delay after a long time. To characterize the currently

running application and guide aging alleviation techniques, it

is sufficient to average the degradation rate over a period of

several milliseconds to several minutes. Therefore, the goal

of our work is to approximate the average aging rate over

a given period of time T0. At time t = kT0, k ∈ N
+, the

average aging rate is calculated as ∆D/T0, where ∆D is

the increase (degradation) of the circuit delay within the time

interval [t − T0, t). The parameter T0, i.e. the length of the

time window over which the aging rate is averaged, must

be configurable to suit different applications of aging rate

monitoring.

B. Developed Monitoring Approach

The degradation rate monitoring scheme is presented in

Fig. 1. The monitored circuit is augmented with a workload



monitor that observes a subset of the circuit’s primary and

pseudo-primary inputs, and a temperature sensor. Based on the

state of the primary and pseudo-primary inputs, the workload

monitor predicts the current stress of each representative critical

gate (RCG) of the monitored circuit. Note that the RCGs are

not monitored directly to limit the impact of monitoring on

circuit performance. The outputs of the workload monitor are

aggregated over a short period of time and used to predict the

current degradation rate, i.e., the increase in the circuit delay

over the recent period. A software component is responsible for

the evaluation of the degradation rate based on the aggregated

output from the workload monitor and the temperature sensor.
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Fig. 1. Principle of the degradation rate monitoring

The monitoring method comprises design-time and on-line

algorithms and activities, as shown in Fig. 2. At design-time,

we characterize the target standard cell library w.r.t. NBTI

aging and subject the circuit to an NBTI-aware Static Timing

Analysis (STA). Based on STA results, we identify the Critical

Gates (CG), i.e. gates that belong to critical paths or paths that

may become critical due to aging. From the set of CGs, we

select a small set of representative critical gates (RCGs), the

delay degradation of which is correlated with the degradation of

the entire circuit. Next, we synthesize workload monitors that

predict the NBTI-relevant stress of RCGs. Finally, a regression-

based aging rate prediction model is constructed.
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Fig. 2. Design-time algorithms and on-line activities for aging rate prediction

In a running system, the workload monitors continuously

observe the stress experienced by the RCGs. Together with

the current temperature, this information is periodically fed

to the aging rate prediction model. The aging rate model

is evaluated in software, ideally during the idle time of any

available processing unit.

III. REPRESENTATIVE CRITICAL GATES (RCG)

A. Critical Gate Selection

We define the slack of a gate as the difference between the

delay of the longest path through that gate and the critical path

delay of the circuit. If the slack of a gate does not exceed

a given threshold, the gate is called critical gate (CG). The

set of CGs is found using an aging-aware timing analysis

based on [7]. The threshold can be adjusted based on the delay

degradation rate of the circuit.

We define the workload of a critical gate as the duty cycles

of its constituent PMOS transistors. Circuit degradation rate

is predicted by monitoring the workload of selected CGs, as

discussed below.

B. RCG Selection Algorithm

Since monitoring of all the CGs in a circuit is infeasible, it is

crucial to find a small set of representative critical gates (RCGs).

The workload of RCGs must be highly correlated with the

NBTI-induced delay degradation of the circuit. RCG selection

problem can be formulated as follows: for a given set of CGs V ,

identify a minimal subset F ⊆ V such that the circuit delay

degradation rate can be predicted with sufficient accuracy only

from the workload of gates in F and the chip temperature.

Solving this problem requires all possible circuit applications

and aging histories be considered, which is infeasible. Instead,

we select the set of RCGs by evaluating the correlation between

the delays of RCGs and the circuit delay.

The set of RCGs is found using the wrapper method for

feature selection [8]. The training set consists of sets of de-

graded CG delays and the corresponding degraded circuit delay

obtained for random applications. The following merit function

is used to score each subset S ⊆ V consisting of k features:

krcf/
√

k + k(k − 1)rff , where rff is the correlation between

features, and rcf is the average correlation between features

and circuit delay. The correlations rff and rcf are calculated as

minimum description length [8]: E(A) + E(B|A), where E is

entropy while A and B are either feature or delay degradation.

IV. WORKLOAD MONITORING

A workload monitor is a combinational circuit that observes

a subset of the circuit’s primary inputs and pseudo-primary

inputs (register outputs) and generates one output per PMOS

transistor of each RCG. An output of the monitor is “1” when

the corresponding transistor experiences NBTI stress (UGS < 0),

and it is “0” otherwise. Since the monitor observes only primary

and pseudo-primary inputs, it has minimal impact on the timing

of the monitored circuit.

The problem of monitor synthesis is defined as follows:

Given a circuit with n primary inputs and m pseudo-primary

inputs, a set of RCGs, and target monitoring accuracy AT

expressed in percent, construct a workload monitor with

minimal area overhead such that each monitor output provides

the correct response for at least AT · 2n+m input patterns.

In principle, workload monitors can be synthesized using

the technique presented in [9]. Our experimental results show,

however, that this approach results in prohibitive area overhead



that often exceeds 100% for the usual number of RCGs required

for accurate aging rate prediction. In the following, we describe

a novel heuristic method for the synthesis of workload monitors

with affordable area overhead: Initially, we construct an exact

monitor that provides correct response for all input patterns.

Next, we build approximate monitors with reduced size by

iterative reduction of the exact monitor.

The exact monitor is simply a copy of the monitored circuit

in which (1) all gates that do not belong to the transitive fan-in

cone of any RCG are removed, (2) additional gates are added

to generate outputs that are “1” whenever their corresponding

PMOS transistors experience NBTI stress (UGS < 0).

An approximate monitor is constructed by iterative removal

of gates from the exact monitor at the cost of reduced accuracy.

A gate is removed if its output controllability and observability

is low enough to guarantee the target monitoring accuracy AT .

The removal of gates is modeled by the injection of stuck-at

faults in the monitor. For each injected fault, we evaluate the

resulting accuracy, as well as the area reduction due to fault

injection and constant propagation. In every iteration, we select

a fault that does not violate the target monitoring accuracy AT

and results in the lowest size of the monitor.

Formally, the approximate monitors are synthesized as

follows: Let M be the exact monitor with an output set

{o1, o2, o3, . . . , oG}. Iterate:

1) Generate a structurally collapsed stuck-at fault set

{f1, f2, f3, . . . , fK} for M .

2) For each fault fi, create a structural copy of M , denoted

Mi, with injected fault fi.

3) Using Monte Carlo simulation, evaluate the accuracy of

each monitor output oj of Mi, denoted ai(oj), i.e. the

ratio of input patterns for which the output oj in Mi

matches the corresponding output in the exact monitor.

4) For each faulty monitor Mi, calculate

Ai = MIN
G
j=1 ai(oj).

5) Terminate if MAXK
i=1 Ai < AT .

6) For each Mi with Ai ≥ AT , perform fault/constant

propagation, remove the gates with constant outputs, and

simplify the gates with constant inputs.

7) Approximate the size of each Mi, denoted Si, as the

total area of standard cells in Mi.

8) Choose monitor Mt, 1 ≤ t ≤ K, such that At ≥ AT and

St = MIN
K
i=1Si; assign M := Mt, repeat from step 1.

V. PREDICTION OF THE DEGRADATION RATE

A. Off-Line Construction of the Aging Rate Model

For on-line prediction, it is necessary to model the rela-

tionship between the output of workload monitors and the

delay degradation rate of the circuit. The aging rate model is

a linear regression of the following form: ∆D = W · β + ǫ,
where ∆D is the increase in circuit delay, W is a vector of

average RCG workloads from the monitor, while the vector β
and the scalar ǫ are regression coefficients. To fit the model,

we use the ordinary least squares (OLS) technique.

B. On-Line Model Evaluation

To evaluate the aging rate prediction model, the duty cycles

of PMOS transistors in RCGs must be averaged over the time

period T0. To this end, each output of the workload monitor

is aggregated in hardware. In the simplest case, one counter

per monitor output is used to count up the number of clock

cycles in which the output is “1”, i.e. cycles in which the

corresponding PMOS transistor experiences NBTI stress.

To reduce the monitoring cost, an existing memory system

is reused and systematic sampling methods are applied: Just

a single counter with multiplexed input is used regardless of

how many RCGs are monitored. The counter is attached to

each monitor output for the time period of T0/G, where G
is the total number of monitor outputs. The minimal counter

length is hence L := ⌈log2
T0

G·Tclk

⌉, where Tclk is the minimal

period of the system clock. The content of the counter is sent

to the main system memory with a period of T0/G using

Direct Memory Access (DMA). The memory demand is G · L
bits. For instance, assuming 30 monitor outputs, an evaluation

period of 1 s, and 1 GHz clock, only a single 25-bit counter

and 94 bytes of memory are required.

Since the aging rate prediction is executed relatively seldom,

e.g. with a period of several hundred milliseconds to minutes,

it is performed in software during the idle time of any currently

available processing unit. The processing unit reads the average

chip temperature as well as the aggregated output of the

workload monitors from the system memory. These data are

then used to evaluate the aging rate prediction model. The only

requirement on the processing unit is that it supports efficient

addition and multiplication of fixed or floating point numbers.

VI. EVALUATION

A. Experimental Setup

We evaluate the on-line prediction technique on a set of

ISCAS’89 benchmark circuits. We define an application of a

benchmark circuit as a set of primary input signal probabilities.

The Nangate 45nm open cell library [10] is used to synthesize

the benchmark circuits and monitors. We assume that the

benchmarks are part of a system with a temperature sensor, a

memory system with DMA and free capacity of several KB,

and a processing unit that can be reused in the idle time to

evaluate the prediction model. We exploit the reaction-diffusion

(R-D) NBTI model proposed in [11]. The worst case NBTI-

induced delay degradation is assumed to be 10% over 3 years

for a simple inverter and the parameters of the NBTI model

are set accordingly. Due to limited space, we provide results

for a constant system temperature.

B. Impact of Application on Aging Rate

To study the effect of different applications on the aging rate,

5000 random sets of primary input signal probabilities are con-

sidered. Fig. 3 shows the range by which the degradation rate

differs across the applications for each benchmark circuit. The

range is calculated as: [max(∆D) − min(∆D)]/ min(∆D),

where max(∆D) and min(∆D) are respectively the maxi-

mum and minimum NBTI-induced delay degradation over all

applications. Since the effect of the application on the amount

of NBTI-induced delay degradation can be as large as 40%,

it is crucial to monitor the circuit’s workload for an accurate

aging rate prediction.
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Fig. 3. Normalized range of NBTI-induced delay degradation across different
applications

C. Validation Experiments

To evaluate the accuracy of the developed method, 4500

of the application sets are used as a training set for linear

regression, and 500 sets are used for validation. For each appli-

cation, the accurate NBTI-induced delay degradation ∆Dcalc

is computed based on the NBTI-aware timing analysis [7]. The

corresponding on-line estimation ∆Dest is obtained by feeding

the average outputs of the workload monitor to the aging rate

prediction model. The prediction accuracy is calculated as

normalized root-mean-square error (NRMSE):

NRMSE =

√

∑n

i=1
(∆Desti

− ∆Dcalci
)2√

n(∆Dcalcmax
− ∆Dcalcmin

)
, (1)

where n is the number of applications (in this case 500).

D. Accuracy of Aging Prediction

Table I shows the number of CGs for all benchmark circuits

assuming a CG slack threshold of 5%. Simulation results

show that 5% slack threshold gives a good trade-off between

the number of CGs and prediction accuracy. As described in

Section III-B, machine-learning is used to find a set of RCGs

to decrease the monitoring overhead. The column 4 of Table I

shows the number of RCGs, which is less than the number of

CGs by a factor of four on average.

We evaluate the prediction accuracy with two sets of

workload monitors: the first one can monitor the workload

with 100% accuracy and the other with 80% accuracy (see

Section IV). As shown in Fig. 4, the average NRMSE of

the proposed technique is around 1.8% and 3.6% for 100%

and 80% monitors, respectively. These results correspond to

a mean error of 0.8% and 1.6% for 100% and 80% monitors,

respectively. While the inaccuracy of 80% monitors is higher,

their area overhead is less as discussed below.

E. Hardware Overhead

The area overhead of the workload monitors is presented in

Table I: the size of the benchmark circuits is given in the fifth

column, while the two following columns show the monitoring

TABLE I: AREA OVERHEAD OF THE DEVELOPED MONITORING SCHEME

Circuit #Gates #CGs #RCGs
Area Monitoring overhead

[µm2] AT = 100% AT = 80%
s953 683 26 18 479.86 24.39% 8.31%
s1423 824 116 44 808.64 22.13% 10.23%
s1238 881 47 22 546.10 56.06% 7.54%
s1488 902 27 14 571.37 13.73% 3.49%
s9234 1725 92 15 2388.68 15.93% 1.61%
s5378 2926 50 16 1934.88 6.61% 2.36%
s13207 4074 162 14 5159.87 15.10% 0.20%
s38584 18142 59 21 16861.74 0.48% 0.30%
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overhead for monitors with the target accuracy of 100% and

80% (cf. Section IV). The area overhead of the 80% monitors,

which were shown to provide sufficient accuracy, is below

2.4% for circuits with more than 1000 gates. The monitoring

overhead scales well with the circuit size: for the two largest

benchmarks, the overhead is below 0.3%.

F. Runtime

As mentioned in Section V, the prediction technique consists

of the off-line monitor synthesis and construction of the aging

rate model, and the on-line model evaluation. The runtime of

the off-line part is only few hours for the largest circuit. The on-

line prediction time is negligible as it involves simple software

vector multiplication that is executed relatively seldom.

VII. CONCLUSION

Since the NBTI effect in advanced technology nodes strongly

depends on the system application and workload, on-line

prediction of the degradation rate is crucial to enable effective

aging alleviation. We present a novel method for aging rate

prediction which is based on workload monitoring and machine

learning techniques. The monitoring technique enables on-

line prediction of the degradation rate caused by the currently

running application. Experimental results show that this method

delivers sufficient accuracy at an affordable area overhead

which decreases with the size of the monitored circuit.
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