
Programmable Deterministic Built-in Self-test

Abdul-Wahid Hakmi, Hans-Joachim Wunderlich,
Christian G. Zoellin

Institut für Technische Informatik
Universitaet Stuttgart

Pfaffenwaldring 47, D-70569 Stuttgart, Germany

Andreas Glowatz, Friedrich Hapke,
Juergen Schloeffel, Laurent Souef

NXP Semiconductors
Georg-Heyken-Str. 1, D-21147 Hamburg, Germany

Abstract— In this paper, we propose a new programmable de-
terministic Built-In Self-Test (BIST) method that requires sig-
nificantly lower storage for deterministic patterns than existing
programmable methods and provides high flexibility for test en-
gineering in both internal and external test.

Theoretical analysis suggests that significantly more care bits
can be encoded in the seed of a Linear Feedback Shift Register
(LFSR), if a limited number of conflicting equations is ignored
in the employed linear equation system. The ignored care bits
are separately embedded into the LFSR pattern. In contrast to
known deterministic BIST schemes based on test set embedding,
the embedding logic function is not hardwired. Instead, this in-
formation is stored in memory using a special compression and
decompression method. Experiments for benchmark circuits and
industrial designs demonstrate that the approach has consider-
ably higher overall coding efficiency than the existing methods.

Index Terms— Deterministic BIST, Test data compression

I. INTRODUCTION

Mixed mode BIST schemes use pseudo-random patterns to

detect most faults while random pattern resistant faults are

specifically targeted by deterministic patterns [1], [2], [3], [4].

The pseudo-random patterns may be generated by running

linear feedback shift registers (LFSRs) in autonomous mode.

For generating deterministic patterns two approaches are most

widespread. Either deterministic patterns are encoded as the

seeds of an LFSR [5] or the deterministic patterns are embed-

ded into a pseudo-random sequence using bit-flipping [6], [7]

or bit-fixing [8] logic.

The main advantage of reseeding is its programmability as

the seeds are stored in a RAM. Many variants have been pro-

posed [9], [10], [11], [12], [13], [14], [15], [16], which try

to reduce the LFSR length and storage requirements but the

amount of required storage remains significant.

For test set embedding, a combinational logic changes a

pseudo-random sequence such that deterministic patterns are

embedded. For this, less test information is required compared

to reseeding [6] and the combinational logic can be synthe-

sized as a multilevel circuit [7]. But in contrast to LFSR re-

seeding, a change in the test set requires significant hardware

changes because a different combinational logic has to be syn-

thesized. In addition, the embedding functions are often rather

irregular and may require significant hardware overhead.

The goal of the method presented here is to combine the

advantages of programmable reseeding and hardware efficient

test set embedding. An LFSR is reseeded, but unlike conven-

tional reseeding a small number of inconsistent specified bits

are ignored during seed computation, which in turn increases

encoding efficiency. The ignored bits are then embedded into

the LFSR pattern and the corresponding information is stored

in compressed form so that programmability is retained. Be-

sides memory and the standard BIST hardware, the only addi-

tional on-chip circuitry is a simple decoder, which is not test

set dependent. Seeds and embedding information may also be

stored in the automatic test equipment or a dedicated chip [17]

to implement external BIST.

The organization of the paper is as follows: In section 2 the

coding efficiency of the presented method is analytically esti-

mated and compared to existing methods. Section 3 gives an

overview of the targeted BIST scheme, and the seed compu-

tation procedure is explained in section 4. Section 5 describes

the compression and decompression hardware for the embed-

ding information. Finally, experimental results are presented

in section 6.

II. NEARLY COMPLETE RESEEDING

WITH FULL FAULT COVERAGE

The seed for a deterministic pattern is computed by solving

a system of linear equations, where each variable represents
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a bit of the LFSR seed and each equation corresponds to one

specified bit in the pattern. Some equations may cause the

linear equation system to become inconsistent, which prevents

certain patterns from being encoded. If the equation system has

a solution, the solution determines the seed.

Figure 1 shows a small example of the STUMPS scheme

[1], where an 8-bit LFSR feeds 8 scan chains. Here a test

vector consists of 8 bits shifted into the scan chains within

a single clock cycle, and a test pattern is formed by three

vectors.
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Fig. 1. STUMPS scheme

In order to compute a seed for a deterministic pattern P1,

we represent each bit of P1 by an equation in terms of the seed

variables a0, a1, . . . , a7 as shown in figure 2(a). The system

of equations may become linearly dependent and not solvable

any more, pattern P2 in figure 2(b) is an example of this. If a

phase shifter is inserted, the system of equations may become

more complex, but the principle will not change. In [5], it was

shown that the probability of an unsolvable equation system

for an arbitrary pattern can be reduced to 10−6 if the length of

the LFSR is smax + 20 where smax is the maximum number

of specified bits. If the equations a3 = 0 and a1 + a2 = 1 in

the equation system of P2 are ignored, the system becomes

consistent and a seed can be computed.

In the sequel, we use the probabilistic model developed in

[8], [9] in order to estimate the impact of ignoring a certain

number of equations. There, the probability of having a consis-

tent linear equation system for s specified bits and an LFSR
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Fig. 2. Example of seed computation

of length k is given as Pseed(k, s). These values are deter-

mined recursively, and also listed in a table. The probability

of encountering an inconsistent equation system is:

Pnoseed(k, s) = 1− Pseed(k, s)

For a given b, any combination of b out of s equations is a

candidate to be ignored. Let Pnoseed(k, s, b) be the probability,

that we cannot find b equations such that we are able to encode

the remaining s− b bits. The number of all combinations of b

bits is s!
b!(s−b)! , and the probability that all the resulting systems

of equations are not solvable is

Pnoseed(k, s, b) = (Pnoseed(k, s− b))
s!

b!(s−b)!

Figure 3 shows the set of curves Pnoseed(k, s, b) as the func-

tion of s with parameters k = 128 and b = {0, 1, 2, 3}. Here,

Pnoseed(128, s, 0) represents the probability for the conven-

tional reseeding in [5]. Obviously, by ignoring a small number
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Fig. 3. Values of Pnoseed(k, s, b) for k = 128

of equations, a seed can be computed for a significantly larger

number of specified bits compared to conventional reseeding.

The largest gain is achieved by ignoring a single equation and

the coding efficiency increases almost linearly if further equa-

tions are ignored.

In the example of Figure 3, we are able to save approxi-

mately 20 bits of a seed compared with conventional reseed-

ing if we are allowed to ignore one equation. However, the

ignored bits have to be encoded by their position in the scan

chain. Hence, a rough estimation of the savings in this case is

20− log(n), where n is the pattern length.

In practice, additional savings are obtained for two reasons:

• For the ignored equations, the corresponding value in the

pattern generated by the LFSR will assume the opposite

value. In some cases, this pattern still detects the target

fault, an effect that is exploited in test set compaction

[18], and the LFSR pattern may remain unchanged.

• For parallel scan chains, the embedding information can

even be shared between the scan chains, thereby further

increasing coding efficiency.

The next section presents the BIST scheme implementing

nearly complete reseeding with corrections. The technique

may also be combined with multiple polynomial LFSR re-

seeding [9].

III. THE TARGET BIST SCHEME

During seed computation of nearly complete reseeding, one

or more bits of a specified vector may raise conflicts and will

be ignored. Addressing the ignored bits of a specified vector

individually may introduce significant overhead in hardware

and test time. Hence, we address a complete vector if any of

its bits causes a conflict during seed computation.

When decoding a computed seed, the LFSR will generate

the desired values at compatible bit positions and opposite val-

ues at conflicting bit positions. In order to retain the values

at compatible bit positions and to flip the opposite values, a

flip vector is assigned to each ignored vector. The seeds, the

ignored positions and the flip vectors are stored in memory. In

order to reduce the memory requirements, ignored positions

are encoded as the distance between two ignored positions,

and flip vectors are compressed using a special method de-

scribed below. A small decoder is then used to generate the

flip vectors. Figure 4 shows an overview of the target BIST

scheme.

Two main approaches to seed computation are popular in

current literature. Either a complete pattern is encoded in a sin-

gle seed [5], [9], [10], [11], [12], or continuous subsequences

of a single or multiple patterns are encoded in each seed [16].

For the latter approach, it was shown that storage requirements

are improved and shorter LFSRs can be employed [16]. Al-

though nearly complete reseeding can be employed with any

of the two reseeding techniques, the second approach has been

selected here, as multiple patterns can be encoded before the

number of ignored vectors exceeds a predefined limit. Fur-

thermore, control information for the start of the next seed

can be derived implicitly by starting the next seed just after

the last ignored position associated with a seed. This control
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Fig. 4. Overview of the target BIST scheme
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information had to be stored separately in [16].

IV. SEED COMPUTATION

Since a mixed-mode BIST is implemented, fault simulation

is performed for some pseudo-random patterns to identify ran-

dom testable faults. Deterministic patterns are generated for

the remaining faults and the resulting test set is compacted by

removing patterns which are contained in some other pattern.

For seed computation, a limit b is set that defines the number

of vectors that are allowed to be ignored for each seed. Since

continuous reseeding is used, blocks of a certain number of

patterns have to be created and encoded by seeds. The seeds

are decoded again into test patterns which do not contain un-

specified values ’X’ anymore. Fault simulation is performed

with these completely specified patterns, and not yet encoded

patterns are dropped if all of their target faults have been de-

tected.

Figure 5 shows the flow chart of seed computation. Seed

computation is done in an iterative manner. It starts with empty

sets of encoded and ignored vectors. A specified vector is

added to the set of encoded vectors, the linear equation sys-

tem is generated and it is established whether or not a solution

exists. If it does, the process continues with the next speci-

fied vector. Otherwise, the current vector is moved from the

encoded set to the ignored set first. The process of adding a

specified vector into the encoded or ignored set continues until

the number of ignored vectors exceeds the defined limit b.

When the addition of a certain specified vector makes the

linear equation system unsolvable, most times, the current vec-

tor is not the only choice to be ignored in order to make the

set solvable again. The ignored vector can be chosen from a

number of possible candidates and choosing another vector

instead of the most recent one, might result in fewer conflicts

later on. But as the best choice of ignored positions might

change with every new vector, the current vector is chosen as

the victim until the allowed limit is crossed. If n is the total

number of vectors considered so far, then as soon as the de-

fined limit b is exceeded, the ignored set contains b+1 vectors

and the encoded set contains n− b− 1 vectors. At this point,

a search is executed for a combination of b vectors such that

ignoring these b instead of b+1 vectors, causes the other n−b

vectors to be encodable. Linear equation solvers for boolean

linear equation systems can be efficiently implemented using

bit-parallelism and checking all possible equation systems for

all subsets of n− b vectors is feasible.

If a subset of vectors is found for which the system of lin-

ear equations is consistent, the sets of encoded and ignored

vectors are updated and the process continues. If no such sub-

set exists, the current vector is used to delimit the start of the

next seed, which means that b+1 vectors are actually ignored

for each seed instead of b vectors . The b + 1th ignored po-

sition is different from the first b ignored positions in that no

new vector is encoded after it, but a new seed is started. Us-

ing this technique, the test control is simplified and encoding

efficiency is improved as no additional run length has to be

 

Store seed, ignored  

vectors positions and  
compute flip vectors 

Set of encoded vectors = ø 

Set of ignored vectors  = ø  

 

#Ignored<= 

Allowed ? 

Add a specified vector into  
set of encoded vectors 

YES 

No 

No 

Search optimized  
ignored positions  

Success? 

YES 

Solvable? 

No 

Remove currently added vector 

from set of encoded vectors and 
add into set of ignored vectors  

YES 

Fig. 5. Seed Computation Flowchart

Paper 18.1 INTERNATIONAL TEST CONFERENCE 4



stored. Before starting the next iteration with empty sets of

encoded and ignored vectors, the flip vectors are derived from

the ignored vectors and are stored together with the seed and

ignored positions. By simulating the unchanged pattern (i.e.

without flip vectors applied) we can determine if this infor-

mation is required for fault detection. This fault simulation is

done only w.r.t. the target faults of the pattern and does not

add significant computational overhead.

a) Example: Suppose the 5 test patterns shown in figure

6 have to be encoded, which include the two patterns in the

example of figure 2, and we are allowed to ignore 2 specified

vectors per seed. The seed computation procedure starts by

adding the 1st vector of P1 (left most vector) to the encoded

set. The equations are generated and it is determined that this

equation system has a solution. Then, the 2nd vector is added

and equations for both vectors in the set are generated to ob-

serve solvability. The encoded set remains solvable until the

4th vector is added. As the limit is not yet exceeded this vec-

tor is moved to the set of ignored vectors. Then the 6th and

8th vectors are found to cause the equations to be unsolvable,

so they are moved to the ignored set, too. By ignoring the 8th

vector, the size of the ignored set becomes 3, which is greater

than allowed. Now it is attempted to optimize the selection

of ignored vectors so that instead of three vectors only two

vectors have to be ignored and the rest of the vectors become

solvable. For this we generate equations and check solvabil-

ity of all the possible 6 out of 8 vectors. We find that none

of these subsets are solvable, so the seed of the encoded set

1, 2, 3, 5, 7 is saved. In order to derive flip vectors for the ig-
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Fig. 6. Set of 5 Patterns

nored set, the location of the bits related to the conflicting

equations are determined and the flip vector is assigned ’0’

for matching bits, ’1’ for conflicting bits and ’X’ for the rest.

The remaining seven vectors are encoded by the second seed

using the same method. Figure 7 shows both seeds along with

their ignored positions and associated flip vectors.

V. COMPRESSION AND DECOMPRESSION

OF EMBEDDING INFORMATION

The embedding information contains flip positions and flip

vectors associated with them. The flip positions are efficiently

encoded by encoding the distances between two consecutive

flip positions instead of their absolute numbers. These dis-

tances are used during test to identify the ignored vectors and

start of the next seed.

For the flip vectors, it is exploited that most of the flip vec-

tors contain only few specified bits. A number of test data

compression and decompression techniques [19], [20], [21],

[22], [23], [24], [25] are available that can be used for flip

vectors, but all of these are optimized to compress and decom-

press complete patterns. For the relatively short flip vectors,

test time would be prolonged without achieving any significant

storage reduction with these methods. A special compression

and decompression method has been developed for flip vec-

tors which is similar to the STARBIST method [26] and offers

significant storage reduction.

A. Compression Algorithm

The main idea of the compression algorithm of flip vec-

tors is that a reference vector is computed with which the
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Fig. 7. Computed seeds and flip vectors
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flip vectors have a minimum number of conflicts. In most

cases, a large number of the flip vectors are fully compati-

ble, and the ignored position and flip vector is encoded as

a tuple (i, 0) where i is the address of the ignored vector

relative to the previous ignored. Otherwise, the encoding is

(i, 1, (p0, 0) . . . (pn−1, 0), (pn, 1)), where p0...pn are the posi-

tions in which the flip-vector differs from the reference vector.

The reference vector contains a ’1’ at a certain bit position,

if the flip vectors have more ’1’s than ’0’s, otherwise it con-

tains a ’0’. Figure 8 shows the compression of the flip vectors

computed in the previous example. Each flip vector is a col-

umn of a matrix, and we determine which of ’0’ or ’1’ has

the highest frequency in each row. This value is entered in

the reference vector RV. In the example, we find that the first

row has more ’0’s than ’1’s, so the first bit of the reference

vector RV is assigned a zero. The complete reference vector

is computed this way and is shown in the column next to the

flip vectors.

Figure 8 also illustrates the encoding of the ignored posi-

tions and the flip vectors. A comparison of the flip vectors

with the reference vector reveals that the first 4 flip vectors

are fully compatible, while the last two vectors have conflicts.

So, the first 4 flip vectors are encoded by storing a single

status bit ’0’ with the ignored positions. For the second last

vector, bit number 0 and bit number 7 have conflicts with the

reference vector. This vector is encoded as (3, 1, (0, 0), (7, 1))

which indicates that the reference vector can be used as the
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C1 = {(4, 0), (2, 0), (2, 0)}
C2 = {(2, 0), (3, 1, (0, 0), (7, 1)), (2, 1, (1, 1))}

Fig. 8. Example of flip vector compression

flip vector after modifying the bit 0 and 7. The status bit ’1’

in (7, 1) means that the reference vector is ready to be used

after this modification.

Using the proposed technique the test set of figure 6, con-

taining 5 patterns and 53 specified bits, can be encoded with

a total of 54 bits where 16 bits are required to store seeds, 12

bits to store ignored positions and 26 bits to store flip vectors.

The same patterns would have required 210 bits and 90 bits

in case of conventional [5] and variable pattern length [16]

reseeding techniques respectively.

B. Decompression Architecture

To decode the encoded flip vectors, we need the reference

vector, the information whether the flip vector of an ignored

position is compatible with the reference vector, and the con-

flicting positions. Figure 9 shows the architecture of the flip

vector generator. It contains a register to store the reference

vector (RV Register), a modify unit to generate incompatible

flip vectors and a multiplexer to select between the reference

and incompatible flip vector depending on the status bit of the

ignored position.

The basic idea for the Modify Unit is taken from the de-

compression architecture proposed in [17] and is adapted to

the new requirements. It creates flip vectors serially during

shifting by using the reference vector in the RV Register and

the encoded conflict positions in the Compressed Flip Vectors

RAM. On receiving the start signal, the Incompatible Flip Vec-
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tor Register (IFV Register) is reset to the reference vector and

the conflicting positions are read from the RAM and flipped

in the IFV Register until the comparator detects that the status

bit of a conflicting position is ’1’. The complete signal is set

to high at this point, indicating that the flip vector is ready

to be used. The number of clocks needed to produce a com-

plete incompatible vector is equal to the number of conflicts

between an incompatible flip vector and the reference vector.

Here it should be noted that the Modify Unit is completely

independent and it does not need to wait until the ignored po-

sition of an incompatible flip vector is met. It produces the

next incompatible flip vector in advance and waits for its use.

As ignored positions are randomly distributed and very few

flip vectors require modification the decompression does not

cause any noticeable speed degradation in general. Some cy-

cles could be wasted only in the case if there are two consec-

utive flip positions and both of them have incompatible flip

vectors, an extremely rare case. Moreover, the flip vector gen-

erator only depends on the number of scan chains in the circuit

and is independent of the test set or size of the circuit. For

example, the size of the flip vector generator is 1507 NAND

gates for any circuit with 64 scan chains.

VI. EXPERIMENTAL RESULTS

In order to validate the efficiency of the presented algorithm

and test architecture, experiments were performed on circuit

models from the ISCAS89 and ITC99 collections of bench-

mark circuits, as well as considerably larger industrial circuits

from NXP. The method itself was implemented in C++. The

results are compared to the variable pattern length per seed

technique known as continuous reseeding [16], which is the

most efficient single polynomial technique published so far

and is equivalent to evaluating the presented algorithm using

b = 0.

Table I shows the important properties of the employed cir-

cuits and lists the hardware overhead of the proposed scheme.

The first column contains the names of the circuits, which

have a leading s and b for the ISCAS and ITC benchmark

circuits and start with a leading p for the industrial circuits.

The next column reports the total number of primary inputs

and flip-flops in the circuit. The third column contains the

number of scan chains in each circuit. An arbitrary scan chain

configuration was used for benchmark circuits while the ex-

periments for the industrial circuits were conducted using the

provided configurations. The column labeled ’LFSR’ contains

the length of the LFSR. A phase shifter with two to three taps

for each scan chain was used in conjunction with each LFSR.

Finally, the number of two-input gates in each circuit is fol-

lowed by the hardware overhead for the proposed scheme in

gates. This includes the overhead caused by the flip vector

generator, the flipping logic and the memory access mecha-

nism to write and read data from RAM, assuming that all the

information is stored on chip using bit addressable memories.

From Table I, it is obvious that the hardware overhead as-

sociated with the proposed scheme is quite small compared to

the size of the circuit under Test. Especially for large circuits

this overhead can be considered insignificant.

Circuit # PIs # Scan LFSR Circuit HW Overhead # r.p.r. # Specified
Name + PPIs Chains # gates # gates Faults bits
s9234 247 4 32 6,045 507 913 5,762

s13207 700 10 32 8,741 647 1,109 3,465
s15850 611 9 32 10,308 648 780 5,932
s38417 1,664 20 32 24,079 948 3,141 22,816
s38584 1,464 18 32 22,092 838 706 3,592

b17 1,452 18 32 37,446 954 23,558 133,822
b22 767 12 32 33,569 842 6,639 106,206

p286k 18,351 55 128 332,726 1,960 56,252 436,003
p330k 18,010 64 128 312,666 2,163 68,736 518,161
p388k 25,005 50 128 433,331 1,860 31,455 222,707
p418k 30,430 64 128 382,633 2,083 71,630 359,260
p951k 91,994 82 64 816,072 2,472 55,987 407,361

Table I. Circuit statistics and properties
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Table I also shows the number of random pattern resistant

faults, which were determined by fault simulation of 10, 000

random patterns. A compacted test set with partially specified

patterns was generated for these faults. The total number of

specified bits in the compacted unencoded test set is given in

the last column of Table I.

First, an experiment was conducted evaluating the coding

efficiency as a function of the number of ignored vectors per

seed. The results of this experiment are reported in Table II

and the total storage requirements are given for b = 1, 2 and

3. Obviously, for the majority of the circuits the highest gain

is achieved by ignoring two vectors per seed. Consequently,

b = 2 was used as the limit in all other experiments.

Table III compares the storage requirements between the

presented nearly complete reseeding and the technique in [16].

The fault coverage was not sacrificed for both methods. After

the column containing the name of the circuits, the results for

each method are provided in two blocks, first for the com-

plete reseeding (b = 0) and then for the incomplete reseeding

with complete fault coverage and b = 2. Each block is di-

vided into two columns. The first of these columns lists the

storage requirements in terms of bits. For both methods, this

includes the amount of memory required to store seeds and

all the required control information. The second column for

each method reports the encoding efficiency computed as:

Enc. Eff. =
# specified bits in unencoded test set

# total bits in encoded test set

In the last column of Table III, the encoding efficiency of the

two methods is compared and the relative improvement for

the proposed method is given in percent.

For p951k, the presented algorithm achieved marginally bet-

ter results when using an LFSR of width 64. It is obvious that

an LFSR of 64 bit is not sufficient to encode all occurring vec-

Circuit b = 1 b = 2 b = 3

Name Bits Bits Bits
s9234 7,918 7,468 7,572
s13207 4,426 4,321 4,180
s15850 7,497 6,960 7,184
s38417 32,284 29,498 28,932
s38584 4,725 4,494 4,597

b22 117,557 106,917 110,137

Table II. Storage requirements using different number of ignored vectors

Circuit Continuous reseeding Proposed approach Improvement
Name Bits Eff. Bits Eff. %
s9234 9,480 0.61 7,468 0.77 27%
s13207 5,800 0.60 4,321 0.80 34%
s15850 10,360 0.47 6,960 0.85 49%
s38417 51,870 0.44 29,498 0.77 76%
s38584 7,280 0.49 4,494 0.80 62%

b17 243,560 0.55 112,779 1.19 116%
b22 229,710 0.46 106,917 0.99 115%

p286k 1,188,728 0.37 720,135 0.61 65%
p330k 1,071,018 0.48 753,777 0.69 42%
p388k 644,265 0.35 383,786 0.58 68%
p418k 1,188,880 0.30 709,741 0.51 68%
p951k N/A N/A 390,441 1.04 -

Table III. Comparison of encoding efficiencies

tors, because each vector is 82 bits wide. In conclusion, not

all patterns can be encoded using continuous reseeding. For

the nearly complete reseeding, these vectors are encoded as

flip-vectors and complete fault coverage can be retained. For

comparison purposes: When combined with an LFSR of width

128, continuous reseeding achieves an encoding efficiency of

0.64.

In [27] it was shown analytically that the maximum encod-

ing efficiency that can be achieved by complete reseeding is 1.

Even for the best solutions proposed until now, the efficiency

observed in reality did not exceed this theoretical limit. It is

evident that the encoding efficiency of the proposed method

is significantly closer to this theoretical value, even exceeding

it for some of the circuits.

VII. CONCLUSION

A deterministic BIST method has been presented that is pro-

grammable and provides much higher coding efficiency com-

pared to the regular reseeding methods. A special compression

and decompression method efficiently encodes and decodes the

care bits that could not be encoded in the seed. The use of

nearly complete reseeding allows for encoding more care bits

into a single seed and improves the coding efficiency without

reducing fault coverage. A comparison with the best previ-

ously known method shows a significant reduction in test data

volume by 20-50% for both benchmark and industrial circuits.
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