
Algorithm-Based Fault Tolerance
for Many-Core Architectures

Claus Braun, Hans-Joachim Wunderlich
Institute of Computer Architecture and Computer Engineering

University of Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany
email: {braun, wu}@informatik.uni-stuttgart.de

Abstract—Modern many-core architectures with hundreds of
cores provide a high computational potential. This makes them
particularly interesting for scientific high-performance comput-
ing and simulation technology. Like all nano scaled semiconduc-
tor devices, many-core processors are prone to reliability harming
factors like variations and soft errors. One way to improve
the reliability of such systems is software-based hardware fault
tolerance. Here, the software is able to detect and correct errors
introduced by the hardware. In this work, we propose a software-
based approach to improve the reliability of matrix operations
on many-core processors. These operations are key components
in many scientific applications.

I. INTRODUCTION

In this work, known techniques for algorithm-based fault
tolerance are analyzed and adapted to emerging many-core
architectures in order to tackle soft errors that manifest
themselves at software level through erroneous values. The
proposed approach does not rely on any modification of the
hardware. We focus on matrix operations, particularly on the
matrix multiplication. The approach has been implemented and
evaluated on a Nvidia Tesla GPGPU system [1], nevertheless
it is general enough to be applied to other many-core platforms
in a straight forward manner. As software-backend, the Nvidia
CUDA environment is used.

II. ALGORITHM-BASED FAULT TOLERANCE (ABFT)
ABFT [2] is a software technique to improve reliability at

system level. Algorithms are modified to work on encoded
data and to produce encoded data. The encoding introduces re-
dundant information that enables the detection and correction
of errors. In case of the matrix multiplication, the encoding
can be done by column and row checksums which are stored
within the matrices.

The used many-core hardware platform follows an exe-
cution paradigm which we call many-threading. Thousands
of threads execute the same code in parallel. This allows a
very high throughput, especially for data-parallel problems.
For an efficient mapping and integration of ABFT on such a
platform, three major aspects have to be considered together:
Data, ABFT and many-threading. Our approach unifies all
of these aspects by using a block-based mapping. Here, the
data (matrices) is partitioned into blocks (sub-matrices) and
all operations are parallelized over these blocks. To achieve
optimum protection of the data, the ABFT scheme and the
encoding are also applied at the level of these blocks. Finally,
the many-threading is incorporated this way, because the
threads are grouped into blocks for execution.

The block-based approach provides several advantages.
From the hardware perspective, the partitioning of the data
allows the usage of small local memories on the GPGPU as
caches. This improves the overall performance significantly.
For the ABFT encoding, it was shown in [3], that smaller
encoder vectors improve the numerical properties of the check-
sums. With the approach presented here, the encoding is done
at the level of small sub-matrices, instead of the whole matrix.
Another important advantage is the vastly improving error
detection and correction capability. The original ABFT scheme
could only detect and correct a very limited number of errors.
With the block-based approach, the number of detectable
and correctable errors increases with the number of blocks.
Therefore, a high degree of fault tolerance can be guaranteed,
even for very large matrices.

III. RESULTS

The results show that ABFT schemes can be incorporated
into matrix operations on many-core architectures with low
performance overhead. The diagrams depict the overhead and
performance comparison between an unprotected multiplica-
tion, the ABFT scheme and the Duplication with Comparison
approach. The achievable error detection rates depend on the

 0

 0.5

 1

 1.5

 2

 2.5

 3

10 20 50 100
200

500
1000

2000
3000

4000
5000

N
o

rm
a

liz
e

d
 T

im
e

Matrix Dimension nxn

Overhead Comparison

Unprotected
Algorithm-Based-Fault-Tolerance

Duplication-With-Comparison

 0

 50

 100

 150

 200

 250

 0 1000 2000 3000 4000 5000 6000

G
F

L
O

P
S

Matrix Dimension nxn

Matrix Multiplication on GPGPU Device

Unprotected
ABFT
DWC

(a) (b)

Fig. 1. Overhead and Performance Comparison

input data, therefore we allow the user to define a threshold
value that fits his needs and does not cause too many false
positives.

REFERENCES

[1] Nvidia, http://www.nvidia.com/tesla.
[2] K.-H. Huang and J. Abraham, “Algorithm-based fault tolerance for matrix

operations,” IEEE Transactions on Computers, vol. 33, no. 6, pp. 518–
528, 1984.

[3] J. Rexford and N. Jha, “Algorithm-based fault tolerance for floating-point
operations in massively parallel systems,” in Circuits and Systems, 1992.
ISCAS ’92. Proceedings., 1992 IEEE International Symposium on, vol. 2,
May 1992, pp. 649–652 vol.2.

