
Advanced Diagnosis: SBST and BIST

Integration in Automotive E/E Architectures

Reimann, Felix; Glaß, Michael; Teich, Jürgen; Cook, Alejandro;

Rodrı́guez Gómez, Laura; Ull, Dominik; Wunderlich, Hans-Joachim;

Abelein, Ulrich; Engelke, Piet

Proceedings of the 51st ACM/IEEE Design Automation Conference (DAC’14) San

Francisco, California, USA, 1-5 June 2014

doi: http://dx.doi.org/10.1145/2593069.2602971

Abstract: The constantly growing amount of semiconductors in automotive systems increases the number
of possible defect mechanisms, and therefore raises also the effort to maintain a sufficient level of quality and
reliability. A promising solution to this problem is the on-line application of structural tests in key components,
typically ECUs. In this work, an approach for the optimized integration of both Software-Based Self-Tests
(SBST) and Built-In Self-Tests (BIST) into E/E architectures is presented. The approach integrates the
execution of the tests non-intrusively, i. e., it (a) does not affect functional applications and (b) does not
require costly changes in the communication schedules or additional communication overhead. Via design
space exploration, optimized implementations with respect to multiple conflicting objectives, i. e., monetary
costs, safety, test quality, and required execution time are derived.

Preprint

General Copyright Notice

This article may be used for research, teaching and private study purposes. Any substantial or systematic
reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form
to anyone is expressly forbidden.

This is the author’s “personal copy” of the final, accepted version of the paper published by ACM.1

1 ACM COPYRIGHT NOTICE

c©2014 ACM. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

http://dx.doi.org/10.1145/2593069.2602971

Advanced Diagnosis: SBST and BIST Integration in
Automotive E/E Architectures

Felix Reimann, Michael Glaß,
Jürgen Teich

University of Erlangen-Nuremberg, Germany
{felix.reimann, glass, teich}@cs.fau.de

Alejandro Cook, Laura Rodríguez
Gómez, Dominik Ull,

Hans-Joachim Wunderlich
University of Stuttgart, Germany

{cook, rodrigla, ull, wu} @iti.uni-stuttgart.de

Ulrich Abelein
AUDI AG, Ingolstadt, Germany

ulrich.abelein@audi.de

Piet Engelke
Infineon Technologies AG, Neubiberg, Germany

piet.engelke@infineon.com

ABSTRACT

The constantly growing amount of semiconductors in au-
tomotive systems increases the number of possible defect
mechanisms, and therefore raises also the effort to main-
tain a sufficient level of quality and reliability. A promising
solution to this problem is the on-line application of struc-
tural tests in key components, typically ECUs. In this work,
an approach for the optimized integration of both Software-
Based Self-Tests (SBST) and Built-In Self-Tests (BIST) into
E/E architectures is presented. The approach integrates the
execution of the tests non-intrusively, i. e., it (a) does not af-
fect functional applications and (b) does not require costly
changes in the communication schedules or additional com-
munication overhead. Via design space exploration, opti-
mized implementations with respect to multiple conflicting
objectives, i. e., monetary costs, safety, test quality, and re-
quired execution time are derived.

1. INTRODUCTION
Shrinking transistor sizes allow to enhance system per-

formance at low cost. However, upcoming manufacturing
technologies are more susceptible to variations, degradation,
and aging effects. Besides semiconductor faults which were
not revealed during manufacturing test (test escapes), latent
hardware faults may become active in the field as a result of
variability, harsh environmental conditions, or degradation.
These faults pose a threat to system safety and quality.

A significant step towards safe and high-quality hardware
is the integration of advanced test and diagnostic applica-
tions which are able to identify problems at the semiconduc-
tor level. Particularly for safety reasons, it is, however, ex-
tremely important to avoid unintended interactions between
such diagnostic procedures and the system applications. In
this realm, the work at hand tackles the problem of design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

workshop startup running shut‐off

BIST

SBST

function

partial

networking

running

Figure 1: The applicability of advanced diagnostic
features depends on the operational mode of the au-
tomotive system.

time integration and optimization of advanced diagnostic
features at the semiconductor level from a system-level per-
spective.

For this purpose, structural test and diagnostic methods
are combined with two different goals in mind: (1) Safety :
In order to guarantee safe operation of the vehicle, hardware
defects have to be promptly detected, before they compro-
mise the state of the system. Thus, structural tests need
to be applied alongside standard applications at relatively
high rate, enabling early fault detection. (2) Quality : To in-
crease system quality, any systematic hardware issue in the
assembly line has to be identified and corrected [1].

Broadly speaking, two major classes of structural tests
lend themselves well to system test in the automotive do-
main, see Fig. 1: Software-based Self Tests (SBSTs) [2] can
be carefully generated for a processor architecture and exe-
cuted during regular system operation. Consequently, they
may detect hardware faults shortly after they become vis-
ible. Conversely, scan-based Built-In Self-Tests (BIST) [3]
offer a more general test methodology for any integrated cir-
cuit and typically deliver higher fault coverages than SBST.
However, BIST application destroys the internal state of the
device-under-test, which needs to be restored before resum-
ing system operation, i. e., a reboot is required. Therefore,
BIST can be applied only if the normal functionality is not
required for a fixed time period.

The integration of these structural test techniques for sys-
tem-level diagnosis can exploit several operational modes in
a typical automotive system. For example, the startup of the
system can be used for structural tests in order to enable any
available countermeasure even before driving in case a safety
critical component is found to be compromised. Similarly,
BIST can be applied before system boot-up as no state has

to be restored yet. However, as the driver shall not wait
too long for the system to boot, the startup time has to
be kept reasonable short. Also, the shut-off of the system
allows to perform advanced diagnostic features but, as this
consumes battery power, this phase has to be minimized as
well. Similarly, BIST can be applied during partial network-

ing, cf. AUTOSAR v4.0.3, to invoke BIST sessions before
an electronic control unit (ECU) goes to power-down mode.
Unfortunately, this reduces the energy-saving during power-
down. Moreover, partial networking is not implemented by
every ECU.

Additionally, SBST programs and BIST procedures can
be generated for different performance goals in terms of fault
coverage, runtime, and memory footprint. In combination
with the different possible operational modes outlined above
the optimal selection and scheduling of automotive diagnos-
tic features poses a challenging question.

By exploring such a vast design space, our aim is to achieve
a non-intrusive integration of advanced diagnosis features.
We refer to the term non-intrusive here in the sense that the
integration of advanced diagnosis capabilities must not affect
system applications, particularly including their communi-
cation. This is a crucial aspect for the certification of the
bus schedule as changing schedules for diagnosis execution
during runtime is prohibited. In particular, the presented
approach is not meant to only achieve a feasible integration,
but to reveal the various trade-offs arising from different pos-
sible integrations with respect to multiple design objectives
like monetary costs, safety, test quality, and shut-off time.

In the following section previous work is discussed. In Sec-
tion 3, SBST and BIST are presented in detail. Based on
their identified characteristics with respect to system inte-
gration, the design objectives are defined. Section 4 presents
the integration of the introduced model and objectives into
system-level design exploration. Section 5 contains an in-
dustrial case study, while Section 6 concludes the paper.

2. RELATED WORK
Structural tests are mandatory during manufacturing test

in order to verify the hardware integrity of every produced
chip. BIST is already a mature technique for manufactur-
ing test, which can be easily reused in the field, as long as
the required test access mechanisms are made available for
system test.

[4, 5, 6] made BIST accessible in the field without the
need for external test devices. Still, these approaches re-
quire predefined operational modes of the system which are
exclusively devoted to self-test and maintenance, like power-
up/down tests and workshop test in the case of the automo-
tive domain.

The online non-concurrent structural test of automotive
ASICs has been explored in [7]. However, this approach re-
quires a special test architecture with significant additional
costs. In [8], an on-chip infrastructure is presented, which
is well suited for the online test of embedded memory cores,
while [9] presents a self-test chip application for the appli-
cation of structural tests. None of these approaches exploits
any optimization potential during system level design.

SBST have also been proposed for online test as well: In
[10, 11], the execution of SBST routines has been analyzed
in the context of schedulability and error detection latency
on a uniprocessor system.

Thus, SBST as well as BIST allow to tremendously in-
crease diagnostic capabilities in the field, as they directly

ECU
1

f1

s11

s12 v(s12)=85%

t(s12)=1.3ms

m(s12)=51kB

v(s11)=93%

t(s11)=2.3ms

m(s11)=44kB

ECU
2 s2

v(s2)=91%

t(s2)=2.2ms

m(s2)=40kB

c

f2

bus

Figure 2: Besides the functional task t1, which may
also be mapped to ECU2, two SBST tasks s11 and s21
are available for ECU1. Both have different charac-
teristics according to their fault coverage, execution
time, and memory footprint. During system design,
it has to be decided which SBST task s to select and
schedule it by assigning a period.

identify an erroneous component. However, for both tech-
niques, the question of their integration at system level re-
mains to be answered. Here, the work at hand explores the
integration of structural tests for digital logic during system-
level design. Currently, only [12] investigates the integration
of SBST into a system-level design methodology. However,
the authors only consider SBSTs that are introduced intru-
sively in the sense that their data dependencies are realized
by additional communication messages. In [1], an approach
to integrate BIST is presented. Opposed to that, this work
aims at non-intrusively integrating a set of SBSTs S and set
of BISTs B by modeling them as a set of diagnosis tasks
D = S ∪ B in addition to the functional tasks F . This
leads to a holistic system model which considers all tasks
Σ = F ∪ D in the system and, thus, allows to exploit the
benefits of both techniques.

3. DESIGN FOR DIAGNOSABILITY
In this section, SBST and BIST are introduced in greater

detail and also their characteristics regarding the diagnos-
ability of the system is outlined. During the design of the
E/E architecture, it is important to select for each compo-
nent in the system the set of tests which lead to an optimal
implementation with respect to diagnostic objectives as in-
troduced in Section 3.3, namely test quality, safety, shut-off
time, and monetary costs. In Section 4, these non-functional
objectives are used for the design space exploration to reveal
optimal implementations with respect to both functional as
well as the above diagnostic objectives.

3.1 SBST Application
SBST programs are carefully generated sequences of as-

sembly code, which exercise a large part of the underlying
hardware implementation and are able to identify faults in
the target processor. Different approaches for SBST rely
on different methodologies like automatic test pattern gen-
eration (ATPG) [13], formal methods [14], evolutionary al-
gorithms [15], etc. Although these techniques exploit func-
tional properties of the processor, they activate and propa-
gate faults at the structural (gate) level. For the integration
of SBST programs, the following aspects have to be ana-
lyzed: (a) if it is possible to schedule SBST routines in the
regular operation of the ECU and (b) how often the SBST
program should be executed during normal operation. Note
that these decisions heavily depend on the workload, i. e.,

pattern
source/sink

TAM
BIST

controller

TPG DUT

Figure 3: Simplified BIST infrastructure

the tasks mapped to an ECU.
Thus, each SBST task sr ∈ S ⊂ D available for integra-

tion on ECU r, see Fig. 2, has the following characteristics:
Coverage: Let the coverage v(sr) denote the achieved

stuck-at fault coverage. Depending on the target processor,
the coverage the aforementioned approaches achieve typi-
cally amounts to 80–95% [2].

Runtime: An SBST is designed to deterministically ex-
ercise the structure of the processor and any performance
features, like associative caches, branch prediction, forward-
ing, speculative or superscalar execution are carefully con-
trolled. Thus, the execution time t(sr) of the SBST can
be measured accurately. This also includes the initial pro-
cessor setup phase, which is required before the actual test
program execution. In this phase, the processor is set to a
known state from which the effectiveness of an SBST parti-
tion is guaranteed. Typical examples for achieving a suitable
initial state are cache invalidation, pipeline flushing and reg-
ister initialization.

Size: The memory footprint m(sr) of the SBST appli-
cation can be evaluated directly from its assembly code size.

3.2 BIST Application
To apply BIST patterns, a chip has to enter a special test

mode in which it does not adhere to its functional specifica-
tion. Moreover, the application of a BIST session arbitrarily
changes the state of the chip, which has to be restored to
a known state before the enclosing ECU can perform any
useful work again.

The BIST strategy considered in this work is mixed-mode

BIST [16]. The test pattern generation process of a mixed-
mode BIST session comprises two steps: First, a pseudo-
random test pattern generator produces a large number of
inexpensive test patterns on-the-fly. For the hard-to-detect
faults, additional deterministic test patterns are encoded
and stored in the system. Second, the deterministic patterns
are decoded and applied to the design under test (DUT).

For the application of BIST, the on-chip test infrastruc-
ture is made available to an on-chip controller. This con-
troller manages the application of pseudo-random patterns,
fetches the encoded test data from memory, and applies the
deterministic patterns.

Figure 3 shows a simplified block diagram for the proposed
mixed-mode BIST approach. Before any BIST session, the
pseudo-random test pattern generator (TPG) is initialized
with a known seed so that it produces a fixed sequence of
patterns. Memory is used to store the encoded deterministic
patterns while a BIST controller is employed to manage the
test application process, i. e., to generate a given number of
pseudo-random patterns and apply them to the DUT. As the
figure shows, the encoded deterministic pattern information
is accessed by means of a test access mechanism (TAM). In
a typical BIST session, the encoded deterministic patterns
are stored in on-chip ROM and the TAM is a simple memory
interface. In order to explore all implementation options, the

gateway
bD

m(bD)=230kB

bT v(bT)=96.1%

t(bT)=96.6ms

bus c

ECU

data transmission

(if stored in gateway)

Figure 4: The BIST data task bD can be mapped to
the gateway or to the same resource as the corre-
sponding BIST test task bT .

architecture supports the storage of encoded deterministic
patterns in any persistent memory inside the vehicle. In this
case, any functional bus (e. g., CAN) can be used as TAM
and any on-chip memory can be used to buffer the required
data for test application. Consequently, if the encoded test
data is stored externally, the corresponding TAM must also
be made available to the test controller. This is the only
nonstandard feature of the considered BIST architecture.

Similarly, test responses have to be compacted on-chip
and stored either locally or on a remote non-volative mem-
ory in the vehicle. However, the test responses necessary for
diagnosis can be drastically compacted without any signifi-
cant impact on the diagnostic accuracy [17]. During system
design, it has then to be decided (a) if it is beneficial to use
a possibly more costly ECU with BIST support, (b) which
BIST program to select (their achieved fault coverage, test
time and cost depends on the ratio of pseudo-random and
deterministic test patterns), and (c) where to store the de-
terministic test patterns.

Accordingly, a BIST program available for integration on
an ECU r is modeled as follows, see Fig. 4: (1) a BIST
task bTr ∈ B ⊂ D models the BIST itself, (2) the data
storage task bDr ∈ D models where the encoded deterministic
patterns are stored and can be mapped either to the ECU
r or to a central component like the gateway, and (3) the
message c ∈ C with which the both tasks communicate. A
BIST task has the following characteristics:

Coverage: Let the fault coverage v(bTr) denote the
achieved stuck-at fault coverage. It can be estimated by
means of fault simulation.

Runtime: The execution time t(bTr) of the BIST pro-
gram depends on the number of test patterns, the perfor-
mance of the TAM and the duration of the state restore
procedure after test. If the BIST session is applied during
ECU shut-off, the restore procedure takes place during the
next power-up sequence and, therefore, is not taken into ac-
count. Alternatively, for partial networking the ECU state
restore is achieved by means of an ECU reset, for which
timing models are usually available.

Size: The size of the encoded data for deterministic pat-
tern generation is denoted by m(bDr).

3.3 Diagnosis-related Design Objectives
Design objectives determine the optimization goals for the

system implementation. We introduce three new objectives
to reflect the test capabilities of the system, which, together
with a common cost objective, drive the optimization efforts:

Test Quality: The test quality is defined as the aver-
age stuck-at fault coverage achieved for all the ICs in the

ECUs of a given implementation. In case of BIST, the test
quality is also a measure of the system’s diagnostic capa-
bilities. The implicit assumption is that any detected fault
can be correctly diagnosed. This assumption is reasonable
since the success rate of the underlying diagnostic algorithm
is sufficiently high [18].

In contrast to the safety goal, the test quality Q is inde-
pendent of time. If more than one diagnostic task is mapped
to an ECU, the compound fault coverage may be higher as
that of the individual tasks. However, test procedures are
usually developed independently. The work at hand uses a
pessimistic approach by counting only the maximum fault
coverage of these tasks:

Q = max
∑

r∈R

max
d∈D

(d,r)∈M

v(d), (1)

where (d, r) ∈ M denotes a selected mapping of diagnosis
task d to resource r.

Safety: A means to support safety are fault detection
mechanisms. For each application, a safety goal is defined,
which quantifies the maximum fault-detection latency for
the application. If a fault in the underlying ECU’s hard-
ware is detected within the safety goal, the fault can be
mitigated and system safety is not compromised. The opti-
mal implementation with respect to safety is achieved if the
safety goal of each of its applications is satisfied.

Given a safety goal g(f) for each functional task f ∈ Σ\D
(or whole applications), if an SBST task s is mapped to
the same resource r and the explored period p(s) ≤ g(f),
a hardware fault could be detected in time. In this case,
typical countermeasures like degradation to a safe state can
be performed. Thus, the objective safety Θ to be maximized
counts the number of tasks with fulfilled safety goal:

Θ = max |{σ ∈ Σ \D| ∀s ∈ S : (s, r), (σ, r) ∈ M (2)

∧ p(s) ≤ g(σ)}|

Note that only SBSTs are considered here as BISTs can only
applied sporadically.

Shut-off Time: The shut-off time is defined as the
maximum amount of extra time an ECU has to stay ac-
tive in order to complete its BIST session. As the ECU
would otherwise be powered-down, shut-off time has to be
kept reasonably low. This makes it possible to apply BIST
during partial networking and ensures a fast shut-off of the
vehicle after driving. If the patterns of a BIST session are
stored locally in the ECU, the session can be executed as
soon as the ECU is no longer actively used. Otherwise, the
corresponding patterns have to be transmitted first, which
requires t(bDr), see Section 4.1. Therefore, the objective shut-
off time O is given as time the system has to stay awake
longer to run BISTs:

O = min max
bT
r
∈B

t(bTr) if (bDr , r) ∈ M

t(bTr) + t(bDr) if (bDr , r′) ∈ M, r 6= r′

0 else.

(3)

Hardware Costs: SBST programs are stored locally in
each ECU, while encoded BIST patterns can be stored any-
where in the system and transmitted over a field bus. The
local storage of encoded BIST patterns requires correspond-
ing hardware modifications in each of the target ECUs. A
less intrusive approach is to store the encoded information
in a central gateway, see Fig. 4. This can also save memory
costs if the same encoded patterns can be used for different

functional model architecture model

system

synthesis

implementation

evaluation

create implementation

w.r.t. design constraints

optimize design objectives

(monetary costs, load, …)

implementations with design trade offs

SBST &

BIST model

non-intrusive

integration

novel design

objectives:

safety,

test quality,

shut-off time

d
e

sig
n

 sp
a

ce
 e

x
p

lo
ra

tio
n

Figure 5: Holistic design approach for creating in-
herently diagnosis-capable E/E architectures. The
functional model containing the application tasks
F is augmented with the available BIST tasks
B and SBST tasks S supported by the architec-
ture. System synthesis creates implementations
which respect common design constraints as well
as diagnosis-specific constraints to integrate diagno-
sis non-intrusively. The found implementations are
evaluated according to classic design objectives as
well as additional diagnostic and safety-related de-
sign goals.

ECUs. The memory costs are added to the objective mon-

etary cost Φ, which considers also the costs of the allocated
hardware.

4. INTEGRATION OF DIAGNOSIS IN THE

DESIGN SPACE EXPLORATION
To achieve a high-quality optimization able to consider

several objectives in parallel, many feasible implementations
have to be created and evaluated with respect to multiple
design objectives, see [19]. A feasible implementation, how-
ever, has to fulfill several constraints, like binding all func-
tional tasks to resources, routing the messages in the sys-
tem accordingly, etc. For the encoding of the allocation of
resource, the mapping of diagnosis and mandatory tasks, as
well as for the routing of messages, we apply the approach
presented in [1]. This technique allows the optimization of
the overall system considering several distinct objectives.

For the encoding of the periods of the SBST task activa-
tions, a lower bound ls and an upper bound us, us ≥ ls, for
the period of the execution of an SBST task s shall be given,
as well as a step size ∆s. Thus, the period search space P

for the SBST tasks S is given as

P =
∏

s∈S

{0, . . . , ⌊
us − ls

∆s

⌋}. (4)

Now, this search space is encoded with an integer genotype
and combined with the remaining search space from [1] using
composite genotypes, see [20].

4.1 Non-intrusive Integration of Diagnostic Ap-
plications

If the BIST data is not stored locally, cf. Fig. 6, the de-
terministic test patterns have to be transmitted over the

gateway

bD

CAN

ECU

f1

c2c1

m(c2)=8B

p(c2)=2ms c

bT

m(c1)=8B

p(c1)=1ms

gateway

bD

m(bD)=230kB

CAN

ECU

f1

c2c1
c

bT

m(cc1)=8B

p(cc1)=1ms

m(cc2)=8B

p(cc2)=2ms

t(bT)=96.6ms

t(bT)=19,166ms

Figure 6: The message c is only active, if the func-
tional task t1 as well as its messages c1 and c2 are
inactive. By mirroring their sending patterns, the
test patterns can be transmitted transparently for
other subscribers.

system bus. However, sending the patterns in a large burst
(even with lowest priority) would obviously affect the timing
of other messages. As BIST can only be applied to inactive
ECUs, free bandwidth resources on the bus which are re-
served for the ECU’s functional operation, can be reused
for test-data transfers. For this reason, we do not change
an originally certified bus schedule when conducting a BIST
session. As shown in Fig. 6, the sending pattern of the ECU’s
functional messages (e.g. c) is mirrored when transmitting
test data messages (e.g. c′). Message c′ receives a differ-
ent CAN-ID than c, but keeps the same timing properties
on the bus – size, period, and relative priority – as c, while
staying distinguishable. As the size of the test patterns is
typically large (see Chapter 5), the described technique is
exerted on all messages during this test session. In the fol-
lowing, the work at hand concentrates on CAN busses, while
the described concept is extensible to other automotive field
busses. For a BIST test bTr , the time t(bDr) is required to
transmit the test patterns and, therefore, solely depends on
the bandwidth of the functional messages I of ECU r:

t(bDr) =
m(bDr)

∑

c∈I

m(c)
p(c)

(5)

5. CASE STUDY
The following case study models an automotive subnet.

Four control-centric applications with 45 tasks and 41 mes-
sages have to be implemented. For the architecture, 15
ECUs, 9 sensors, and 5 actuators connected with three dis-
tinct CAN buses are available. For the ECUs in this case
study, both BIST and SBST applications have been devel-
oped. The target DUT in both cases is an automotive micro-
processor from Infineon Technologies AG. In the next sub-
sections, the properties of the diagnostic applications are
detailed.

5.1 BIST Profiles
To generate a BIST application, the necessary on-chip in-

frastructure was inserted into the design (full-scan). The
characteristics of the final DUT are: 371, 900 collapsed faults,
100 scan chains with a maximum length of 77, and a test fre-
quency of 40MHz. An automatic test generation approach
produced 36 test profiles, see [1]. Each test profile exhibits
different performance characteristics in terms of fault cov-
erage (95.1–99.9%), test execution time (1.7–965ms) and
costs (154–971 kB). For each of the 15 ECUs, one of these

BIST programs can be selected.

5.2 SBST Profiles
An SBST program was developed for the integer pipeline

of the target processor. The methodology for test program
generation is based on constrained ATPG [13]. A program
consisting of all supported instructions was then simulated
and the control signals of the target pipeline corresponding
to each instruction were identified. This information was
then used to constrain sequential ATPG with a commer-
cial tool. After binary ATPG-patterns are created, they are
parsed to generate a test program. This can be performed
since the location of the instruction opcode in the pattern
and its encoding are known. These constraints guarantee
that the generated test pattern is a valid sequence of in-
structions and the faulty test responses are propagated to
the register file. The processor can then take appropriate
action.

The characteristics of the generated test program are:
69, 890 target faults, a fault coverage of 91.54%, 62, 771 ex-
ecuted instructions, 44.7 kB of required program memory,
and a test execution time of 1.587ms at a functional clock
frequency of 100MHz. The given test duration refers to
an execution without interruption. For this calculation, a
setup overhead of 1ms is considered. An instance of this
SBST task can be mapped to each of the 15 ECUs.

5.3 Results
The optimization was performed on an 8-core Intel Core i7

with 16GB RAM. Evaluating 25, 000 implementations took
59 minutes, while implementations with overloaded resources
were discarded. 322 not Pareto-dominated implementations
according to all objectives (monetary costs, test quality,
shut-off time, and safety) were found. Fig. 7 bottom shows
that some of these implementations (marked with N) require
a very long shut-off time of more than 200 seconds. How-
ever, these are the implementations which in contrast have a
high fault coverage with only a minor increase in monetary
costs, cf. Fig. 7 top, as their deterministic test patterns are
stored centrally at the gateway. As the cost impact of the
gateway memory is relatively low compared to the costs of
the whole allocated hardware, a quite good test quality can
be achieved with only a little increase in overall costs.

Both outlined sets of implementations have tradeoffs with
zero up to three applications, for which the safety goals of
their corresponding tasks are fulfilled. The implementations
for which the safety goals of all three applications are ful-
filled are marked with ⋄. The results show that the safety
goal is an orthogonal objective compared to quality. This
means, adding SBST tasks has only a small impact on sys-
tem cost. For one application, the available SBST could not
be integrated fittingly by our methodology and, hence, the
safety goal is not met. To overcome this issue, the SBST
program generation could be optimized for execution time
and included in the model. All in all the approach is suc-
cessful in providing optimized tradeoffs between diagnostic
and classic design objectives.

For the decision making, these trade-offs provide all imple-
mentations to find the sweet spot according to the designer’s
needs. For example, the maximum shut-off time could be
constrained to 5 seconds and a met safety goal for three ap-
plications is required. In this case, the set of high-quality
implementations contains eight candidates with relatively
high monetary costs of about 1200 to 1500 and a test qual-

 96

 96.5

 97

 97.5

 98

 98.5

 99

 99.5

 100

 200 400 600 800 1000 1200 1400 1600

te
s
t
q

u
a

lit
y
 [
%

]

monetary costs

 0

 50

 100

 150

 200

 250

 300

 200 400 600 800 1000 1200 1400 1600

s
h

u
t-

o
ff
 t
im

e
 [
s
]

monetary costs

Figure 7: 322 implementations showing the trade-
offs between monetary costs Φ versus test quality Q

(top) and monetary costs Φ versus shut-off time O

(bottom). Implementations with three of four appli-
cations with fulfilled safety goal are marked with ⋄,
remaining implementations with shut-off time less
than 200 seconds are marked with •, implementa-
tions with higher shut-off time are marked with N.

ity of about 98.7% to 99.8%. Relaxing the shut-off time
to a maximum of 30 seconds offers a particularly low-price
implementation with monetary costs of 271, a test quality
of 96.7%, but a shut-off time of about 27 seconds.

6. CONCLUSION
The work at hand incorporates both BIST and SBST in

the design of automotive E/E architectures as means to im-
prove system quality and support safety. SBST programs
are used to improve fault detection latency, while BIST
sessions improve the diagnostic capabilities of the system
during failure analysis. The several implementation choices
comprise different tradeoffs in terms of hardware costs, test
quality, and safety. All design options are integrated in
a holistic design space exploration to provide high-quality
tradeoffs, out of which system designers can select their pre-
ferred solution.

7. REFERENCES
[1] U. Abelein, A. Cook, P. Engelke, M. Glaß, F. Reimann,

L. Rodŕıguez Gómez, T. Russ, J. Teich, D. Ull, and H.-J.
Wunderlich, “Non-Intrusive Integration of Advanced
Diagnosis Features in Automotive E/E-Architectures,” in
Proc. of Design, Automation and Test in Europe
Conference & Exhibition (to appear), 2014.

[2] M. Psarakis, D. Gizopoulos, E. Sanchez, and M. Reorda,
“Microprocessor Software-Based Self-Testing,” IEEE Design

& Test of Computers, vol. 27, pp. 4–19, 2010.
[3] H.-J. Wunderlich, “BIST for systems-on-a-chip.”

Integration, the VLSI Journal, vol. 26, pp. 55–78, 1998.
[4] T. Vo, Z. Wang, T. Eaton, P. Ghosh, H. Li, Y. Lee,

W. Wang, H. Jun, R. Fang, D. Singletary, and X. Gu,
“Design for Board and System Level Structural Test and
Diagnosis,” in Proc. of IEEE International Test Conference
(ITC’06). IEEE, 2006, pp. 1–10.

[5] J. Qian, X. Wang, Q. Yang, F. Zhuang, J. Jia, X. Li,
Y. Zuo, J. Mekkoth, J. Liu, H.-J. Chao, S. Wu, H. Yang,
L. Yu, F. Zhao, and L.-T. Wang, “Logic BIST Architecture
for System-Level Test and Diagnosis,” in Proc. of Asian
Test Symposium (ATS’09), 2009, pp. 21–26.

[6] A. Cook, D. Ull, M. Elm, H.-J. Wunderlich, H. Randoll,
and S. Döhren, “Reuse of Structural Volume Test Methods
for In-System Testing of Automotive ASICs,” in Proc.
Asian Test Symposium (ATS’12), 2012, pp. 214–219.

[7] A. Dutta, M. Shah, G. Swathi, and R. Parekhji, “Design
Techniques and Tradeoffs in Implementing Non-Destructive
Field Test using Logic BIST Self-Test,” in Proc. of
International On-Line Testing Symposium (IOLTS’09),
2009, pp. 237–242.

[8] P. Bernardi and M. S. Reorda, “A new Architecture to
Cross-Fertilize On-line and Manufacturing Testing,” in
Proc. of Asian Asian Test Symposium (ATS’11), 2011, pp.
142–147.

[9] Y. Li, S. Makar, and S. Mitra, “CASP: Concurrent
Autonomous Chip Self-Test Using Stored Test Patterns,” in
Proc. of Design, Automation and Test in Europe,
Conference & Exhibition (DATE’08), 2008, pp. 885–890.

[10] A. Paschalis and D. Gizopoulos, “Effective Software-Based
Self-Test Strategies for On-line Periodic Testing of
Embedded Processors,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 24, pp. 88–99, 2005.

[11] D. Gizopoulos, “Online Periodic Self-Test Scheduling for
Real-Time Processor-Based Systems Dependability
Enhancement,” IEEE Transactions on Dependable and
Secure Computing, vol. 6, pp. 152–158, 2009.

[12] M. Eberl, M. Glaß, J. Teich, and U. Abelein, “Considering
Diagnosis Functionality during Automatic System-Level
Design of Automotive Networks,” in Proc. of Design
Automation Conference (DAC’12), 2012, pp. 205–213.

[13] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A Scalable
Software-Based Self-Test Methodology for Programmable
Processors,” in Proc. of Design Automation Conference
(DAC’03), 2003, pp. 548–553.

[14] S. Gurumurthy, S. Vasudevan, and J. A. Abraham,
“Automatic Generation of Instruction Sequences Targeting
Hard-to-Detect Structural Faults in a Processor,” in Proc.
of International Test Conference (ITC’06), 2006, pp. 1–9.

[15] F. Corno, E. Sanchez, M. Reorda, and G. Squillero,
“Automatic Test Program Generation: a Case Study,”
IEEE Design & Test of Computers, vol. 21, pp. 102–109,
2004.

[16] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and
B. Courtois, “Built-In Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers,” in IEEE Trans. on Computers (TC), vol. 44,
1995, pp. 223–233.

[17] A. Cook, M. Elm, H. Wunderlich, and U. Abelein,
“Structural In-Field Diagnosis for Random Logic Circuits,”
in Proc. of European Test Symposium (ETS’11).

[18] A. Cook, S. Hellebrand, and H.-J. Wunderlich, “Built-in
Self-Diagnosis Exploiting Strong Diagnostic Windows in
Mixed-Mode Test,” in Proc. European Test Symposium
(ETS’12), 2012, pp. 1–6.

[19] J. Teich, “Hardware/Software Co-Design: Past, Present,
and Predicting the Future,” Proc. of the IEEE, vol. 100,
pp. 1411–1430, 2012.

[20] M. Lukasiewycz, M. Glaß, F. Reimann, and J. Teich,
“Opt4J – A Modular Framework for Meta-heuristic
Optimization,” in Proc. of GECCO, 2011, pp. 1723–1730.

