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Abstract—Gate-level timing simulation of combinational
CMOS circuits is the foundation of a whole array of important
EDA tools such as timing analysis and power-estimation, but the
demand for higher simulation accuracy drastically increases the
runtime complexity of the algorithms. Data-parallel accelerators
such as Graphics Processing Units (GPUs) provide vast amounts
of computing performance to tackle this problem, but require
careful attention to control-flow and memory access patterns. This
paper proposes the novel High-Throughput Oriented Parallel
Switch-level Simulator (HiTOPS), which is especially designed
to take full advantage of GPUs and provides accurate time-
simulation for multi-million gate designs at an unprecedented
throughput. HiTOPS models timing at transistor granularity
and supports all major timing-related effects found in CMOS
including pattern-dependent delay, glitch filtering and transition
ramps, while achieving speedups of up to two orders of magnitude
compared to traditional gate-level simulators.

I. INTRODUCTION

In Electronic Design Automation (EDA) timing-simulation
of circuits is an important and widely used tool for timing
validation, power estimation and delay-test assessment. With
current low-power features and aggressive clocking of CMOS
circuits, gate-level timing simulation has to be accurate enough
to capture all important delay effects of modern CMOS cells
(such as hazards or transition ramps) for useful timing, power,
fault coverage and reliability estimations [1]. Take for instance
the CMOS NOR-gate in Fig. 1. Simple gate-level delay models
may just define rising and falling delays of this gate depending
on its load. These delays may be close to the real behavior for
inputs like (0, qx) or (0, yp), but with the input (yp, yp) the
gate is much faster as both NMOS-transistors discharge the
load collectively. This effect has been incorporated into gate-
level delay models [2, 3], so have been the cases where both
input transitions do not arrive at exactly the same time or have
different steepness [4]. Complex CMOS cells such as XOR-
cells or multiplexers containing pass-transistor structures can
exhibit unique delays for each input combination. This renders
conventional analytic or look-up-table-based delay calculation
approaches impractical, as they involve vast amounts of dif-
ferent parameters and conditions that have all to be taken into
account at the same time.

Circuit timing simulation can be performed at various
abstraction levels, ranging from conventional gate-level timing
simulators over switch-level simulation down to the electrical
level with SPICE [7]. As of today, effects like IR-drop, ground-
bounce, threshold voltage variations have to be investigated
with methods that heavily rely on the use of very expensive
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Fig. 1. a) CMOS NOR-gate. b) Output behavior with different inputs (SPICE
transient analysis with a 45nm PTM [5, 6]).

low-level simulations [8]. Although it is mandatory to consider
all these effects to properly predict timing, power consumption
and aging under variations, it is currently way beyond the
performance capabilities of these simulation algorithms to be
effectively applied to large industrial-sized designs. The first
hybrid GPU-accelerated SPICE simulation algorithms reached
runtime improvements of up to 4x [9]. For characterizing gates
even speedups of 200x have been reached on GPUs [10]. Yet,
this speedup is restricted to designs with less than 22 transistors
and drops significantly for larger circuits. With optimizations,
simplified models and improved latency, about 10x of speedup
were reported on standard CPUs [11–13]. These simulators
may provide rather high level of accuracy, but they are still
several orders of magnitude slower than gate-level simulation.

As a trade-off between simulation performance and ac-
curacy various switch-level simulation approaches have been
reported. Piece-wise linear models for accelerating circuit sim-
ulation have been previously investigated in many works [14–
20] that are able to model current flows between individual
nodes. These switch-level simulators allow the modeling of
individual electrical components and therefore implicitly sup-
port all the aforementioned delay effects.

A major bottleneck for applying the above-mentioned low-
level approaches to multi-million gate designs is the size of the
working set per problem instance (the amount of data required
during evaluation, such as frequently accessed variables).
Common time simulation algorithms involve many parameters
as well as vast amounts of data points during the computation,
e.g. caused by signal waveform sampling, and cannot be
parallelized without difficulties due to the rapidly growing
memory footprint. Furthermore, since the underlying mod-
els are typically bidirectional, the mutual interplays between
simulation nodes are usually expressed through differential
equations that require extensive utilization of iterative solvers



for their evaluation. These calculations in turn are complex
and rely on specific simulation step-widths and convergence
criteria that can cause a lot of execution divergence in parallel
applications, which further limit the computational throughput.

With the use of data-parallel architectures such as Graphics
Processing Units (GPUs), available parallelism in circuit sim-
ulation is exploited to provide simulation speedup [21–23].
Although GPUs provide massive floating-point performance,
it comes at the cost of certain control flow restrictions and
a severe memory bottleneck which pose the major limitations
when parallelizing simulation algorithms. On GPUs, arithmetic
operations are very cheap compared to diverging control flows
of data-parallel code or memory accesses, which should be
kept at a minimum. Therefore, uniformity of execution and
efficient memory accesses is more important than reducing the
number of arithmetic operations [24].

In this work we present HiTOPS (High-Throughput Ori-
ented Parallel Switch-Level Simulator), a novel parallel GPU-
accelerated time-simulator for CMOS circuits that models
timing at transistor granularity. With its sophisticated mem-
ory organization and the uniform control-flow algorithm the
proposed approach is able to overcome the aforementioned
bottlenecks. The remainder of this document is structured as
follows: After summarizing common pitfalls and limitations of
GPU architectures in Section II, we introduce the basic simula-
tion concept of HiTOPS in Section III. Section IV presents the
evaluation algorithm and the applied method of parallelization.
In Section V we demonstrate that HiTOPS is able to achieve
higher accuracy and throughput than conventional gate-level
time-simulation algorithms and that it is capable of processing
industrial-sized designs efficiently.

II. FUNDAMENTAL REQUIREMENTS

On data-parallel architectures, fast local memory is a very
scarce resource compared to the available compute power [25].
Accesses to large global memory suffer from high latency
and limited bandwidth making a careful memory management
the top priority. Hence, algorithms need to have a very small
working set at any point in time in order to run efficiently. The
larger the working set is, the more data needs to be swapped
out to global memory, which rapidly decreases performance.
For instance, standard SPICE transient analysis algorithms
need to access the data of a large portion of or even the
complete circuit for every time step. Their working set is huge
and their performance is mainly limited by memory accesses.

For optimal performance, data residing in global memory
should be accessed only once and ideally in sequence to allow
optimal use of pre-fetching hardware, cache memories and
coalescing. Although event-based simulation algorithms have a
very small working set (the time wheel), each processed event
causes a signal update somewhere in a large design potentially
leading to many cache misses and multiple updates of the same
signal. These irregular accesses cannot be predicted or bundled
rendering event-based approaches inefficient on data-parallel
architectures.

In plain logic simulation, each gate in a combinational cir-
cuit is evaluated only once and in topological order to compute
the result. Such a simple approach fits the requirements above
quite well. The working set contains only a fraction of the

whole circuit at any given time and the fixed evaluation order
allows very regular memory accesses. It has been shown that
this principle can be applied to timing simulation to reach
enormous throughput on GPUs [23]. The key to apply the
same principle to switch-level simulation is to use a circuit
model that allows topological ordering of its basic components.
The input values to each component must be independent of
the state of the component itself, and the output values of a
component must be independent of the states of all succeeding
components. These requirements are not fulfilled by existing
switch-level or electrical circuit models, because the output
voltage of a CMOS cell depends on the wire resistance, the
capacitive load and even the charging state of the connected
circuitry.

III. SIMULATION MODEL FOR CMOS CIRCUITS

HiTOPS considers individual transistors within the CMOS
cells and uses continuously valued voltage waveforms that
closely match the actual voltages at the gates of the transistors.
The switching times of individual transistors are determined by
the intersection points of these voltage waveforms with their
threshold voltages.

A. Channel-Connected Components

The goal is to partition the transistor netlist into compo-
nents that can be simulated in topological order. In CMOS
circuits, so-called channel-connected components [26] have
exactly this property. A channel-connected component is a
sub-network in a transistor netlist in which current can flow
freely between nodes. Fig. 2 shows a transistor netlist with a
highlighted channel-connected component. Ideal transistors do
not allow any current flow from the gate to its other terminals
and all connections to an ideal power supply network draw
currents independently from each other. Therefore, channel-
connected components are found by starting with an arbitrary
net and traverse from it until a transistor-gate or the power
supply network is reached.

Fig. 2. A channel-connected component in a transistor netlist.

The state of the channel is controlled by the gate voltages
of its associated transistors and it determines the gate voltages
for succeeding channel-connected components. If the transistor
netlist itself does not contain any loops, the channel-connected
components can be evaluated in topological order to calculate
all gate voltages in the netlist in a single pass. The behavior
is governed by numerous intended and parasitic effects which
can be approximated with various degrees of accuracy [14, 19].
But despite all these effects, the transitions of the gate voltages
can still be well approximated by simple exponential functions.
This is shown by a quick SPICE transient analysis of some
CMOS inverters and a fitting to ideal exponential curves in



Fig. 3. Hence, for the purpose of accurate timing simulation,
such curves contain sufficient information to cover the most
important delay effects in CMOS circuits.
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Fig. 3. SPICE transient analysis (45nm PTM [5, 6]) of CMOS inverters
under different loads and fitting of exponential functions to the SPICE result.

Arbitrary complex channel-connected components such
as 6-transistor XOR-Cells or OR-AND-Inverters (OAI) with
different driving strengths are characterized using SPICE sim-
ulations to find the relationship between input and output.
The parameters for the exponential curves that fit the voltage
transitions best in each situation are then input to HiTOPS for
fast simulation. For easier presentation of the core principles
of HiTOPS, we will introduce an intuitive model for handling
CMOS gates in the next section. The same ideas are appli-
cable to complex gates and more powerful models of general
channel-connected components as well.

B. Resistor-Resistor-Capacitor Cells

HiTOPS uses Resistor-Resistor-Capacitor (RRC-) cells as
shown in Fig. 4 for computation, which is a simple and
intuitive unidirectional model for describing the behavior of
channel-connected components in CMOS gates in a compact
way. CMOS gates contain pull-up and pull-down networks,
that connect to VDD as well as GND, and which are rep-
resented by a resistive voltage divider (Ru, Rd) charging or
discharging a lumped capacity Cload over time.

Ru
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...In
pu

ts
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Fig. 4. The RRC-cell.

If the values of both Ru and Rd are constant between
time tp and tp+1 (with p ≥ 0), the output voltage uc(t) at
the output capacitor will follow an exponential curve starting
from an initial voltage uc(tp) towards the stationary voltage

u = S · U + GND, where S = Rd

Ru+Rd
is the ratio of the

voltage divider and U = VDD−GND. With the time constant
τ = SRuC, the exponential curve within tp ≤ t ≤ tp+1 can
be computed by:

uc(t) = (uc(tp)− u)e−
t−tp

τ + u. (1)

To calculate the values of Ru and Rd, each transistor
present in a gate is replaced by a voltage-controlled resistor
that is described by a 3-tuple T = (Uth, R

0, R1). Each
transistor is considered a perfect switch, that changes its
source-drain resistance RT between the values R0 and R1

depending on its threshold voltage Uth and the current gate
voltage uT :

RT (uT ) =

{

R0 uT < Uth

R1 uT ≥ Uth

. (2)

Here, Uth is defined as the gate potential over ground GND
at which the transistor changes its state. This way, pull-up and
pull-down transistors can be treated in very much the same
way. NMOS-transistors have R0 > R1, and PMOS-transistors
have R1 > R0. High resistance values indicate a blocking
transistor, while a low resistance implies a conducting state.
A wire resistance RW ≥ 0 also contributes to Ru and Rd,
which are then computed during runtime based on all current
transistor resistances RT (uT ) by applying Kirchhoff’s laws for
parallel and series circuits to the pull-up and pull-down meshes
respectively.

In the case of the NOR-gate from Fig. 5, the final resis-
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Fig. 5. Equivalent circuit model of the NOR-gate.

Since between two consecutive transistor switches the
resistances are assumed to be constant, the voltage level at
Cload will follow an exponential curve with the parameters
derived before. It is easy to see, how this model can keep
continuous track of the charge at Cload over time and how
multiple input transitions in close succession can result in
glitch filtering or faster switches as depicted in Fig. 1. Note
that Eq. (1) supports customized VDD and GND levels for
individual RRC-Cells and hence allows to consider IR-drop,
ground-bounce and threshold voltage variations as well.

C. Waveform Representation

In order to describe signal changes or switching histories,
HiTOPS utilizes an efficient concept similar to [23], that has
been extended by piecewise waveform approximation with
curve segments. In an RRC-cell, each transistor switch causes
a new charging curve to appear at the output. The start of a
new curve is called pivot. A pivot p and its associated curve
are entirely described by three parameters:

• tp: The time of the pivoting point. This time marks
the end of the previous exponential curve (p− 1) and
the start of the new one (p).

• up: The stationary voltage the new curve p approaches,
calculated from the new resistances of the voltage
divider, the supply voltage U and GND.

• τp: The time constant of the new curve p, calculated
from the resistances of the voltage divider and the
lumped load capacity.



A waveform is a list of pivot points (t, u, τ) ordered
temporally from the earliest to the latest. Before the first
ordinary pivot, the waveform has a constant initial voltage
encoded as (−, uinit,−) at the head of the sorted list. The list
is terminated by (∞,−,−) and the waveform approaches the
voltage u of the last ordinary pivot. Fig. 6 shows plots and en-
codings of three example waveforms. The pivot representation
completely avoids sampling and allows to model continuous-
valued voltages efficiently with compact storage requirements
similar to traditional timing simulation.
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Fig. 6. Example waveforms and their encoding for inputs and output of a
two-input NOR-gate. Ordinary pivots are marked by (blue) vertical lines.

IV. HITOPS SIMULATION ALGORITHM

A. RRC-Cell Evaluation

The following algorithm takes all waveforms controlling
a single RRC-cell, calculates all transistor switch times by
intersecting the waveforms with the appropriate threshold
voltages, and generates a new waveform describing the output
voltages over time of the cell. A single input transition may
generate multiple transistor switches at distinct times. All
switches have to be managed and sorted from oldest to newest
to generate the correct output waveform, which are clearly the
most challenging tasks of the complete evaluation procedure.

An efficient solution is given in Algorithm 1. Since the
pivot points in the input waveforms are already sorted, the
evaluation follows a merge-sort approach which requires to
read and write waveforms only once in sequential order and
allows to keep the local working set as small as possible.
The evaluation progress is controlled by two time points
[tmin, tmax] defining a time window that slides across all
input waveforms from the beginning to the end. The window
start time tmin is increased with every transistor switching
event processed and tmax is increased with every new input
pivot loaded from memory. Local memory contains two tables,
the pivot table and the transistor table, to track the cell’s
state within [tmin, tmax]. The pivot table always contains all
necessary data to describe the input voltages within the current
window, and the transistor table always contains the state of
all transistors at tmin and all switching times until tmax.

Algorithm 1: RRC-cell evaluation algorithm

1 foreach row in pivot table do
2 Load first tp, τp, up and tp+1 from memory
3 up := up and up+1 := up

4 end
5 tmin := −∞ and tmax := min{tp+1 in pivot table}
6 foreach column k in transistor table do

7 Rk
T := RT (up from pivot table), using Eq. (2)

8 tknext := ∞
9 end

10 Output (−, SU +GND,−), with S as the voltage divider ratio
11 repeat
12 tmin := tmax

13 foreach row in pivot table with tp+1 = tmax do
14 Set up := up+1 and tp := tp+1

15 Load next τp, up and tp+1 from memory
16 Calculate up+1 using Eq. (1)
17 end
18 tmax := min{tp+1 in pivot table}
19 foreach column k in transistor table do

20 t := tp − τp log
(

Uk
th−up

up−up

)

with data from pivot table

21 if tmin < t ≤ tmax then

22 tknext := t
23 else

24 tknext := ∞
25 end
26 end

27 foreach column k in transistor table with tknext < ∞ in
ascending order of tnext do

28 Rk
T := RT (up+1 from pivot table), using Eq. (2)

29 Output (tknext, SU + GND, SRuC)
30 tmin := tknext

31 end
32 until tmax = ∞
33 Output (∞,−,−)

We now will demonstrate the operation of this algorithm
step-by-step on a two-input NOR-gate (Table I). For the sake
of simplicity, open transistors have a resistance of 20MΩ and
conducting ones have 2kΩ in this example. The threshold volt-
ages for the two PMOS (NMOS) transistors are 0.8V (0.3V )
over ground. The lumped load capacitance is Cload = 1pF and
the supply voltage is U = 1.1V (VDD = 1.1V , GND = 0V ).
The stimuli for both inputs are the same as depicted in Fig. 6.

Table I denotes the performed operations, the changes in
the pivot and transistor table and the result of each step. The
pivot table contains two rows, one for each input of the NOR-
gate. Each row contains the voltage at the pivot point up, the
time of the pivot tp, its stationary voltage up and time constant
τp, and the voltage and time of the next pivot up+1, tp+1. The
transistor table contains one column for each transistor (four
in this case) and two rows. The row RT holds the resistance at
time tmin for each transistor, and row tnext holds the time of
the next switch within [tmin, tmax] or ∞ if there is no switch.

Step 1: Initialization. (Algorithm 1, lines 1–10) The first
pivots from input waveforms A and B are loaded into tp, up,
and τp of the pivot table. These pivots only define the initial
stable voltages, so up and up+1 are set to the same value as up.
The times of the next pivots in each waveform are loaded into
tp+1, and tmax is set to the minimum of these times. The RT



TABLE I. EXECUTION OF ALGORITHM 1 FOR A NOR-GATE. OPERATIONS AND CONTENTS OF PIVOT AND TRANSISTOR TABLE AFTER EACH STEP. THE

INPUT AND OUTPUT WAVEFORMS ARE THE SAME AS SHOWN IN FIG. 6.

Step
Pivot table

tmax
Transistor table

Action

up (tp, up, τp) up+1 tp+1 TP
A TP

B TN
A TN

B

1
load initial pivot (0), A: 1.1 – 1.1 – 1.1 10

10
RT : 20M 2k 2k 20M

output (–,0,–)
init RT , tmin = −∞. B: 0 – 0 – 0 20 tnext: ∞ ∞ ∞ ∞

2
advance A (p = 1), A: 1.1 10 0 2 0 ∞

20
RT : 20M 2k 2k 20M

tmin = 10, calc tnext. B: 0 – 0 – 0 20 tnext: 12.60 ∞ 10.64 ∞

3
process TN

A switch, RT : 20M 2k 20M 20M output (10.64, 0.37, 1.33)
generate pivot. tnext: 12.60 ∞ ∞ ∞ set tmin = 10.64

4
process TP

A switch, RT : 2k 2k 20M 20M output (12.60, 1.1, 4.00)
generate pivot. tnext: ∞ ∞ ∞ ∞ set tmin = 12.60

5
advance B (p = 1), A: 1.1 10 0 2 0 ∞

∞
RT : 2k 2k 20M 20M

tmin = 20, calc tnext. B: 0 20 1.1 2 1.1 ∞ tnext: ∞ 20.64 ∞ 22.60

6
process TP

B switch, RT : 2k 20M 20M 20M output (20.64, 0.37, 1.33)
generate pivot. tnext: ∞ ∞ ∞ 22.60 set tmin = 20.64

7
process TN

B switch, RT : 2k 20M 20M 2k output (22.60, 0, 2.00)
generate pivot. tnext: ∞ ∞ ∞ ∞ set tmin = 22.60

8
tmax = ∞ RT : 2k 20M 20M 2k

output (∞,–,–)
→ terminate. tnext: ∞ ∞ ∞ ∞

row of the transistor table is filled with the resistance values
corresponding to the initial transistor states. All voltages are
stable until tmax and no switches will take place, so the tnext
row is initialized to ∞. The voltage divider ratio is computed
from the transistor resistances and the resulting stable output
voltage is written to the output waveform.

Step 2a: Advance window. (lines 12–18) Everything until
time tmax has been processed. tmin is set to tmax and the
earliest next pivot is loaded into tp, up, τp, tp+1 of the pivot
table (row A in this case). up is set to up+1 and the new
ending voltage up+1 is calculated from available parameters
with Eq. (1). tmax is again the minimum tp+1, which is 20 in
our example.

Step 2b: Compute transistor switch times. (lines 19–26)
Each tknext in the transistor table is set to the time where a
curve from pivot table crosses the threshold voltage of a tran-
sistor k. Whenever there is no switch of a transistor k within
the window [tmin, tmax], tknext is ∞. For a transistor, only
a single switch per pivot is possible, since the monotonously
increasing or decreasing curve segments in the pivot table can
cross the threshold level of a transistor at most once.

Steps 3 and 4: Generate output pivots in order.
(lines 27–31) The earliest transistor switch will be executed,
updating its resistance Rk

T . The respective values for u and
τ are then calculated with the new resistances of the voltage
divider and the new pivot (tnext, u, τ) is added to the output
waveform. After this, tmin advances to tnext. In the example,
first the switch of TN

A at 10.64 is consumed, then the switch
of TP

A at 12.60.

Step 5: Advance and compute switch times. Every event
in the window has been processed and the pivot table is
updated like in Step 2a (this time row B). The loaded segments
cross the thresholds of TP

B and TN
B within the time window

[20,∞], and in steps 6 and 7, the corresponding pivots are

added to the output waveform like in steps 3 and 4.

Step 8: Termination condition. (lines 32 and 33) tmax

has reached ∞, which indicates that all input pivots have been
processed. The procedure terminates by adding the delimiter
symbol (∞,−,−) to the output waveform.

Fig. 6 shows the plot of the resulting output waveform with
detailed timing and voltage information. During the simulation
of the gate, a hazard has been generated, that might get filtered
later on depending on the parameters of succeeding RRC-
cells. It is also easy to see, how the algorithm supports the
behavior in the introductory example (Fig. 1). Overall, this
algorithm supports very complex timing behavior with very
simple control flow and minimal local memory requirements.

B. Data-Parallel Simulation

HiTOPS follows the same approach as in [23] in order to
execute Algorithm 1 on GPUs for many waveforms and RRC-
cells at the same time in a data-parallel fashion (see Fig. 7).
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Fig. 7. HiTOPS simulation.

As a pre-processing step, all RRC-cells are sorted in
topological order. Cells residing on the same topological level
are then evaluated in parallel by different threads, because they
are mutually data-independent. The many independent input
waveforms applied to the circuit allow to exploit a second
dimension of parallelism. During execution, two-dimensional



grids of thread-blocks are spawned for each topological level
in-order, with each thread in the grid computing the output
waveform of a particular cell and given stimulus. Before the
actual HiTOPS simulation, a fast RT-level simulator creates
traces for all flip-flops and inputs of the design. With all
transitions of state elements known, they are split into in-
dividual and independent waveforms for each clock cycle.
HiTOPS then propagates all these waveforms through the
combinational circuit in parallel to report timing violations,
power consumption or other information depending on the
application.

During the parallel evaluation of a cell the different threads
of an execution batch each operate on separate stimuli wave-
forms. With the lock-step execution of the thread scheduler,
many of the active threads process their inputs in the same
order and also access the same pivot index in the respective
input waveforms simultaneously. This fact is exploited in the
organization of the waveform memory in order to optimize
memory accesses. Fig. 8 shows the alignment of the wave-
form memory for a single cell with waveforms being stored
vertically. This way, the threads in the batch access pivot
elements with consecutive memory addresses. These accesses
are coalesced by the scheduler and the data is cached, hence
resulting in a minimum amount of memory transactions for
the input processing.

Thread-batch
access

Waveform
(Pivot-data)

Memory

p0,0 p1,0 pm,0

p0,1 p1,1 pm,1

p0,n p1,n pm,n

Fig. 8. Memory organization for coalesced pivot-data access.

In direct comparison, the evaluation of a single clock cycle
might be slower than latency-optimized algorithms running
on CPUs. Yet, HiTOPS can handle many thousands of in-
dependent assignments at the same time to reach enormous
throughput on GPU architectures. With the small memory
footprint of both RRC-cell and efficient waveform descriptions,
HiTOPS is able to fit multi-million gate circuits efficiently on a
GPU device. The simplicity and uniformity of the evaluation
flow as well as a sophisticated memory organization allow
to coalesce and reduce memory accesses and operations to a
minimum in order to achieve maximum simulation speedup.

V. EXPERIMENTAL RESULTS

HiTOPS was implemented and executed on a NVIDIA R©

CUDATMKepler series GPU with 5GB of global memory and
a clock of 700MHz. The host system contained Intel R© Xeon R©

processors with 2.8GHz clock rate and 256GB RAM.

Since HiTOPS is designed to handle large, industrial de-
signs in a high throughput fashion, our benchmark set therefore
includes only the largest ITC’99 circuits and industrial designs
provided by NXP. Conventional simulation approaches with
their accelerated variants and switch-level simulators are not
designed to work on such large designs. In order to get
an impression of the runtime performance, we compare the
simulation time of HiTOPS to a commercial event-based
gate-level time-simulation tool with a basic unit-delay model
applied (cf. Table II).

TABLE II. RUNTIME COMPARISON FOR 10,000 PATTERNS.

Circuit Gates Cells
Gate- Cold-Run Re-Run

level tinit X tfull X

b17 39k 48k 0:17h 38.49s 25x 15.34s 63x
b18 132k 157k 1:27h 2:56m 29x 59.99s 86x
b19 265k 317k 3:12h 6:31m 29x 1:57m 98x
p45k 49k 77k 0:29h 53.68s 31x 23.86s 71x
p77k 79k 127k 3:36h 3:49m 56x 1:19m 163x
p78k 81k 128k 2:05h 2:59m 41x 1:08m 109x
p81k 117k 192k 1:12h 2:08m 33x 48.92s 87x
p89k 98k 157k 0:58h 1:48m 32x 43.31s 79x
p100k 108k 172k 1:26h 2:35m 33x 57.31s 89x
p141k 194k 307k 2:31h 5:09m 29x 1:40m 91x
p239k 296k 477k 5:24h 0:14h 24x 3:02m 106x
p267k 305k 452k 3:13h 7:27m 25x 2:07m 91x
p279k 324k 502k 4:03h 0:11h 22x 2:19m 104x
p295k 328k 536k 3:21h 9:43m 20x 2:32m 79x
p330k 391k 620k 6:35h 0:15h 27x 3:18m 120x
p378k 404k 639k 17:33h 0:20h 54x 5:36m 188x
p388k 538k 874k 11:16h 0:31h 22x 5:52m 115x
p418k 499k 768k 7:37h 0:25h 18x 3:51m 118x
p469k 77k 113k 31:53h 7:45m 247x 2:50m 675x
p483k 582k 891k 17:25h 0:30h 35x 5:55m 176x
p500k 557k 902k 13:31h 0:33h 24x 5:30m 147x
p533k 729k 1.2M 18:21h 0:39h 28x 7:36m 144x
p874k 802k 1.2M 13:46h 1:01h 13x 6:13m 133x
p951k 1.2M 1.9M 33:45h 1:32h 22x 0:11h 195x
p1522k 1.2M 2.0M 37:19h 1:40h 22x 0:13h 184x

In a pre-processing step, the benchmarks were mapped
to the NanGate 45nm Open Cell Library [27]. Their state-
elements were removed, thus leaving only the combinational
logic for simulation. The combinational logic was partitioned
into channel-connected components and each component type
was characterized by SPICE simulations to determine appro-
priate values for RRC-cell parameters. As shown in column
two and three, the number of resulting RRC-cells is roughly
twice the number of gates in the circuit.

For the evaluation of the speedup, we applied 10,000 ran-
domly generated input stimuli in succession to each benchmark
circuit and compared the runtime results of HiTOPS with
the event-based gate-level time simulation. For HiTOPS, two
runtimes are reported in Table II, because just as the approach
in [23], the waveform allocation in the global memory is
optimized during runtime based on the number of observed
pivots. In the experiments, an initial waveform capacity of
16 pivots was chosen. Without previous knowledge of the
expected number of pivots per signal, HiTOPS needs to spend
some time on memory management [23] and consequently
does not reach maximum performance.

In the worst case (column Cold-Run) speedups of 13–247x
are achieved. In the second run (column Re-Run), all wave-
forms fit into perfectly into previously allocated memories,
which allows the simulator to run with no calibration overhead,
increasing speedups to 63–675x. The circuit p469k shows
unusually high speedups, because its high number of hazards
affects the performance of event-based simulation much more
than in HiTOPS. By striving for maximum throughput, Hi-
TOPS is able to outperform basic gate-level simulators by far,
both in terms of runtime and in terms of accuracy of the delay
model.



VI. CONCLUSIONS

The demand for higher simulation accuracy drastically
increases the runtime complexity of conventional timing-
simulation algorithms. For the first time, this paper proposes
the novel High-Throughput Oriented Parallel Switch-level
Simulator (HiTOPS), which enables fast and accurate timing-
simulation for multi-million gate designs. HiTOPS supports all
major timing-related effects found in CMOS including pattern-
dependent delay, glitch filtering as well as transition ramps,
and it is especially designed to take advantage of the vast
amounts of computing performance provided by data-parallel
accelerators such as Graphics Processing Units (GPUs). By
exploiting structural- and data-parallelism, careful memory
access patterns and strict uniformity in the code execution, the
proposed simulator is able to achieve unprecedented through-
put and outperforms traditional gate-level simulators by far
in terms of both accuracy and performance. With its detailed
delay model, HiTOPS even enters the domain of switch-
level simulation and enables numerous design analyses and
characterization applications for industrial-sized designs that
are currently infeasible with conventional simulators.
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