Test Exploration and Validation
Using Transaction Level Models

Michael A. Kochte, Christian G. Zoellin,
Michael E. Imhof, Rauf Salimi Khaligh,
Martin Radetzki, Hans-Joachim Wunderlich
University of Stuttgart

Institute of Computer Architecture and Computer Engineering

Pfaffenwaldring 47, 70569 Stuttgart, Germany

Abstract—The complexity of the test infrastructure and test
strategies in systems-on-chip approaches the complexity of the
functional design space. This paper presents test design space
exploration and validation of test strategies and schedules using
transaction level models (TLMs). Since many aspects of testing
involve the transfer of a significant amount of test stimuli and
responses, the communication-centric view of TLMs suits this
purpose exceptionally well.

Index Terms—Test of systems-on-chip, design-for-test, transac-
tion level modeling

I. INTRODUCTION

Test, yield and reliability are of great importance to the
profitability, safety and security of current SoCs [1]. This
has increased the significance of test infrastructure and other
infrastructure not directly related to system functionality [2].
Similar to the functional design task, test, diagnosis and repair
strategies for SoCs are very complex topics, requiring design
space exploration and design verification [3].

In functional design, transaction level models (TLMs) are
used to facilitate simulation-driven design space exploration
and design verification [4]. The modularity and separation of
communication and functionality in TLMs allow to quickly
explore different implementation alternatives. Also, TLMs
provide significant improvements in simulation performance
by orders of magnitude. Still, they provide enough detail to
make important design decisions regarding performance, die
area and power [5, 6].

Even when the IP vendor provides the core’s test strategy
using IEEE Std 1500, there are numerous decisions to be
made by the test engineer. For example, the choice among
a large number of test data compression [7] and test access
mechanisms (TAMs) [8]. Then, test scheduling tries to op-
timize the concurrency of tests, but the complexity of the
scheduling problem requires that only very coarse information
is taken into account. In order to gain accurate information
regarding power and TAM utilization, the final schedule should
be evaluated using simulation [9]. Furthermore, the final test
program to be executed by the Automated Test Equipment
(ATE) is a complex piece of software. Today, validation of
the test program is facilitated by Virtual ATEs that can be
simulated together with the RTL or gate level netlist of the
SoC [10]. A complete test program usually requires several
hundred million clock cycles which makes simulation of the
whole test computationally expensive.

978-3-9810801-5-5/DATE09 © 2009 EDAA

Stefano Di Carlo, Paolo Prinetto

Politecnico di Torino
Dipartimento di Automatica e Informatica
Corso Duca degli Abruzzi 24
1-10129 Torino TO, Italy

The communication-centric view of TLMs provides an
abstraction that is well-suited to test, since test involves
the exchange of significant amounts of data. Furthermore,
performance modeling in TLMs tries to accurately capture the
concurrency in a system, which is easily adapted to model the
concurrency in testing. Initial work in this direction shows
the relationship of design verification, design validation and
test for TLMs [11]. For debug, the authors of [12] introduce
debug transactions to deal with issues of concurrency during
functional tracing and monitoring. The subsequent sections
show how to model system test at the transaction level in
order to facilitate test design space exploration, as well as the
validation of test strategies and schedules.

The rest of the paper is organized as follows: Section 2
shows how Design-for-Test (DfT) properties can be modeled
at high abstraction levels. Section 3 gives examples how TLMs
of the most important test building blocks like test wrappers,
TAMs, pattern generators and test controllers are implemented.
In section 4, we show the benefits of test infrastructure TLMs
using a case study with a JPEG encoder SoC.

II. TEST MODELING AT TRANSACTION LEVEL

Transaction level modeling [4] enables system level de-
sign and simulation of large hardware/software systems, for
which RTL simulation would require an unacceptable amount
of time. This is achieved by abstracting from signal level
communication and by modeling complex communication
operations as atomic transactions, thereby reducing the num-
ber of events to be processed by event-driven simulators as
well as the number of context switches between simulation
processes. Transactions are implemented as object-oriented
methods (subprograms) that allow to modify the state of
channels, which in turn represent the system’s communication
infrastructure [13].

In TLM, the functionality of system components is de-
scribed separately from the communication-centric view of the
system. This enables the user to change system components
and communication models, to modify their interconnection
patterns, and to change the mapping of application tasks to
system components without much effort. Thereby, a quick
exploration of system alternatives is supported. After iden-
tifying a suitable (optimized) system architecture, the initial
TLM can be refined by adding details about functions and
communications, leading to models more precise in terms of

POST Manufacturing
Test

Debug / .

Design
Requirements

View

BIST Det. Logic Test

Functional

TLM

Test
Strategies

Functional
Memow e

Test Pattern
Wrapper Source

View

TAM

Decompressor/
Compactor

Test

Controller ATE EBI

Architectural

DfT
Infrastructure

Fig. 1.

behavior and timing, and ultimately to a cycle-accurate model
that closely resembles an implementation [14].

SystemC provides the primitives required for TLM and
supports the user with a standard library (TLM2.0) of inter-
faces and basic blocks for modeling bus-based SoC platforms.
In this work, we aim at transferring TLM principles to the
field of test infrastructure and architecture. Respective models
are implemented based on the SystemC TLM primitives. The
TLM2.0 library, however, has not been employed since TAMs
require modeling of properties that go beyond those of SoC
buses.

Current designs have several non-functional requirements
such as high testability, design for manufacturing (DfM), built-
in repair, debug and diagnosis, power-on self-test (POST),
power-on-reset and -initialization (Figure 1). These properties
require a significant amount of infrastructure to be integrated
together with the mission logic. In system TLMs, this in-
frastructure is currently not reflected. In this work, we focus
on transaction level modeling of the infrastructure and test
strategies for manufacturing test.

The manufacturing test usually consists of several different
tests according to the type of cores, test time, power budget,
etc. Each core of a design has specific requirements for testing
[15]. Cores with random logic may be tested using determinis-
tic or random patterns applied through a large number of scan
paths. This is often complemented with functional and in-the
loop tests. Memory arrays are usually tested using highly tuned
march tests that may be driven by a built-in self-test (BIST)
controller or a processor.

These test functionalities are then mapped to a variety
of structural building blocks, such as TAMs, test wrappers,
pattern generators, external bus interfaces to the tester (EBI),
decompressors, compactors, test controllers and the ATE. At
this level, the architecture of the target system is defined to-
gether with the hardware/software partitioning of the function.
For the test domain, the software part consists of the test
program executed on the ATE, software modules executed
on functional units like embedded processor cores, and the
microcode to program the test controllers.

III. TLMS FOR TEST INFRASTRUCTURE

Below we detail how test infrastructure building blocks can
be modeled at transaction level.

Design-for-test modeling and refinement

A. Test Access Mechanism

The purpose of the TAM is the transfer of test data, i.e.
input stimuli and output responses from a source to the core
under test and from the core to a sink. The spectrum of
different TAMs ranges from serial boundary scan chains to
reuse of buses and NoCs. In a single SoC, multiple TAMs can
be integrated, while each TAM may connect to multiple test
wrappers.

At transaction level, the TAM is modeled as a communica-
tion channel. Functional aspects such as bandwidth, latency,
addressing and arbitration schemes of the TAM need to be
reflected in the model.

The TLM interface of a TAM is defined by the two methods
write and read for data transfer. Moreover, since in some
architectures a single access may combine a write and read
operation, for example TAM slaves that contain scan chains
where data is concurrently shifted in and out, an additional
write_read method is included in the interface.

The class diagram in Figure 2 depicts the relation between
the TAM interface (TAM_IF), derived from the generic Sys-
temC interface, and the classes modeling test infrastructure.
The TAM interface is implemented by the actual TAM channel
as well as by the infrastructure blocks that are accessed via
the TAM. The TAM is connected to these blocks using the
SystemC bind mechanism.

sc_interface I

AF 1 Pattern source |<>—| Port |— —
TAM_IF Decompressor/ Port _
Compactor
read(addr, data)
write(addr, data)
write_read(addr, data) Test wrapper <>—| Port |— -
CTOR(scan config)

TAM_channel]
implements TAM_IF q— Inherits

T =

|
| <>— Contains
|

Implements

Fig. 2. UML class diagram of test infrastructure entities at transaction level

B. Test Wrapper

A test wrapper is a thin shell placed around a core that
allows to access and operate the core either in functional
mode or in a test mode. For interoperability and reuse, IEEE
Std 1500 specifies the interface of a wrapper and several
mandatory operation modes, e.g2. modes for the test of internal
logic or of external interconnects.

Figure 3 shows the TLM architecture of a typical test wrap-
per. The wrapper contains a wrapper instruction register (WIR)
which can be written using a dedicated configuration scan bus.
According to the configured mode in the WIR, transactions are
directly forwarded to the core when in functional/bypass mode
or interpreted as test data when in one of the test modes.

Test Wrapper

Core

===

Configuration Scan Bus

Wrapper Control
211
it

i

TAM

Port

Channel

e

<

Fig. 3.

=

Transaction level model of a test wrapper

The model of the core to be wrapped can be either a
merely functional TLM, a refined approximately timed model,
a model at register transfer level (RTL) or even at gate level.
Given the Core Test Language (CTL, IEEE Std 1450.6) de-
scription of the interface of the core, comprised of functional,
system and test in- and outputs, a test wrapper TLM can be
generated automatically.

C. Pattern Source

A pattern source TLM supplies test data to a sink via the
TAM. For Logic BIST, pseudo-random patterns are generated
by a linear-feedback shift register. In a deterministic BIST
scheme, highly compressed pre-computed patterns may be
supplied. For external test the pattern source is an external
bus interface (EBI) that translates the ATE protocol to the
TAM protocol. Hence, the EBI is implemented as an interface
adaptor in the TLM.

D. Decompressor/Compactor

Sophisticated test data compression schemes can compress
test stimuli by up to 1000x and compaction may reduce the
test responses down to a signature word. The decompressor
TLM translates transactions from the TAM into transactions
for a core wrapper, thereby expanding compressed test data.
Correspondingly, a compactor TLM translates a number of
transactions from a core wrapper into transactions for the TAM
compacting test responses. Like the EBI, the decompressor/-
compactor TLM is an interface adaptor, which allows for plug
& play deployment of decompressors and compactors. The
decompressor/compactor TLM is configurable via a configu-
ration scan bus and supports a bypass mode similar to the test

wrapper. It can model static as well as variable compression
ratios.

E. Test Controller / Automated Test Equipment

The on-chip test controller and the ATE implement the
aspects of the high level test protocol, flow and strategy. The
test controller implements the BIST control functions required
for the test. The ATE configures the test infrastructure, initiates
individual tests, supplies test stimuli, evaluates test responses
and executes repair actions if necessary. The ATE communi-
cates directly with the test controller in the SoC model and
interfaces to the TAM via the EBI.

During design exploration, the ATE and the executed test
program are modeled by their functional behavior, i.e. by
their interaction with the test controller and EBI. But for
verification purposes, Virtual ATE software can be interfaced
to the test controller and EBI to simulate the actual test
program instructions [10].

IV. EVALUATION

The proposed modeling of test infrastructure and its appli-
cation in test exploration is demonstrated on an approximately
timed TLM of a bus-based JPEG encoder SoC. The SoC
contains an embedded processor core, a memory core and two
dedicated cores for color conversion and the DCT operation.

Figure 4 shows the TLM of the SoC including the test
infrastructure (in gray), i.e. the test wrappers around the func-
tional cores, the test controller, the decompressors/compactors
etc. The model is implemented using SystemC 2.2.

In this example, the system bus is reused as TAM. The
simulation environment also includes an ATE model which
initiates and controls the overall test flow. The test controller
uses the configuration scan ring to configure the EBI, the test
wrappers and the decompressors.

ATE
(] (]
o Memon Color
y Conversion
iHigill I I
1) [ti] 1] !

System Bus / TAM

m m —
| [1
< Configuration Scan Bus e
fra il
til
Decompressor/
Compactor
1]
|
Il Il
DCT Processor

Fig. 4. Transaction level model of the JPEG encoder SoC including test
infrastructure (in gray)

The test of the SoC is implemented by several of the
following test sequences:
1) BIST of the full-scan processor core with 32 scan chains
using 100,000 pseudo-random patterns.

2) Deterministic logic test of the processor core using
20,000 patterns stored in the ATE.

3) Deterministic logic test of the processor core using
compressed test data with a compression ratio of 50X.

4) BIST of the color conversion core using 10,000 pseudo-
random patterns.

5) Deterministic logic test of the full-scan DCT core with
8 scan chains using 10,000 patterns stored in the ATE.

6) Test controller driven Array BIST of the embedded
memory core (1 MByte) using a MATS+ march and
pattern tests.

7) The processor drives the same array tests of the embed-
ded memory core as in test 6 using a program stored in
L1 cache.

The test of the system bus will not be considered in this
evaluation. It can be implemented as a functional test and
modeled at transaction level as proposed in [11].

Given the seven test sequences, we target four different test
schedules to investigate the test time and TAM utilization:

1) Sequential execution of the core tests 1, 2, 4, 5 and 7.

2) Sequential execution of the core tests 1, 3, 4, 5 and 6.

3) Concurrent execution of core tests 1 and 5, followed by
concurrent execution of tests 2, 4 and finally, execution
of memory test 7.

4) Concurrent execution of core tests 1 and 5, followed by
concurrent execution of tests 3, 4 and 6.

The simulations have been performed on a 2.4 GHz work-
station. Table I gives the peak and average TAM utilization,
test length and required CPU time in seconds for the simulated
test scenarios.

Test Peak TAM | Avg. TAM Test length CPU
scenario utilization utilization (108 cycles) | runtime (sec)
1 67% 45% 281 418
2 67% 58% 184 271
3 80% 47% 263 390
4 100% 64% 167 261

TABLE I

SIMULATION RESULTS FOR DIFFERENT TEST SCENARIOS

The results of the sequential scenarios show an increased
test time for schedule 1 due to limiting throughput of the ATE
channel when using uncompressed patterns and the slower
memory test driven by the processor. Scenario 3 and 4 exploit
concurrent test execution to reduce test time. This leads to
higher peak and average TAM utilization, even reaching 100%
at some points.

The complete scenarios require simulation of up to about
300 million clock cycles, which is not feasible at gate or
RT level. For comparison, the simulation of 300 million
cycles of the RTL model of the processor core alone already
exceeds two days of CPU time. Simulation at gate level
increases simulation time by another order of magnitude. The
simulation at transaction level requires less than seven minutes
of CPU time for simulation of the whole system including
the test infrastructure and allows to quickly explore the test
design space by evaluation of different test strategies, test
infrastructure blocks and test schedules.

V. CONCLUSIONS

The proposed modeling of test infrastructure at transaction
level allows fast exploration of the test design space and
validation of test strategies.

For the relevant test infrastructures such as TAMs, test
wrappers, pattern generators or decompressors, models at
transaction level have been described. Based on the TLM of an
exemplary SoC, the simulation of test infrastructure, different
test strategies as well as test schedules has been demonstrated.
The simulation is multiple orders of magnitude faster than RTL
or gate level simulation and thus allows evaluation of complete
test schedules.

ACKNOWLEDGMENT

This work has been supported by the German Research
Foundation (DFG) under grants Wu245/3-3 and Wu245/5-1
and by a Vigoni grant of the German Academic Exchange
Service (DAAD).

REFERENCES

[1] J. A. Carballo and S. R. Nassif, “Impact of design-manufacturing
interface on SoC design methodologies,” IEEE Design & Test of
Computers, vol. 21, no. 3, pp. 183-191, 2004.

[2] Y. Zorian, “What is infrastructure IP?” Design & Test of Comp., IEEE,
vol. 19, no. 3, pp. 3-5, 2002.

[3] E. FE Cota, L. Carro et al., “Test planning and design space exploration
in a core-based environment,” in Proc. Design, Automation and Test in
Europe (DATE), 2002, pp. 478-485.

[4] F. Ghenassia, Ed., Transaction-Level Modeling with SystemC - TLM
Concepts and Applications for Embedded Systems. Springer, 2005.

[5] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable
performance estimation at the transaction level,” in Proc. Design,
Automation and Test in Europe (DATE), 2008, pp. 3-8.

[6] M. Cheema and O. Hammami, “Introducing Energy and Area
Estimation in HW/SW Design Flow Based on Transaction Level
Modeling,” in Proc. International Conference on Microelectronics
(ICM), 2006, pp. 182-185.

[71 N. A. Touba, “Survey of test vector compression techniques,” IEEE
Design & Test of Comp., vol. 23, no. 4, pp. 294-303, 2006.

[8] A. Larsson, E. Larsson et al., “Optimization of a bus-based test data
transportation mechanism in system-on-chip,” in Proc. 8th Euromicro
Symposium on Digital Systems Design (DSD), 2005, pp. 403—411.

[9] S. Samii, M. Selkala et al., “Cycle-accurate test power modeling and
its application to SoC test architecture design and scheduling,” IEEE
Trans. on CAD of Integrated Circuits and Systems, vol. 27, no. 5, pp.
973-977, May 2008.

[10] G. Krampl, M. Rona, and H. Tauber, “Test setup simulation - a
high-performance VHDL-based virtual test solution meeting industrial
requirements,” in Proc. IEEE International Test Conference (ITC),
2002, pp. 870-878.

[11] H. Alemzadeh, S. D. Carlo et al,, “Plug & Test at system level via
testable TLM primitives,” in Proc. IEEE International Test Conference
(ITC), 2008.

[12] K. Goossens, B. Vermeulen et al., “Transaction-based communication-
centric debug,” in Proc. Int. Symp. on Network-on-Chips (NOCS),
2007, pp. 95-106.

[13] M. Radetzki, “Object-oriented transaction level modelling,” in Advances
in Design and Specification Languages for Embedded Systems, S. Huss,
Ed. Springer, 2007.

[14] A. Donlin, “Transaction level modeling: flows and use models,” in
Proc. International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2004, pp. 75-80.

[15] L. Wang, C. Stroud, and N. Touba, System-on-Chip Test Architectures:
Nanometer Design for Testability. Morgan Kaufmann, 2007.

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

