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I. INTRODUCTION

End-of-the-roadmap CMOS transistors and emerging post-

silicon devices are expected to be prone to extreme statistical

process variations [1]. The variability in delay of a circuit ele-

ment may well exceed σ/µ = 20% [2]. For silicon CMOS, the

sources of variation include sub-wavelength photolithography,

random dopant distribution and line edge roughness, which

affect the threshold voltage, oxide thickness and transistor

geometry [3, 4]. While inter-die variations (lot-to-lot, wafer-

to-wafer, within wafer) have been more widely considered

in the past, in nano-scale technologies, intra-die variations

affecting devices on the same die are equally important [5].

On top of this, dynamic variations in power-supply voltage and

temperature, transistor aging, cross-coupling capacitance and

multiple-input switching, adversely impact the clock frequency

and may increase the variation by even 10% [6].

In the context of testing, the significance of variability was

recognized early. The concept of robust delay test [7–9] aims at

the detection of delay faults independently of delay variations

that might occur elsewhere in the circuit. This concept imposes

stringent requirements on the side-inputs of the path to be

sensitized, which in turn may prevent detection in several cases.

Recently, the detectability of small-delay faults (SDF) under

process variations has regained increased interest, as such faults

adequately abstract several relevant defect mechanisms in nano-

scale technologies, including resistive opens [10, 11]. SDFs

are traditionally detected by sensitizing the longest testable

path through the fault location. However, the longest path is

no longer unique under delay variations. Hence, algorithms

to efficiently sensitize K longest paths (KLPG) have been

devised [12]. Yet, this approach is guided solely by the

propagation path’s length and we experimentally found that it

may not detect defects that manifest themselves as glitches.

Some researchers have explicitly considered process varia-

tions during test generation. For instance, Yilmaz et al. noted

in [13] that simple heuristic approaches like n-detect [14] are

able to increase the defect coverage significantly. But also

more sophisticated methods have been employed. In this kind

of approaches, a suitable defect-coverage metric, usually based

on statistical timing analysis, is used to guide the ATPG process.

Park et al. were the first to propose the concept of statistical

delay-fault coverage [15]. Newer examples include [16] where

delay defects are targeted with statistically distributed gate

delays while considering specific noise effects. In [17], a metric

called parametric fault coverage is introduced and utilized to

guide an adaptive test flow. Ingelsson et al. [18] extend the

resistive-bridge fault model by incorporating variation effects

and also introduce a new evaluation metric called process

coverage. In [19], gate-delay defect probabilities are calculated

and assigned to the gates while considering process variations.

The prediction of a parameter sub-space of a certain die was

suggested in [20, 21] in order to reduce the test set’s size.

In [22], the testability of paths is evaluated statistically to

guide the selection of paths for test generation.

In this work, we consider the problem of generating test

patterns for SDFs under process variations. The core motivation

is that a test pair may be valid for specific parameter values

only. In general, multiple test pairs can be required to ensure

the detection of a single fault in all possible circuit instances.

This is illustrated in Figure 1 which shows two manufactured

instances of the same circuit. The gate delays are described

by Gaussian distributions; the red vertical lines indicate the

actual gate delays. To detect an SDF at a, different test pairs

are needed in the two circuit instances, because the longest

path through a is not the same in both instances.
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Fig. 1. Fault detection under parameter variations [23]. An SDF on a is
detected by test pair 01/11 in the first circuit instance and by 00/10 in the
second instance.

We demonstrate that traditional delay-test ATPG methods

solely based on nominal gate delays are not effective under

extreme variations. We present an iterative fault grading flow

based on the concept of circuit coverage [24, 25]. In order to

perform precise timing-aware fault simulation on an extremely

large number of combinations of circuit instances, faults and



test patterns, a new highly parallel algorithm for General-

Purpose Graphics Processing Units (GPGPU) is used.

We performed experiments on large industrial circuits. The

obtained results show that our variation-aware method is

able to achieve much better statistical fault coverage (SFC)

than traditional non-variation-aware methods, even without

increasing the total pattern pair count thanks to compaction

techniques.

The remainder of the paper is organized as follows. The next

section introduces some preliminary definitions and discusses

appropriate metrics for evaluating fault and circuit coverage.

Section III describes the simulation and ATPG algorithms’

interaction within the circuit population. Section IV describes

the Monte-Carlo delay fault simulation on GPGPUs where

signals are represented as waveforms. Section V presents the

SAT-based methods used for the generation of test patterns for

instances not yet covered. Detailed experimental results are

reported in Section VI, and Section VII closes the paper.

II. PRELIMINARIES

In this work, every circuit instance is represented by a gate-

level net list along with a fixed delay δg for every gate g. We

consider delay faults (g, s) given by a location (a gate g) and

a fault size s. If fault (g, s) is present in the circuit, then gate

g’s delay is increased to δg + s.

Such faults are known as gate-delay faults. Recently, also the

term small-delay faults has become widely used such as to mark

contrast to transition faults where the defect-induced delay is

assumed to be larger than the clock cycle, thus making them

more easily detectable. Note that, due to the modeled delay

variations, our simulation approach also covers the behavior

of path-delay faults, where defect-induced delay is distributed

along a path.

The value tobs denotes the observation time. It is usually

chosen such that all circuit outputs of a fault-free circuit

have stabilized at their correct value after the application

of an input pattern at time 0. In traditional circuit design,

tobs equals the maximum delay of the circuit in absence of

variations, multiplied by a safety margin greater than 1. In

recent technologies affected by high variability, tobs is set

more aggressively. It is accepted that the longest path of some

manufactured circuit instances is slower than tobs, even though

the nominal instance has no path slower than tobs. There is

a yield-performance trade-off: increasing tobs means a lower

operation frequency (worse performance) for all circuits but

a higher number of circuit instances that are timing-correct

(better yield), and vice versa [26].

In the context of delay testing, the relevance of parameter

variations lies in their effect on the delays of individual circuit

elements, e.g. gate delays. Let N be the number of gate delays

that can be affected by variation. A parameter configuration

p = (p1, p2, . . . , pN ) ∈ P is a list of actual values of

every modeled gate delay, and P is the space of all possible

parameter configurations. A circuit instance corresponding to

the parameter configuration p is denominated by Cp.

In this paper, we approximate the infinite set P of parameter

configurations by a finite set I of circuit instances. Every circuit

instance i ∈ I has fixed gate delays that are chosen randomly

according to a gate delay distribution.1 Instance 0, called the

nominal circuit instance, is defined to have no variations (each

gate delay is the mean of the gate delay distribution). All the

other instances (i > 0) are affected by variations.

A fault f = (g, s) is defined to be detected in Cp by a given

test pair set T , if at least one test pair leads to an incorrect

response in Cp at time point tobs, where the correct response

is given by the nominal circuit instance’s fault-free response

at time tobs. Furthermore, we define detCp
(f, T ) to be 1 if T

detects f in Cp, and 0 otherwise. Analogously, the detectability

deti(f, T ) is defined for an instance i ∈ I .

Let π(p) be the probability that an actual manufactured

circuit corresponds to parameter configuration p. For a fixed

fault f , the circuit coverage of a test set T is determined by

CCov(f, T ) =

∫

p∈P

detCp
(f, T )π(p) dp. (1)

This definition is adapted for the circuit instances i ∈ I
assuming their equiprobable distribution:

CCov(f, T ) ≈

∑
i∈I

deti(f, T )

|I|
. (2)

This corresponds to the percentage of modeled circuit instances

in which T detects f .

Furthermore, we call the aggregated circuit coverage of all

faults in a fault list F the statistical fault coverage:

SFC(F, T ) =

∑
f∈F

CCov(f, T )

|F |
=

∑
f∈F

∑
i∈I

deti(f, T )

|F | · |I|
. (3)

These metrics can be illustrated by the following example.

Fig. 2 shows the detectability of 16 modeled faults (x-axis) in

4 modeled circuit instances (y-axis). Black points correspond

to detections, white ones to non-detections. The approximated

circuit coverage (Equation 2) of fault 0 is 3/4 = 75%, while

the statistical fault coverage (Equation 3) is 36/64 = 56.25%.
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Fig. 2. Illustration of circuit coverage and statistical fault coverage

III. FAULT GRADING

The overall flow of the variation-aware fault-grading proce-

dure is outlined in Figure 3. The procedure takes a set of circuit

instances I and a fault list F as inputs. It constructs a test set

to detect as many faults from F in as many instances from I

1We use a Gaussian distribution without correlations in the experiments,
but the concept is applicable to any distribution, e.g. to distributions obtained
statistically from actual measurements.



as possible, thus maximizing the circuit coverage for the faults

and the overall statistical fault coverage SFC. Subsequently,

the test set is compacted by eliminating test pairs without

adverse impact on SFC.

Fault
Grading

Initial pattern set

Monte-Carlo
delay fault simulation

Pattern generation for small-delay faults

Monte-Carlo delay fault simulation

Compaction

Fig. 3. Iterative procedure to maximize the circuit coverage

An initial set of test pairs is generated for the nominal circuit

instance. Then, GPGPU-based delay-fault simulation is per-

formed, explicitly considering all faults from F and all circuit

instances from I . Details on the fault-simulation procedure are

provided in Section IV. The simulation determines the fault-

instance-pairs that are not covered by the initial test set and

thus have a negative impact on SFC. To improve the coverage,

new test pairs are generated using timing-aware automatic-test-

pattern-generation algorithms (ATPG). As described in more

detail in Section V, state-of-the-art delay ATPG algorithms

make simplifying assumptions about the fault behavior. As a

consequence, a generated test pair is likely, but not guaranteed

to detect the fault for which it was generated. Therefore,

the actual coverage achieved must be verified by accurate

simulation.

The test-pair generation procedure outlined above succeeds

in significantly improving SFC, yet at the cost of an increased

number of test pairs. In order to obtain a more compact set of

test pairs that are effective, i.e. test pairs that contribute to SFC,

we developed the heuristic Tmin-algorithm. The experiments

show that the algorithm’s aggressive compaction preserves the

SFC achieved by the original test set. Algorithm 1 describes

the method.

For every fault f ∈ F , let T f = {tf
0
, tf

1
, ..., tfe} be the set

of test pairs that detect f in at least one instance i ∈ I . Let

I(tfk) = {i0, i1, ..., ih} be the set of instances in which test

pair tfk detects f . The effective pairs TF of T with respect to

F are all test pairs that detect at least one f ∈ F in at least

one circuit instance.

For every fault f , the Tmin-algorithm sorts the effective test

pair set T f in descending order with respect to the number of

instances in which the pair tfk ∈ T f detects f . The selected

test pairs are kept in set Tmin and the instances, in which f
has been covered so far, are stored in Icov (in the beginning,

these sets are empty). The algorithm searches for a pair tk
that detects f in at least one yet-uncovered instance. If there

are several such pairs, the one which detects the fault in most

instances (largest I(tfk)\Icov) is selected. This pair is added to

the solution set Tmin, and all pairs from that set which are not

essential, i.e. which do not detect a subset of faults covered

by tfk , are removed. All the instances covered by the selected

pattern are marked as covered by adding them to Icov. The

process is iterated over the complete fault list F .

Algorithm 1 Compaction algorithm Tmin

Require: TF

Tmin := ∅
for all faults f in F do

Icov := ∅ ⊲ instances in which f detected

Sort pairs tk in T f by descending |I(tf
k
)|

Find t
f
k
∈ T f with largest I(tf

k
) \ Icov

if (such t
f
k

exists) then

Tmin := Tmin ∪ {tf
k
} ⊲ add to the solution

Remove from Tmin test pairs that became non-essential

Add to Icov instances in which f is detected by t
f
k

end if

end for

return Tmin

IV. MONTE-CARLO DELAY FAULT SIMULATION ON

GPGPUS

Given a set I of circuit instances, a set G of fault locations,

a set S of possible fault sizes and a test set T , we are interested

in circuit coverage and statistical fault coverage as defined in

Section II and therefore in the detection status of each fault

in each instance of the circuit. Calculating this information

results in |I| · |T | fault-free simulations and |I| · |G| · |S| · |T |
fault simulations. To cope with this complexity, our simulation

algorithm is designed for massive parallelism using General-

Purpose Graphics Processing Units (GPGPU). Each GPGPU

core is assigned its own combination of fault and circuit

instance, and all the cores perform their simulations in parallel.

Since GPGPUs have restrictions on the kinds of operations

their cores can perform in parallel, event-based simulation is

inefficient on such an architecture. Instead, techniques similar

to pattern-parallel logic simulation are employed.

The GPGPU delay fault simulation is based on the test-power

simulator described in [27]. However, only a brief overview

can be provided in this paper due to the limited available space.

A. Outline of the simulation algorithm

This section outlines the general fault-simulation algorithm

for a set I of circuit instances, a test pair (v1, v2) and a fault

f . The simulator supports different rising and falling delays,

arbitrary probability distributions and pulse filtering. The basic

data structure employed by the simulator to represent signals

is the waveform. The waveform of signal line l contains the

complete history of rising and falling transitions on l, from the

stabilization time of v1 until the stabilization time of v2. The

simulator processes the gates in topological order starting at

the primary inputs and computes, for each gate, the waveform

on its output based on the waveforms on its inputs using the

algorithm outlined in Section IV-B. The sets of waveforms

computed for the primary outputs are compared with the fault-

free reference waveforms to determine whether the fault has

been detected.

This process is parallelized by assigning different circuit

instances i ∈ I to different GPGPU cores. For each line l,
different GPGPU cores simultaneously compute waveforms

associated to l in different circuit instances.



B. Waveform representation and manipulation

The simulator represents waveforms by a simple data

structure that facilitates parallelization on GPGPUs. For a

waveform w with m transitions, we denote the time of the first

transition by t0, the time of the second transition by t1, and so

on. Furthermore, we require that the waveform’s initial logical

value is always 0. (To represent a waveform with initial value

1, we define a special time value −∞ and set t0 := −∞.)

This allows the full specification of a waveform by a list

of transition times w = (t0, t1, t2, ..., tm−1) with t0 ≤ t1 ≤
· · · ≤ tm−1. The logical value of a waveform w at time t
is denominated by w(t) and is derived from the parity of

the smallest index j for which tj > t. Figure 4 shows some

example waveforms and their representations.
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Fig. 4. Waveforms and their representations (Rising, falling delays of 1)

Let a, b and z be two inputs and one output of a logic

gate that implements the Boolean function ◦, such as AND,

NAND, OR, NOR or XOR. The computation of the waveform

z = a ◦ b from a and b is based on the fact that, for t > 0,

a(t) = parity(j) for some index j, b(t) = parity(k) for some

index k, and therefore z(t) = parity(j)◦parity(k). Algorithm 2

performs the evaluation for a cell function with an arbitrary

number of input waveforms w1, . . . , wn by iterative merge-sort.

In each step of the algorithm, the first unprocessed transition

of one of the input waveforms is determined (time t), the logic

function of the gate is calculated, and if the resulting value

is different from the current value parity(j), a new transition

at time t+ delay is added to z. This procedure can be easily

extended to varying gate delays for different logic conditions,

multi-output cells and pulse filtering.

V. TEST PATTERN GENERATION FOR DELAY FAULTS

To pin-pointedly generate tests for delay faults in a specific

circuit instance, we employ timing-aware automatic test pattern

generation (ATPG). The used ATPG algorithms are based on

the sensitization of a path through the fault location g. A

structural path through g is a sequence of gates g1, . . . , gk
(g ∈ {g1, . . . , gk}) such that g1 is an input of the circuit, gk is

an output of the circuit, and such that the output of gj−1 drives

an input of gj for all 1 < j ≤ k. This input of gj is called the

on-path input of gj , all other inputs are called off-path inputs.

The delay of the path is the sum of the delays of its gates. The

difference between tobs and this delay is called slack of the

path. It represents the maximum amount of time by which the

path may be delayed without leading to a fault effect.

Algorithm 2 z = evaluate(w1, . . . , wn)

Require: gate(v1, . . . , vn): Gate function to perform
Require: delay : The delay of the gate
i1, . . . , in := 0; j := 0;
if gate(0, . . . , 0) = 1 then

z0 := −∞; j := 1; ⊲ output starts with 1 for inverting gates
end if

while min{w1

i1
, . . . , wn

in
} < ∞ do

t := min{w1

i1
, . . . , wn

in
}; ⊲ time of earliest transition

k ∈ {k | wk
ik

= t}; ⊲ choose one input waveform

ik := ik + 1; ⊲ consume earliest transition
if parity(j) 6= gate(parity(i1), . . . , parity(in)) then

zj := t+ delay; j := j + 1; ⊲ add transition to output waveform
end if

end while

zj := ∞; return z

A. Path-oriented delay ATPG

Intuitively, a path is sensitized by a test pair (v1, v2) if a

transition at its input propagates to its output, thus exposing

delays along the path. The path-oriented ATPGs employed

in this work [28, 29] generate test pairs for fault (g, s) that

sensitize a number of longest paths through g. If one of these

paths has slack less than or equal to s, the corresponding test

pair is likely to detect the fault. However, there are cases in

which detection is invalidated by effects not taken into account

by the ATPG procedure.

A path g1, . . . , gk is formally defined to be sensitized by a

test pair (v1, v2) if it launches a transition at g1 and justifies

certain sensitization conditions on the off-path inputs of all gj .

The sensitization conditions considered in this work are shown

in Table I for AND/NAND gates and explained in detail in

[30, 31]. S1 denotes a signal that is at stable logic 1 over two

clock cycles (application of v1 and v2); H1 stands for a signal

that stabilizes to logic 1 in both cycles, but may or may not

have glitches in between. U1 stands for a signal that eventually

stabilizes at logic 1 in the second cycle (but no conditions are

imposed on the first cycle). Finally, XX stands for a signal on

which no conditions are imposed at all.

TABLE I
SENSITIZATION CONDITIONS FOR AND/NAND GATES

Type If on-path Off-path Additional
transition inputs are conditions
is set to

hazard-free robust 0 → 1 S1 –
1 → 0 S1 –

robust 0 → 1 U1 –
1 → 0 S1 –

strong non-robust 0 → 1 U1 –
1 → 0 H1 –

weak non-robust 0 → 1 U1 –
1 → 0 U1 –

restricted functional 0 → 1 U1 gate output must
1 → 0 XX undergo transition

functional 0 → 1 U1 –
1 → 0 XX –



Robust and hazard-free robust sensitization are particularly

important, as they detect faults of sufficient size independently

of delays elsewhere in the circuit. The other sensitization

conditions used are weaker as the timing in other paths of

the circuit may invalidate fault detection, yet often they allow

sensitization of longer paths than (hazard-free) robust tests.

Therefore, no sensitization condition is universally optimal, and

it is even possible that tests generated under all sensitization

conditions miss a detectable delay fault. Our experiments

showed that a combination of several conditions is helpful

for the construction of test sets during the fault grading.

The test pattern generation makes use of two methods that

employ different internal representations of the circuit and

therefore have different expressive power. Specific sensitization

conditions necessitate the choice of a particular method.

B. SAT-based ATPG

The purely SAT-based approach from [28] benefits from

the efficient search optimization techniques incorporated into

modern SAT-solvers. It represents delays by integer numbers

and employs sophisticated rounding strategies to compensate

for resulting small inaccuracies. For a given target gate g, the

ATPG measures the length Lg of the longest sensitizable path

through g. This is done by means of iterative SAT-solving

using a binary search over the space of possible path lengths.

Several learning strategies are employed to narrow down the

search space. Then, a SAT-instance Sg[= Lg] is constructed,

such that it is satisfiable iff there is a path of length Lg that

passes through g, and if the path is sensitizable according

to the chosen sensitization conditions. All resulting paths of

that length and the test pattern pairs that sensitize them are

extracted from the Boolean solutions of Sg[= Lg].

C. Structural KLPG

The second method is an extended version [29] of the K-

Longest-Path-Generation (KLPG) algorithm from [12]. Unlike

the SAT-based ATPG from the previous section, it works

directly on the circuit structure. This approach is used when

working with weak non-robust and functional sensitization,

which are not supported by the SAT-based ATPG.

In order to find the K longest paths through the target gate

g that are sensitizable according to the chosen sensitization

conditions, OptKLPG successively collects partial paths that

start at one of the primary inputs in the transitive fan-in of

g. For each generated partial path, a quick sensitization check

based on local implications is performed. Partial paths that fail

the check are discarded, while the remaining partial paths are

extended by adding gates from the transitive fan-in or fan-out

of g to the partial path. All partial paths under consideration are

kept in a data structure called path store. The optimality of the

found K longest paths is guaranteed by a second data structure

that contains relevant partial paths which do not fit into the

path store [29]. Once a complete path has been generated, a

vector pair that sensitizes the path is generated by mapping

the required sensitization conditions to a complex fault model

that can be processed by a SAT-ATPG-engine, in our case

TIGUAN [32, 33].

VI. EXPERIMENTAL RESULTS

Experimental results are shown for the combinational cores

of industrial NXP circuits synthesized using the Nangate 45nm

OpenCellLibrary [34]. To obtain delays appropriate for state-of-

the-art 22nm technology, tobs and the nominal rising and falling

delays of every gate were scaled by 0.75 [1]. To generate the

set I of circuit instances, the delay of each gate was modeled

by a Gaussian distribution with the mean equal to the scaled

nominal delay and the variance of 20%. For every instance from

I , a fixed delay was randomly derived from this distribution.

In total, we considered one nominal circuit and 100 circuit

instances affected by variations; we refer to this set of 101

circuit instances by I100. We generated a fault list consisting

of 100 randomly chosen fault locations and 9 fixed fault sizes

(0.1 · tobs, . . . , 0.9 · tobs). In total, (1 + 100) · 100 · 9 = 90900
simulation runs are required for a test pair.

The initial test pair set T1 was generated by a commercial

ATPG tool targeting transition faults at the chosen fault

locations in the nominal circuit instance. We also generated a

5-detect test set T5 using the same tool.

While the generation of T1 and T5 does not explicitly

take process variations into account, tobs is calculated by

the synthesis tool under pessimistic safety margins implicitly

accounting for process variations. The numbers of test pairs

and the corresponding statistical fault coverages (SFC) of T1

and T5 are listed in Table II. The SFC achieved by these

variation-unaware test sets is rather low. Furthermore, T5 has

only marginally better SFC than T1 for all circuits except p35k

which has very low SFC numbers anyway. This clearly shows

that traditional non-variation-aware ATPG methods such as N -

detect are not sufficient for nano-scale technologies affected

by massive variations.

The final three columns of the table report the performance of

T1 augmented by the test set TATPG generated by our variation-

aware test flow for faults not covered by T1. The SFC is

improved considerably for all circuits. In comparison to N -

detect, the SFC is almost doubled. To verify these results, we

applied the generated test pairs to a new collection of 200

random circuit instances I200. The SFC measured for this new

set of circuit instances, shown in the last column of Table II, has

only minimal difference to the results for I100, and therefore

TABLE II
STATISTICAL FAULT COVERAGE (%) FOR 101 CIRCUIT INSTANCES, 100

FAULT LOCATIONS AND 9 FAULT SIZES

Transition-fault test sets T1 ∪ TATPG

T1 T5 I100 I200

Circuit Gates Tests SFC Tests SFC Tests SFC SFC

p35k 23267 216 0.50 838 5.17 16997 29.23 29.01
p45k 25679 53 17.12 195 18.84 4305 29.16 28.86
p78k 70479 31 34.06 69 35.50 6333 54.37 54.16
p89k 58638 44 14.69 178 16.80 5650 27.65 27.35
p100k 61006 38 16.22 133 17.41 8080 29.02 28.85



TABLE III
COMPACTION RESULTS

Number of tests (I100) SFC (I200)

Circuit All Eff Tmin All Tmin

p35k 16997 14275 286 29.01 28.99
p45k 4305 3676 161 28.86 28.84
p78k 6333 6171 420 54.16 54.13
p89k 5650 5244 129 27.35 27.31
p100k 8080 6734 213 28.85 28.83

clearly underscores the validity of our results. Note that the

absolute numbers of SFC are rather low. A large portion of the

undetected faults are likely to be undetectable, however there

is no redundancy proof engine that matches the simulation

model exactly. We performed experiments with approximate

redundancy definitions based on path sensitization, but found

little correspondence to the detection of faults as reported by

the accurate simulation.

The performance of the compaction algorithm Tmin (see

Section III) is reported in Table III. The total number of

generated pattern pairs, the number of effective pairs, and the

number of pairs left after the application of the Tmin algorithm

are quoted. Large differences in the pattern count corroborate

the importance of the compaction strategy. It is interesting

that the size of the smallest test sets produced for I100 by the

Tmin-algorithm is comparable to T5 (cf. Table II), and in 3

cases even lower. This shows that using a variation-aware test-

generation flow can significantly improve SFC (by more than

50% for all circuits considered) with pattern counts similar to

N -detect test sets. The final three columns show the statistical

fault coverage calculated with respect to the instance set I200.

Although the compacted test set Tmin is constructed taking only

I100 into account, its detection capability essentially matches

that of the original uncompacted test set for all circuits.

VII. CONCLUSIONS

State-of-the-art delay-fault ATPG methods reach their limits

when applied to circuits affected by extreme process varia-

tions. We presented a variation-aware fault-grading flow that

iteratively improves the test pair set by optimizing its circuit

coverage and statistical fault coverage. The core of the method

is the massively parallel fault simulation algorithm optimized

to run on GPGPUs, combined with two path-oriented ATPG

approaches, one SAT-based and one structural. The flow is

complemented by a heuristic compaction algorithm which

drastically reduces the number of test pairs without sacrificing

coverage. Experimental evidence shows that the flow succeeds

in generating test pairs that substantially outperform test sets

obtained by conventional tools.
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