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Abstract—Unknown (X) values, originating from memories,
clock domain boundaries or A/D interfaces, may compromise test
signatures and fault coverage. Classical logic and fault simulation
algorithms are pessimistic w.r.t. the propagation of X values in
the circuit. This work proposes efficient hybrid logic and stuck-at
fault simulation algorithms which combine heuristics and local
BDDs to increase simulation accuracy. Experimental results on
benchmark and large industrial circuits show significantly in-
creased fault coverage and low runtime. The achieved simulation
precision is quantified for the first time.

Index Terms—Unknown values, X propagation, precise fault
simulation, symbolic simulation, BDD

I. INTRODUCTION

During test application unknown signal values in a circuit,
termed X values, may corrupt the test signature and result in a
loss of fault coverage, especially in test compression and BIST
architectures [1]. X values may originate from uncontrolled
flip-flops, memories, clock domain boundaries or tristate logic.
They can be controlled by insertion of additional design-for-
test circuitry to block their propagation within the circuit.
However, blocking logic increases overhead and inherently
limits observability of parts of the design, reducing test quality.
Typically, a fraction of X sources cannot be blocked and
the resulting X values are handled for example by X-tolerant
compactors [2, 3] or X masking logic [4, 5] in test compression
architectures. With increasing number of Xs to be handled,
hardware overhead and test time increases as more patterns
have to be applied to reach the targeted fault coverage.

To estimate the propagation of X values in the circuit, n-
valued logic simulation algorithms with a fixed number of
logic symbols, for instance the 3-valued logic with {0, 1, X},
are used. However, these classical algorithms overestimate
the number of Xs in the circuit since they are inherently
pessimistic w.r.t. X propagation. These algorithms cannot
uniquely identify different X values in the circuit and thus,
fail to correctly evaluate reconvergences of Xs. Figure 1 (a)
gives an example of a simple circuit and input stimuli with
one X source. 3-valued simulation computes the value of the
output signal as X, while its actual value is 0 because of X
canceling at the reconvergence at the AND gate.
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Fig. 1: Pessimism in (a) 3-valued and (b) Restricted symbolic
simulation

Restricted symbolic simulation [6, 7] uses a higher number
of symbols to encode the states of the signals. It is able to track
simple inversions of X sources and allows to evaluate some
reconvergences correctly. While restricted symbolic simulation
correctly evaluates the state of the output signal in figure 1
(a), it fails in the case (b) since it is not able to encode the
conjunction of the two unique X states X1 and X2.

Apart from logic simulation, this pessimism in X prop-
agation affects a wide range of other EDA algorithms as
well. Fault simulation as well as ATPG suffer from the same
shortcoming because the underlying logic reasoning is unable
to track unique X states. The result in fault simulation is
an underestimation of fault coverage, resulting in increased
unnecessary test costs and reduced product quality.

By applying SAT-based formal methods, a precise analysis
of X reconvergences can be conducted [8]. This method
can also be applied to fault simulation [9]. However, the
computational cost is high if a large number of test patterns
is evaluated. A precise symbolic simulation which represents
all possible signal states on X valued signals can also be
implemented using binary decision diagrams (BDDs, [10]).
Yet for larger circuits, especially with arithmetic structures
like multipliers, building the corresponding BDD is not trivial.
This problem has been solved in verification and equivalence
checking applications by partitioning the circuit and building
partial BDDs using cutpoints [11].

The contribution of this work are novel logic and fault
simulation algorithms, which leverage heuristic techniques
and partial BDD based symbolic simulation to significantly
increase the accuracy of logic and fault simulation in presence
of Xs with low computational effort. The result is a more
precise computation of fault coverage and increased test and
product quality at no cost.

The next section introduces the used terminology, followed
by a discussion of related work in section III. The proposed
algorithm is presented in section IV and evaluated on bench-
mark and industrial circuits in section V.

II. TERMINOLOGY

Due to the inherent pessimism, n-valued logic simulation
algorithms compute a superset of the signals which actually
have an unknown value. In this work we distinguish the
following three types of X values:

Pessimistic X (PEX): The value of a signal is called PEX
if and only if 3-valued logic simulation determined that the
signal value is an X for a given input stimulus. Note that this
computation is pessimistic.



Real X (REX): The value of a signal is called REX if and
only if its value depends on at least one of the X sources of
the circuit for a given input stimulus. The set of REX signals
is a subset of the set of PEX signals. By definition, all X
sources are REX .

False X (FEX): The value of a signal is called FEX if and
only if its value can be proven to be independent of any of the
X sources in the circuit for a given input stimulus. While all
signals with binary value ∈ {0, 1} could be considered FEX ,
we constrain the set of FEX signals to a subset of the PEX
signals. FEXs originate at reconvergences of signals with
REX value if X canceling occurs.

From these definitions, it follows that the set of signals with
PEX values is the union of the sets of signals with REX
and FEX values: PEX = REX ∪ FEX .

III. RELATED WORK

The pessimism of logic simulation w.r.t. X propagation
can be reduced by approximate as well as precise analysis.
Approximate techniques comprise static and structural analysis
as well as restricted symbolic simulation. Precise techniques
are based on formal methods, typically mapping the problem
to decision diagrams or satisfiability instances.

In [12], the authors showed how knowledge gained from a
structural static learning analysis [13] can be used for a limited
increase of the accuracy of logic and fault simulation. The sim-
ulation approach based on circuit partitioning [14] augments
n-valued logic simulation by extracting small X valued regions
of the circuit with X reconvergences for separate simulation
to learn about local X propagation. The result is fed back into
the simulation of the whole circuit.

In restricted symbolic simulation [6], also called partial
symbolic simulation [15] or distinguishing X simulation [16],
the number of symbols to track unique X states is significantly
increased. At low computational cost, simple inversions of X
states and their reconvergences can be accurately computed.
Depending on the circuit and input stimuli, restricted symbolic
simulation allows to significantly reduce the pessimism in
logic simulation. However, more complex operations of X
states (e.g. conjunction of two unique X states) are still
evaluated pessimistically. In [7], restricted symbolic simulation
is applied to the implication step of ATPG.

A formal analysis implemented as symbolic simulation of
the circuit is able to represent all possible X states of signals,
depending on the X sources. If the implementation is based on
reduced ordered BDDs [17] and each signal is assigned a BDD
describing its Boolean function w.r.t. the input stimulus, then
any non-constant function denotes a REX state. All other
signals have constant binary values for the given stimulus,
independent of the X sources. By interpreting X sources
as defect locations with unknown behavior, this symbolic
simulation algorithm can be applied to fault diagnosis [18] as
well. Still, building BDDs for larger circuits, or even parts
of larger circuits, may prove difficult especially if certain
arithmetic structures, e.g. multipliers, are contained.

BDD-based techniques have also been applied to sequential
fault simulation with unknown or don’t care values to reduce
the explosion of X states in the circuit over multiple test cycles
[19]. To allow the simulation of larger circuits, [20] proposed
a method that switches between BDD-based and pessimistic
simulation in different simulation cycles, depending on mem-
ory requirements.

More recent approaches map the problem of precise logic
simulation to the satisfiability (SAT) domain. The approach
in [21] maps an RTL design to a quantified Boolean formula
(QBF) to reason about X propagation stemming from unini-
tialized registers over a limited number of simulation cycles.
In [9], the 3-valued simulation is extended by a precise SAT-
based analysis of reconvergences of REX values. The result is
an accurate computation of REX values for the given stimulus
at the cost of increased runtime (in the order of ATPG for
the same circuit). This technique is also used to increase the
accuracy of stuck-at fault simulation.

The problem of accurately handling unknown values is
also known in verification and equivalence checking. Here,
X values mainly stem from black boxes in the design. [22]
suggests to explicitly encode X values in the SAT instance
allowing to represent one single X state. Yet the approach is
not able to track multiple unique X states originating from
different X sources or Boolean operations on signals with X
states. [23, 24] use BDDs to conduct a symbolic simulation
of the design for verification with X states. [23] switches to
a SAT-based reasoning when the memory requirement of the
BDDs exceeds the available memory and trades off memory
and runtime. For logic and fault simulation, thousands of
patterns need to be simulated and runtime must be as small
as possible.

In this work, we propose to increase the accuracy of both
logic and fault simulation by combining heuristics and effi-
cient fault simulation techniques with symbolic simulation of
limited subpartitions of the circuit by use of BDDs. Instead of
mapping the whole circuit to a BDD to perform the symbolic
simulation, only local parts of the circuit are represented
by BDDs. A similar use of partial BDDs is known from
equivalence checking [11]. The following sections presents the
proposed algorithms for logic and fault simulation.

IV. ENHANCED FAULT SIMULATION USING LOCAL BDDS

The proposed stuck-at fault simulation algorithm partitions
the circuit into fanout free regions (FFRs) and separately com-
putes fault activation in the FFR as well as the observability of
the corresponding fanout stem [25–27]. For the logic simula-
tion of the fault-free circuit and the observability computation
of fanout stems, a hybrid logic simulation algorithm is used.
This algorithm combines local BDDs bounded by a node
limit to evaluate X-reconvergences, and restricted symbolic
simulation to reduce the size of BDDs and the number of BDD
operations as much as possible. The algorithm is explained in
detail in the next two subsections, followed by the discussion
of the fault simulation algorithm in section IV-C.

A. X-Reconvergence Analysis Using Local BDDs

Reduced ordered BDDs allow the symbolic simulation
of the Boolean function of a circuit. To correctly classify
PEX values into REX and FEX values for a given input
stimulus and a set of X sources, the function of each PEX
signal is represented as a shared BDD. Due to canonicity
of reduced ordered BDDs, a simple comparison with the
tautology function (constant 1) or its inverse reveals whether
the signal under consideration carries a FEX value or not.
If the resulting BDD is not equal to a constant function, the
signal value depends on the X sources and thus, is a REX
value.



Listing 1: Pseudo code of hybrid logic simulation

// S: set of signals in the circuit
// vals: value of signal s determined by pessimistic simulation

SPEX := {s ∈ S | vals /∈ {0, 1}}
for s ∈ SPEX in topological order, starting from X sources

g := driving_gate(s)
if (∃s′ ∈ inputs(g) : vals′ = controlling_value(g)) or

(∀s′ ∈ inputs(g) : vals′ ∈ {0, 1}) then
vals := table_lookup(g)

else
if (s is an X source) then

bdds := create_bdd_variable(s)
else

bdds := build_bdd(g)
if (bdds = 0) then

vals := 0

else if (bdds = 1) then
vals := 1

else if ( size (bdds) > limit) then
delete_bdd(bdds)
bdds := create_bdd_variable(s)

end
end

end
end

The actual comparison of the constructed BDD of a signal
is a constant time operation. However, constructing the BDD
for larger structures and certain sensitive logic functions may
require an exponential amount of memory in the number of in-
puts. Assuming that X canceling occurs locally, we build local
BDDs limited in size by partitioning the circuit at cutpoints
[11, 23] to overcome excessive memory requirements.

The BDD-based hybrid logic simulation algorithm is de-
picted in listing 1. For a given input stimulus, the set of signals
SPEX with a PEX value is computed, for example by 3-
valued logic simulation. As a by-product, the binary values of
all other signals are known.

The PEX signals are then processed in topological order,
starting from the X sources in the circuit. For each X source,
a BDD variable is introduced For all other signals s to be
processed, the Boolean function of the preceding signals have
already been computed due to the topological processing.
If one of the predecessors of s has the controlling value
of the driving gate g, or all the predecessors have binary
values, then the value vals of s can be derived by a fast
table lookup. If vals cannot be derived by simple reasoning,
a BDD is constructed for the Boolean function at s. The
method build_bdd in the pseudo-code constructs the BDD for
s depending on the driving gate g and the Boolean functions
of its inputs.

If the resulting BDD is a constant function, the signal state
is set to FEX with either 0 or 1 as value vals. This value
is then used for the simulation of the fanout of s. Otherwise,
the signal state is kept as PEX . If the size of the BDD at
signal s exceeds a given limit w.r.t. the number of nodes, we
stop describing the function at s as BDD and introduce a new
free variable which is used in the construction of the following
BDDs in the output cone of s. The BDD with excessive size
is not used any more and deleted. Since relations between the
BDD variables are not analyzed, the variable order in the BDD
is given by the topological graph traversal.

An example of the constructed BDDs for a small circuit
is given in figure 2. Assume signal lines b, c, d are three X
sources, and a, b have the value 1. In figure 2b, the non-
trivial BDDs of the Boolean functions at signals f, g, h, i, k are
depicted. bddf represents the inversion of signal b and bddg

represents the conjunction of signals b and c. bddh collapses
to the constant-0 function. bdd∗

i results from the exclusive
disjunction of the functions at d and g. Assuming a node
limit of 5, this BDD exceeds the limit and a new variable is
introduced (bddi). bddk finally reflects the inversion of bddi

due to the negated conjunction at k.

1

X2

X1 0

X

X

X

(a)

X3 X

1

X

a

b

c

d

e

f

g

h

i k

(b)

0

d

cc

bb
i

bddi*

bddh

bddg

bddk

bddf

i

1

bddi

Fig. 2: BDD construction in the hybrid logic simulation flow

Using local BDDs with limited size, high memory re-
quirements are avoided at the cost of a certain degree of
simulation accuracy. X-reconvergences might be evaluated
pessimistically if a correlation between signal states is lost
due to the introduction of new variables when a BDD exceeds
the node limit.

B. Hybrid Logic Simulation with Increased Accuracy

To reduce the computational effort of the algorithm in the
previous section, we employ a restricted symbolic simulation
[6] instead of 3-valued simulation to reduce the number
of PEX signals for which BDDs are constructed. In the
restricted symbolic simulation two symbols are used to encode
the binary states {0, 1}. In addition, each X source is assigned
a unique symbol encoded as positive integer larger than 1.
Inverted X states are assigned the negated integer value of
the original X state. This encoding allows to correctly track
propagation of Xs stemming from X sources unless they are
combined with different X sources. In particular, the X state
does not loose its identity by propagation through inverting
gates. If two or more X states from different X sources are
combined at a gate and X canceling does not occur, the output
value is assigned a new symbol which has not been used
in the simulation so far. This symbol is then used for the
simulation in the output cone of that signal. By using a 32-bit
machine word per symbol, about 2.1 billion different symbols
are available.

Table I shows the truth table of a two-input AND gate for
restricted symbolic simulation. For combinations of X values
(ap, −ap) which result in X canceling, a binary value is
computed. If uncorrelated X values are combined (ap, aq),
a new unique X symbol is generated (denoted as X ′).

A large fraction of simple X reconvergences are evaluated
correctly with restricted symbolic simulation. Still, X recon-
vergences may be evaluated pessimistically if X canceling
occurs after combination of multiple different X states. Only
for these cases, local BDDs are constructed in the algorithm of
the preceding section. Reducing the number of PEX signals
for which a BDD analysis is required, significantly improves
the efficiency of the overall hybrid logic simulation.



TABLE I: Two-input AND gate truth table (adopted from [7])

∧ 0 1 ap -ap aq -aq

0 0 0 0 0 0 0

1 0 1 ap -ap aq -aq

ap 0 ap ap 0 X′ X′

-ap 0 -ap 0 -ap X′ X′

aq 0 aq X′ X′ aq 0

-aq 0 -aq X′ X′ 0 -aq

C. Efficient Fault Simulation with Increased Accuracy

The enhanced stuck-at fault simulation is based on the
hybrid logic simulation algorithm. For a given test pattern,
this algorithm accurately classifies a higher number of faults
as detected compared to classical algorithms based on a 3-
valued logic like the concurrent algorithm [28] or the PPSFP
algorithm [25–27]. As in state-of-the-art PPSFP algorithms,
computation of fault activation and fault propagation to an
observable output or pseudo output is done separately to
increase efficiency. However, patterns are not evaluated in a
bit-parallel manner since the hybrid logic simulation algorithm
processes a single pattern at a time. The overall flow of the
proposed fault simulation algorithm is depicted in figure 3.
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Fig. 3: Enhanced fault simulation flow

For each pattern, fault simulation starts with hybrid logic
simulation of the fault-free circuit. The FFRs of the circuit
are then processed one at a time. The algorithm determines
fault activation and fault propagation within the FFR using the
computed high precision signal values of the fault-free circuit.
Within the FFR, the fault effect propagates only along a single
path towards the fanout stem. However, this path may be part
of a branch of an X valued fanout and reconvergence. The
resulting value of such a reconvergence might be impacted by
the faulty value. In this step, such rare cases of reconvergences
are evaluated pessimistically.

If there are any yet undetected faults in the FFR which
are activated by the test pattern and observable at the corre-
sponding fanout stem, the algorithm proceeds with the stem
observability analysis. In contrast to [9], where the stem
observability analysis is conducted using a pessimistic 3-
valued logic simulation, the hybrid logic simulation algorithm
increases the accuracy of this step as well. The simulation

starts at the fanout with the opposite value of the fault-
free circuit, and stops at observable outputs. The resulting
logic values are compared with the values of the fault-free
simulation. If the binary values differ, the fanout is observable
and therefore, the activated and locally propagated faults in the
FFR are detectable with the particular pattern.

V. EVALUATION AND RESULTS

This section presents experimental results for benchmark
and industrial circuits. The achieved accuracy of logic and
stuck-at fault simulation is discussed. The algorithm is imple-
mented in Java except for the BDD part. The BDD package
BuDDy [29] version 2.4 is used to construct and perform any
operations on BDDs. The results are verified by exhaustive
classical logic and fault simulation for smaller circuits. All
experiments are conducted on a 3.0GHz Intel Core i7 work-
station.

A. Simulation Precision in Presence of Unknown Values

Using the ISCAS’85 circuits, the achievable precision of
logic and fault simulation is assessed. In the experiments, 64
random patterns are evaluated. Per pattern, a fixed number of
circuit inputs (4, 8 and 16 inputs) are randomly selected as X
sources (the implementation also allows to configure internal
signals as X source).

To compute the precision, an exhaustive simulation of the
patterns representing all possible values of the X sources is
conducted for each target pattern. In the case of 4 X sources,
16 fully specified patterns are generated per target pattern. For
logic simulation, we define precision as the ratio between the
number of found FEX signals over 3-valued simulation and
the number of FEX signals determined by exhaustive simula-
tion. For fault simulation, precision is the ratio of additionally
detected faults over a PPSFP fault simulation by the proposed
algorithm, and the number of additionally detected faults
computed by exhaustive fault simulation. For the exhaustive
fault simulation, the fully specified patterns generated per
target pattern are simulated using the PPSFP algorithm and
the intersection of the detected faults is computed.

Table II lists the results for the circuits and different
numbers of X sources. For each case, column 3 and 4 give the
average and maximum ratio of FEX signals w.r.t. the PEX
signals computed by 3-valued simulation. Up to 72% of the
PEX signals found by 3-valued simulation can be proven to
actually have a binary value (c2670).

Column 5 to 9 list the precision of the proposed hybrid logic
simulation depending on the BDD node limit. Column 5 (RSS)
gives the result for the restricted symbolic simulation without
using any BDDs. With increasing BDD size the precision
increases as well. For most circuits, small BDDs with at most
50 nodes already achieve 100% precision.

The results for fault simulation are listed in column 10 to
14. The precision is given for restricted symbolic simulation
as well as for different BDD limits. In general, precision
grows with increasing BDD limit and reaches very high values
already for a BDD limit of 50 nodes. A higher BDD limit of
1000 nodes improves the precision only in few cases.

B. Experimental Results for Industrial Circuits

In a second series of experiments, larger ITC’99 benchmark
and industrial circuits (kindly provided by NXP) have been
used in a commercial design-for-test and test generation flow.



TABLE II: Precision of hybrid logic and enhanced fault simulation

Num. X Avg. rat. Max. rat. Logic sim. prec. for BDD node limit [%] Fault sim. prec. for BDD node limit [%]
Circuit sources FEX sig. [%] FEX sig. [%] RSS 5 15 50 1000 RSS 5 15 50 1000

c1355
4 33.3 48.3 22.7 58.1 100.0 100.0 100.0 0.0 45.7 98.9 98.9 98.9
8 21.3 42.9 32.4 33.0 53.0 98.9 100.0 0.0 0.0 31.6 98.1 99.9

16 5.1 13.2 97.8 97.8 97.8 99.7 100.0 0.0 0.0 0.0 100.0 100.0

c1908
4 5.7 37.2 13.3 86.0 100.0 100.0 100.0 10.5 81.5 91.6 91.6 91.6
8 4.5 32.2 0.5 32.3 79.9 100.0 100.0 4.9 41.7 81.1 94.8 94.8

16 2.2 23.2 0.1 38.5 40.5 82.5 100.0 3.4 42.9 46.3 88.0 98.3

c2670
4 20.5 71.9 98.1 100.0 100.0 100.0 100.0 97.1 98.3 98.3 98.3 98.3
8 12.5 50.1 93.5 100.0 100.0 100.0 100.0 95.3 99.0 99.0 99.0 99.0

16 15.4 62.4 86.5 100.0 100.0 100.0 100.0 73.8 98. 4 98.4 98.4 98.4

c3540
4 28.5 71.0 87.0 100.0 100.0 100.0 100.0 88.6 96.1 96.1 96.1 96.1
8 17.9 48.2 71.8 96.8 100.0 100.0 100.0 61.1 85.4 89.1 89.1 89.1

16 8.7 24.8 44.3 85.5 96.7 100.0 100.0 24.8 66.3 84.5 89.2 89.2

c5315
4 27.7 51.5 99.4 100.0 100.0 100.0 100.0 98.6 98.6 98.6 98.6 98.6
8 23.4 55.5 95.1 100.0 100.0 100.0 100.0 95.2 98.0 98.0 98.0 98.0

16 19.7 34.4 88.5 99.9 100.0 100.0 100.0 88.6 98.6 98.6 98.6 98.6

c6288
4 38.4 53.3 86.8 98.6 100.0 100.0 100.0 60.3 91.5 99.4 99.4 99.4
8 23.7 36.9 88.9 97.0 99.6 100.0 100.0 51.1 74.4 93.0 98.4 99.1

16 11.8 21.1 92.0 96.9 99.4 99.7 99.9 39.0 46.0 65.5 66.2 93.0

c7552
4 22.2 44.8 97.6 100.0 100.0 100.0 100.0 97.0 97.7 97.7 97.7 97.7
8 20.8 42.4 92.8 100.0 100.0 100.0 100.0 94.1 98.0 98.0 98.0 98.0

16 19.7 38.4 90.5 100.0 100.0 100.0 100.0 93.3 97.9 97.9 97.9 97.9

For each circuit, a fixed randomized set of flip-flops is assumed
to be unscannable and the respective pseudo primary inputs are
replaced by X sources. All other flip-flops are configured in
scan chains. 16 of these X source configurations are generated
per circuit and the one with average behavior is used in the
following. For this configuration, the random pattern resistant
stuck-at faults in the output cones of the X sources are
computed and test patterns are generated with a commercial,
X aware ATPG. For the generated test patterns, a logic
simulation using the proposed hybrid algorithm, as well as a
fault simulation with the proposed algorithm is conducted. The
resulting number of computed FEX signals and additionally
detected faults are shown in table III. Due to the circuit size
(up to 1 million gates), the exhaustive simulation used in the
previous section could not be applied.

Column 2 and 3 of the table show the size of the circuit in
gate primitives as well as the percentage of flip-flops (pseudo
primary inputs) selected as X sources. The next column lists
the number of computed FEX signals w.r.t. 3-valued logic
simulation for the restricted symbolic simulation (RSS). The
following two columns give the absolute increase in the
number of FEX signals w.r.t. the result of restricted symbolic
simulation. Very small BDDs are already sufficient to signifi-
cantly improve the result of restricted symbolic simulation.

The last three columns relate to fault simulation. The num-
ber of additionally detected faults using restricted symbolic
simulation is found in column 7 (RSS). Column 8 and 9
give the increase of detected faults over restricted symbolic
simulation for BDD node limits of 5 and 50. RSS already
classifies a large number of faults as detected compared to
classical algorithms. Using small local BDDs, several thou-
sands of faults are detected in addition to RSS. Note that for
most of these faults ATPG was not able to generate patterns.
For highest product quality and 0-DPM requirements, fault
simulation accuracy must be as high as possible.

The required runtime for the logic and fault simulation
depends on the circuit size, the particular X configuration and
the number of patterns. Due to limited space, runtimes (in
seconds per pattern) are only given for larger circuits and the
5% X configuration in table IV. Even for largest design with
about one million gates, the fault simulation time per pattern

is less than 2 seconds. Runtime increases only slightly with
the higher BDD limits. Compared to the SAT-based method
of [9], fault simulation runtime is reduced by a factor of 43X
for p418k. Memory consumption for the largest circuit reaches
3210 MByte.

VI. CONCLUSIONS

This paper presented novel hybrid logic and fault simulation
algorithms based on restricted symbolic simulation and local
BDDs. The efficient algorithms reduce the pessimism of X
propagation during simulation and thus achieves more precise
results in presence of unknown values. The enhanced fault
simulation with increased accuracy is able to correctly classify
a very high number of faults as detected compared with
classical fault simulation algorithms. This increase in fault
coverage and product quality comes at no cost in terms of test
time, test data or hardware overhead. The experimental results
show the applicability to 1 million gate industrial circuits.
Already with small local BDDs and very low runtimes, the
achievable precision is very high.
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