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Abstract— Programmable mixed–mode BIST schemes combine
pseudo–random pattern testing and deterministic test. This paper
presents a synthesis technique for a mixed–mode BIST scheme
which is able to exploit the regularities of a deterministic test
pattern set for minimizing the hardware overhead and memory
requirements. The scheme saves more than 50% hardware costs
compared with the best schemes known so far while complete
programmability is still preserved.
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I. INTRODUCTION

The benefits of built–in self–test strategies are widely recog-
nized. They include reusability in the field, cost reduction for
the automatic test equipment (ATE), high coverage of non–
target faults and IP protection among others [1].

If a BIST scheme like STUMPS (Self–Test Using MISR and
Parallel Shift register sequence generator [2]) is employed,
the impact of BIST on the design cost is limited as it is
just added externally to the scan chains. Figure 1 shows the
basic principle of the STUMPS scheme. The ATE controls
the test session and reads back the outcome. The scan chains
are loaded during multiple scan clock cycles and with each
clock, the shift register SR produces a vector of k bits which
are shifted into the chains. With t being the maximum scan
chain length, t vectors are loaded into the chains to form a
complete test pattern. After a system clock cycle, the scan
flip–flops have captured the response bits of the core–under–
test (CUT) which are unloaded into the MISR with the next t

scan clock cycles.

The major drawback of this BIST scheme lies in the limitation
of the obtainable fault coverage which can be restored by
different means:

• Improving the random pattern testability of the core–
under–test (CUT) by inserting test points [3], [4], [5],
[6]. This introduces significant design effort, additional
validation tasks and may impact circuit performance.
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Fig. 1. STUMPS scheme.

• Modifying the pattern generator in order to generate
precomputed deterministic patterns [7], [8], [9]. The
modified pattern generator may require significant area,
and design flow and flexibility are affected, too.

• Reseeding the LFSR and its modifications [10], [11],
[12], [13], [14], [15], [16], [17], [18]. The seeds are stored
in memory, and this scheme is programmable and rather
flexible. However, even the most efficient scheme up to
now [19] may require a substantial amount of memory.

Generating a precomputed pattern sequence by reseeding has
maximum encoding efficiency of 1, which is the number of
encoded care bits divided by the required amount of storage
bits [20].

Dictionary based approaches [21], [22], [23], [24] do not have
this limitation. Here, some vectors are stored in memory and
reused during test. Test vectors and test patterns show regular-
ities which can be exploited by dictionary based approaches
rather than by LFSRs for two main reasons:

1) Many vectors are compatible to each other and can be
encoded by a small set of dictionary vectors.

2) Some input assignments appear repeatedly in many
patterns at the same positions. This is since certain
circuit parts get sensitized by these assignments, and
multiple patterns that test the faults in these parts keep
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these assignments constant.

The method presented below identifies a set of useful dic-
tionary entries by solving a clique covering problem. After
this, the pattern set is reordered so that the dictionary entries
are used in a regular way by solving a traveling salesman
problem. If vectors and patterns do not show regularities at
some positions, standard reseeding is applied.

The next section gives an overview of the hardware BIST
scheme. Section III shows how to identify the dictionary
entries, and section IV introduces the pattern ordering for max-
imizing regularity. In section V, a test program is synthesized,
and section VI shows, that coding efficiency is increased and
memory requirement is reduced nearly by a factor of 2 with
respect to the best schemes known so far for industrial circuits.

II. OVERVIEW

The proposed test compression approach combines partial
reseeding of an LFSR with a small dictionary of previously
calculated vector values. Figure 2 shows the basic structure
containing an LFSR, a phase shifter (PS), the dictionary ROM
and a multiplexer and k scan chains. The LFSR is provided
with seed information and the ROM is addressed by a bits. For
each scan vector, either the output of the LFSR, or a dictionary
value from the ROM is selected using the Slct–signal.
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Fig. 2. Combination of LFSR reseeding and a dictionary.

The ROM–addresses and the selection signal for each scan
vector are read from a register file which holds the current
states of the vectors of one pattern (see figure 3). Each of
the t registers is a + 1 bits long and a register is updated
with new information if the write–enable signal Wen is 1. By
addressing the status registers with a modulo t counter, the
same sequence of addresses and selection signals is generated
for each pattern. Therefore, dictionary vectors are continuously
injected at the same vector position over multiple patterns. The
injection starts and ends by updating the values of the status
register accordingly. One continuous sequence of injections
at a certain vector position is called a restrict. The value
or dictionary vector that is injected at this position is called
restrict vector .
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Fig. 3. Status register for generating restrict information.

Figure 4 shows the first 4 patterns of a pattern set. Each pattern
consists of 4 vectors. The first two restricts start with the
first pattern and continuously inject restrict vectors vb and
va into the vector positions 3 and 4 respectively. The third
restrict starts at pattern p2 replacing vector position 1 with the
restrict vector va. The care-bits in unrestricted vector positions
(v11, v12, . . . ) are encoded by LFSR–reseeding.
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Fig. 4. Start of a pattern application with three restricts.

The amount of information needed to define a restrict is
constant and does not depend on the amount of care bits
encoded this way. In contrast, the cost of LFSR–reseeding
grows linearly in the number of encoded care bits. Maximizing
the gain for restrict encoding leads to an optimization problem
with the following goals:

• Construct a small dictionary with restrict vector values
that can be injected as often as possible.

• Maximize the runlengths of the restricts so that many care
bits are covered with constant cost.

For easier discussion, let us first define some more notations.

Let v be a vector which contains care and don’t care bits. The
number of care bits in vector v is noted as |v|. Two vectors
vi, vj are compatible (vi ∼ vj), if there is no conflicting care
bit at any position. Compatible vectors can be merged v =
vi + vj so that v carries all the care bits of both vi and vj .
If a vector set V contains only pairwise compatible vectors,
the whole set can be merged into one vector which is noted
as v = ΣV .

A pattern p = (v1, v2, . . . , vt) is a sequence of vectors. The
vector at position i of pattern p is noted as p(i) = vi. Let P

be a pattern set with |P | = q. The vector set VP of the pattern
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set P is the set of all vectors present in p1, . . . , pq ∈ P . The
cardinality of a vector v with respect to P is cP (v) = n with
n being the number of vectors in p1, . . . , pq ∈ P that are equal
to v, q is the total number of patterns. The vector slice set Vi

of the pattern set P and vector position 1 ≤ i ≤ t is equal to
{p(i)|p ∈ P}.

The compatibility graph G(E, VP , w) of a vector set VP is a
node–weighted graph with

(vi, vj) ∈ E ⇔ vi ∼ vj ∀vi, vj ∈ VP

and the weight of a node vi:

w(vi) = cP (vi) · |vi| ∀vi ∈ VP

III. GENERATION OF THE RESTRICT VECTOR DICTIONARY

The goal is to find a minimum set RV of fully specified restrict
vectors, so that a large number of care bits can be encoded by
replacing the original vectors by compatible restrict vectors.
More formally, the sum over the weights of vectors restrictable
with a set RV∑

v∈VP

w(v)[∃vr ∈ RV with v ∼ vr]

should be large.

The final restrict vector set is determined in a two-step process.
The first step constructs a candidate set RVc of restrict vectors.
The second step selects the final restrict vectors RV ⊆ RVc

as described in the next section.

RVc is constructed by partitioning the compatibility graph
G(E, VP , w) into cliques. Each clique contains pairwise com-
patible vectors which are merged into a single restrict vector
candidate vr ∈ RVc.

The clique partitioning problem has exponential complexity
and the following simple heuristic is used:

COMPUTE-RESTRICTS:

1) Let RVc = ∅.
2) C=FIND-NEXT-CLIQUE.
3) Let VP = VP − C and add vr = ΣC to RVc.
4) Unless VP = ∅ goto step 2.
5) Return RVc.

FIND-NEXT-CLIQUE:

1) Choose a v ∈ VP with w(v) maximum, let C = {v}.
2) Let N = {v′|v′ ∈ VP − C, (v, v′) ∈ E ∀v ∈ C} be

the set of all common neighbors. Unless N = ∅, add v′

with largest w(v′) to C and repeat step 2.
3) Return C.

After clique partitioning, every v ∈ VP is compatible with at
least one of the vr ∈ RVc. The next section will use some
of these candidates for restricting and therefore determine the
subset of RVc, that has to be stored in a ROM.

IV. TEST SET ORDERING

The patterns are ordered so that the candidate restrict vectors
in RVc are able to cover large amounts of care bits in single
runs. Then, the set of restricts are determined by scanning
through the ordered pattern list. This is similar to static test
pattern compaction [25], [26], [27] where multiple compatible
patterns are merged to shorten the test set. In this approach,
multiple compatible vectors are jointly encoded with minimum
information to improve coding efficiency.

A gain function expresses the benefit of sorting two patterns
adjacent to each other. This benefit increases with the number
of compatible restrict vectors shared by these two patterns.
However, each vector v can be compatible to multiple restrict
vector candidates vr ∈ RVc and it is not yet clear, which
restrict vector is likely to be used at the end. The following
procedure determines for each vector v a single restrict value
vr that is most capable in restricting large amounts of care
bits.

Each vector position 1 ≤ i ≤ t is considered separately. The
weight of a restrict vector with respect to a vector position i

is defined as the overall weight of their compatible vectors in
Vi:

wi(vr) =
∑
v∈Vi

w(v)[vr ∼ v]

The more care bits a certain restrict vector can cover at position
i, the higher is the weight. The restrict vectors with higher
weight should have priority over restrict vectors with lower
weight because it is more likely, that they are able to cover
more care bits in longer runs. Thus, each vector v ∈ Vi is
associated with the compatible restrict vector vr of highest
weight wi(vr). This single restrict vector associated with v is
noted as r(v).

Each pattern now has t restrict vectors associated with it;
one at each vector position. The benefit gained by putting
two patterns pm, pn in the pattern set adjacent to each other
depends on the following factors:

• The number of vector positions for which these two
patterns share the same restrict vector (r(pn(i)) =
r(pm(i))).

• The amount of care bits covered by these common restrict
vectors.

Based on these factors, the similarity of a pair of patterns
pm, pn ∈ P is defined as:

s(pm, pn) =
t∑

i=1

(|pm(i)|+ |pn(i)|) · y(pm(i), pn(i)) with
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y(vj , vk) =


2 if |vj | · |vk| > 0 and r(vj) = r(vk),
1 if |vj | · |vk| = 0,

−1 otherwise.

The first term weights the outcome of y by the number of care
bits at each position. y is positive only if the two vectors are
compatible. It evaluates to 2, if both vectors have care bits and
are associated with the same restrict vector.

For a given pattern set P and with the metric defined above,
a similarity graph S(P, s) is constructed. This graph is edge
weighted, undirected, and complete. Each node represents a
pattern and the edges between the patterns are weighted with
the similarity of the two adjacent nodes. Figure 5 shows
the graph S for ordering the patterns in fig. 4. For sake of
simplicity, each vector has exactly one care bit and the vectors
v11 through v44 unrestricted in fig. 4 have all different restrict
vectors associated with them. The similarity between p1 and
p2 is s(p1, p2) = −2 − 2 + 4 + 4 = 4 since the first two
vector positions have different restrict values and the latter two
positions have matching restrict values. The patterns p1 and p4

have lower similarity s(p1, p2) = −2−2+4−2 = −2 because
only one vector position show matching restrict values.

Fig. 5. A similarity graph.

The patterns are ordered by finding a maximum weight path
in S such that every node is visited only once. It can be
easily verified, that all maximum weight paths in figure 5
(p1, p2, p3, p4), (p1, p2, p4, p3), (p3, p4, p2, p1), (p4, p3, p2, p1)
preserve the restricts shown in figure 4, while other paths
like (p1, p3, p2, p4) result in less care bits to be covered by
restricts.

The graph traversal described above is an instance of the
travelling salesman problem, so the best solution cannot be
found in polynomial time. The following greedy heuristic
however, provides sufficient results. For the starting point of
this path we use a special pattern p0. This pattern has by
definition no care bits and no compatible restrict vectors.

1) Let L = (p0) be a pattern list and p = p0.
2) Find a p′ ∈ P with s(p, p′) maximum. Let p = p′,

P = P − {p} and append p to list L.
3) Unless P = ∅, goto step 2
4) Return L.

Now, a set Rc of restrict candidates is generated based on
the ordering. From now on, we consider P to be the sorted
pattern list L. A restrict candidate r = (s, e, i, vr) ∈ Rc is a
four tuple consisting of a starting index s, an ending index e,
a vector position i and the restrict vector vr. The following
procedure scans through the list of vectors at a certain position
1 ≤ i ≤ t and generates restrict candidates in a greedy manner.
The candidates are determined by successively computing the
intersections of the sets of restrict values compatible to the
considered vectors.

1) Let starting index s = 1.
2) Let ending index e = s.
3) Let T contain all the restrict values compatible with the

ith vector in the sth pattern:
T = {vr ∈ RVc|ps(i) ∼ vr}.

4) Intersect T with the restrict values compatible with the
ith vector of the next pattern:
T ′ = T ∩ {vr ∈ RVc|pe+1(i) ∼ vr}

5) If T ′ 6= ∅ then T = T ′, e = e + 1 and goto step 4.
6) Now, T holds the last non–empty intersection. Add the

restrict (s, e, i, vr ∈ T ) to Rc.
7) Set s = e + 1 and if s < |P |, goto step 3.
8) Return Rc.

The cost of a restrict is constant. Let c be the number of bits to
be stored for one restrict and l the encoding efficiency of the
LFSR. Only those restricts from Rc are selected that provide
a gain in test data storage: R = {r ∈ Rc|c · l < |r|} with |r|
being the number of care bits covered by the restrict r.

This final set of restricts R addresses only a subset of the
restrict vector candidates RVc. This subset is now the final set
of restrict vectors RV ⊆ RVc which has to be stored in the
dictionary. The size of this dictionary is

dcost = |RV | · k,

and the status register, which has to store the t addresses has
the size of

scost = dlog2(|RV |+ 1)e · t.

The overall gain is then estimated as the sum over the gains
of the restricts minus the costs mentioned above:∑

r∈R

(|r| − c · l)− dcost− scost

V. TEST PROGRAM ENCODING AND DECOMPRESSION

The compressed test data consists of a sequence of actions. An
action is either an update for the status register (fig. 3) or a
reseeding of the LFSR. Each action needs to be performed at a
certain shift cycle. For an update of the restrict information in
the status register, this shift cycle is determined by the pattern
indices and the vector positions of the associated restrict in
R. For an LFSR seed update, this shift cycle is determined by
the runlengths of the previous seeds.
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design k t q care bits
p35k 23 127 8506 1213293
p45k 97 333 8791 210789
p77k 13 305 5883 199670
p81k 8 504 30706 1534646
p89k 18 963 13514 541166
p100k 18 792 3437 72541
p141k 24 486 10984 483332
p239k 40 541 6034 156695
p259k 40 541 8482 216530
p267k 45 494 14123 594530
p269k 45 494 14615 603409
p279k 55 416 17575 561088
p286k 55 416 25645 794879
p330k 64 317 17322 863544
p388k 50 546 14109 454866
p418k 64 831 33704 1016554
p483k 71 900 22168 441510

TABLE I

SCAN CHAIN CONFIGURATION AND PATTERN SET CHARACTERISTICS

Each action corresponds to a command in a test program. Each
command consists of two parts: The action to be performed
and the number of shift cycles to the next command, called
delay. The delay determines the control flow and a simple state
machine can be used for performing the actions by executing
the test program.

For example, the command that sets restrict 3 in figure 4 is
issued in the 5th shift clock cycle. In this cycle, the modulo t

counter that addresses the status register is 0 and the command
updates the ROM–address for the first vector position to va.
The delay part of this command is 7, since this is the number
of shift cycles to the next update (release of restrict 2 in pattern
p3, vector position 4).

VI. EXPERIMENTAL RESULTS

Experiments were performed on industrial designs provided
by NXP.

restricts reseeding total
design %cb #restr. #comm. tpcost dcost scost ceff. %cb cost ceff. ceff.
p35k 72 9283 16226 326922 10649 1778 2.60 28 466186 0.70 1.51
p45k 68 1354 2438 48199 2231 3663 2.66 32 76270 0.88 1.62
p77k 74 1225 2269 42231 91 3355 3.27 26 58176 0.86 1.92
p81k 79 17505 32957 579811 64 7560 2.08 21 349635 0.88 1.64
p89k 68 3699 6952 143166 108 11556 2.39 32 197100 0.86 1.54

p100k 58 442 803 16564 108 7128 1.78 42 34220 0.88 1.25
p141k 71 3441 6325 127596 312 5832 2.60 29 154944 0.87 1.67
p239k 46 1218 2290 42567 280 5951 1.50 54 94464 0.88 1.09
p259k 50 1726 3223 59952 320 5951 1.65 50 122400 0.87 1.15
p267k 73 5177 9394 189782 405 6422 2.22 27 187775 0.84 1.55
p269k 74 5612 10127 188978 360 6422 2.31 26 182700 0.83 1.59
p279k 66 4839 8803 168990 825 5408 2.14 34 211104 0.87 1.45
p286k 69 6268 11338 224069 990 5408 2.38 31 280080 0.87 1.56
p330k 71 9802 18391 333448 704 4438 1.84 29 273416 0.88 1.41
p388k 62 2984 5495 110828 450 6552 2.43 38 195696 0.86 1.45
p418k 75 5990 10969 226362 512 10803 3.24 25 280430 0.88 1.96
p483k 68 2347 3899 81103 426 10800 3.27 32 165590 0.84 1.71

TABLE II

RESTRICT ENCODING RESULTS

Table I shows the characteristics of the designs and their
pattern sets. The name of the design itself corresponds to the
number of logic gates of the circuit. Column k shows the
number of scan chains in the design, the maximum length
of a chain is denoted in column t. Deterministic patterns are
generated for random pattern resistant faults by a commercial
ATPG. The compaction effort of the ATPG was set to low
to provide enough space for random fill in this mixed-mode
BIST scheme. The number of patterns is shown in column q

followed by the total number of care bits in the pattern set.

The pattern sets are now encoded with the proposed approach.
The results are shown in table II.

The first part of the table deals with the restricts only. The
first column shows the percentage of care bits covered by
dictionary vectors. Then, the total number of restricts are given
followed by the total number of commands used for these
restricts. Column tpcost shows the amount of storage spend
on these commands in bits. Column dcost shows the size of
the dictionary in bits. The size of the dictionary is very small
compared to the size of the test program. The next column
scost reports the size of status register in bits. The coding
efficiency for the care bits covered by restricts is given in
column ceff.. All three costs are considered while computing
the encoding efficiencies. Over half of the care bits in the
test set can be encoded with efficiencies of 1.5 up to 3.27.
These efficiencies are higher than any efficiency achievable
by a linear decompressor.

The second part of the table shows the results for encoding
the remaining care bits with reseeding. For reseeding, a 128bit
LFSR was used in combination with a randomly generated
phase shifter. Here the column cost shows the amount of seed
information stored to encode the unrestricted care bits. This
seed information is comprised of the seed bits themselves and
the additional delay information in each seeding command.
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Method Average Efficiency Maximum Efficiency
Continuous reseeding 0.47 [18] ≤1.00 [20]
Programmable D-BIST 0.80 [19] 1.19 [19]
Proposed Scheme 1.53 1.96

TABLE III

COMPARISON TO PREVIOUS METHODS

As expected, coding efficiency for reseeding alone is below
1. But less than half of all care bits in the test set need to be
encoded in this way.

The overall coding efficiency remains greater than 1 in all
cases, as shown in the very last column.

Table III compares the average coding efficiencies of continu-
ous reseeding[18], programmable deterministic BIST [19] and
the proposed mixed-mode BIST scheme. As these experiments
were dealing with different sets of industrial circuits only
average values can be reported here. Depending on the phase
shifter configuration, the efficiency of continuous reseeding
[18] can be higher than 0.47, but it can never exceed 1.0
[20]. In [19] efficiencies up to 1.19 were shown, and for the
proposed scheme we observe an improvement by a factor of
two compared to previous approaches.

VII. CONCLUSIONS

A new synthesis technique for a mixed–mode BIST scheme
was presented which is able to exploit the regularities of a
deterministic test pattern set for minimizing the hardware over-
head and memory requirements. The scheme saves more than
50% hardware costs compared with the best schemes known
so far while complete programmability is still preserved.
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