

Deterministic Logic BIST for Transition Fault Testing1

Abstract

BIST is an attractive approach to detect delay faults due to its inherent support for at-speed test. Deterministic logic

BIST (DLBIST) is a technique which was successfully applied to stuck-at fault testing. As delay faults have lower

random pattern testability than stuck-at faults, the need for DLBIST schemes is increased. Nevertheless, an extension

to delay fault testing is not trivial, since this necessitates the application of pattern pairs. Consequently, delay fault

testing is expected to require a larger mapping effort and logic overhead than stuck-at fault testing.

In this paper, we consider the so-called transition fault model, which is widely used for complexity reasons. We

present an extension of a DLBIST scheme for transition fault testing. Functional justification has been used to

generate the required pattern pairs. The efficiency of the extended scheme is investigated using difficult to test

industrial designs.

Keywords: Deterministic logic BIST, delay test generation, transition faults.

1. Introduction

Delay fault testing has become a standard option in today’s technology. Path-delay, segment-delay, gate-delay and

transition fault models have been proposed so far [9][10][12][19][20][23]. These models have different complexity

of both test generation and test application.

The path-delay fault model [20] is used to model defects that are correlated along a path from a (pseudo-)primary

input to a (pseudo-)primary output of the circuit under test (CUT). Both the switching delays of devices and the

1 This article is an extension of the paper entitled Deterministic Logic BIST for Transition Fault Testing, published in
Proceedings of European Test Symposium, 2006, pp. 123-128.

Valentin Gherman

CEA, LIST
Boîte Courrier 65

Gif-sur-Yvette
F-91191 France

valentin.gherman@cea.fr

Hans-Joachim Wunderlich

 Universitaet Stuttgart
Pfaffenwaldring 47

Stuttgart
D-70569 Germany

wu@ra.informatik.uni-
stuttgart.de

Juergen Schloeffel
Michael Garbers

NXP Semiconductors
Georg-Heyken-Strasse 1

Hamburg
 D-21147 Germany

juergen.schloeffel@nxp.com
michael.garbers@nxp.com

transport delays of interconnects may perturb the propagation of signal transitions. Unfortunately, in the worst case

the number of path-delay faults may increase exponentially with the number of the signal lines in the CUT.

The segment-delay fault model [9][19] contains all path segments shorter than a predefined parameter L. As L

increases, the number of test segments may become unacceptable large. When L is too small, some paths with larger

distributed delay may escape the test. The value of L can be chosen based on statistics about the manufacturing

defects.

The gate-delay fault model [10] is a quantitative model in which the exact size of the delay fault needs to be

specified in advance. Unfortunately, the determination of the fault size is not an easy task.

The transition fault model [12][23] also called gross-delay fault model, is a special case of the gate-delay fault

model in which the fault is assumed to be of the same order of magnitude as the clock period. The transition fault

model is used to cover delay effects which are generated by localized (spot) defects and whose sizes are in the order

of magnitude of the clock cycle or of the test pattern period. A slow-to-rise and slow-to-fall transition fault may be

associated to each signal line in the CUT. Consequently, the number of transition faults increases linearly with the

number of the signal lines in the CUT. Due to its limited complexity, the transition fault model is most widespread

and also this paper deals with this model.

In order to test delay faults, two patterns are required, an initialization pattern that sets the circuit to a predefined

state, and an activation pattern that launches the appropriate transition and propagates the fault effect to a (pseudo-)

primary output. There are two approaches for the application of pattern pairs to a standard scan design [17][18][23]:

functional justification, also called broadside, and scan shifting, also called skewed-load. In the functional justifica-

tion approach, the circuit response to the initialization pattern is used as the second pattern. In order to apply pattern

pairs, the circuit is operated two consecutive clock cycles in functional mode after the first pattern has been scanned

in. In the scan shifting approach, the second pattern is generated by operating the scan path for one additional clock

cycle after the first pattern has been applied. Since scan shifting may require additional efforts for a consistent

clocking scheme beyond the BIST hardware, we will concentrate only on functional justification. Another advantage

of this approach is the expected limitation of the scan-induced over-testing, as long as the activation pattern is

computed by the CUT itself and not scanned in, like in the scan shifting approach. So, the impact on the yield should

be less than in the case of the scan shifting approach.

There is a wide range of deterministic logic BIST (DLBIST) methods that apply deterministic test patterns and

hence improve the low fault coverage often obtained by pseudo-random patterns. Very attractive schemes, which

require no interaction with the ATE during test application time, are the test set embedding schemes. These rely on a

pseudo-random test pattern generator plus some additional circuitry that modifies the pseudo-random sequence in

order to embed a set of deterministic patterns. Examples for such techniques are the bit-fixing [22] and the bit-

flipping [6][25] DLBIST schemes. The implementation of these schemes includes the mapping of a set of

deterministic test cubes to an initial pseudo-random test sequence and the synthesis of the circuitry used to embed the

target test cubes [6].

Here, the bit-flipping DLBIST scheme used for the test of stuck-at faults will be adapted to transition fault testing

based on functional justification. The resulting DLBIST scheme can be used to test transition faults in circuits with

scan design. Until now, no such scheme has been described in the open literature. LBIST approaches for the test of

delay faults (especially, for path delay faults) have been presented in [2][3][5][8][11][13][14][21][26], among others.

The schemes proposed in [3][13] are pseudo-deterministic, which means that a flexible test length is required in

order to guarantee that all the target deterministic patterns are embedded. Only the approaches presented in

[11][21][26] are deterministic, but they address circuits without scan designs.

The extension of the bit-flipping DLBIST scheme for transition fault testing requires the modification of the test

control unit such that the scan enable signal allows two consecutive functional clock cycles and not only one as in

the case of stuck-at fault testing.

Since pairs of test patterns are required, transition faults are more difficult to test than stuck-at faults. Conse-

quently, the pseudo-random transition fault coverage is significantly lower than the pseudo-random stuck-at fault

coverage. The final effect is an increase of the mapping effort and the logic overhead.

As a solution, this paper proposes a trade-off between these costs and the test application time. Slightly larger test

application times reduce logic overhead and enhance test quality in terms of both transition fault and (non-modeled)

defect coverage [4].

The next section describes a quantitative estimation of the random testability of the stuck-at and transition faults.

An approach to extend the bit-flipping scheme for transition fault testing is presented in Section 3. Relevant

experimental results for some difficult to test industrial designs are reported in Section 4. Finally, Section 5

summarizes this work.

2. Pseudo-random testability of transition and stuck-at faults

Here, the random detection probability is used as a measure of fault testability. The probability that a stuck-at ‘i’

fault (i∈{0,1}) on the signal line J is tested by a random pattern is equal to the probability P(J sa ‘i') that the line J

can be controlled to the logic value ‘¬i’ and observed at a (pseudo-)primary output [1][16]:

P(J sa ‘i’) = P(J is controllable to ‘¬i’ and J is observable) (1)

The probability that a transition fault from ‘i’ to ‘¬i’ on the signal line J is tested by a pair of independent random

patterns is equal to the probability P(J slow from i to ¬i) that the first pattern controls the line J to the logic value ‘i’

multiplied by the probability that the second pattern controls the line J to the logic value ‘¬i’ and can make the

signal line J visible at a (pseudo-)primary output:

P(J slow from ‘i’ to ‘¬i’) = P(J is controllable to ‘i’) * P(J sa ‘i’) (2)

From the relation (2), it results that if the stuck-at ‘i’ fault on a signal line is random pattern resistant, then the

transition fault from ‘i’ to ‘¬i’ on the same line is random pattern resistant as well. Consequently, a digital circuit

contains at least as many random pattern resistant transition faults as random pattern resistant stuck-at faults.

The following expression gives the number Nf of random patterns required to test a fault ‘f’ having the detection

probability Pf (<<1) with the test confidence C (probability that the considered fault is tested by at least one pattern

of the test sequence) [24].

Nf ≈ - ln(1-C) / Pf (3)

Consequently, for two faults ‘f’ and ‘g’, we have:

Nf ≈ Ng
 * Pg / Pf (4)

From the relations (2) and (4), one can observe that in the case when controllability to i of a signal line is close to

‘0’, a slow transition fault from ‘i’ to ‘¬i’ on the same line may require a much larger number of random test patterns

than the corresponding stuck-at fault, if the same test confidence is the objective.

As an example, consider the circuit sketched in Figure 1. The inputs of this circuit are driven by four scan flip-

flops. A scan enable signal (SE) is used to switch the scan flip-flops between scan and functional modes. The

possible patterns to test the stuck-at ‘0’ and ‘1’ faults on the net J are ABCD ∈ {1XXX, X11X} and {00XX, 0X0X},

respectively. Based on functional justification, the initialization pattern ABCD = 0011 will generate an activation

pattern 0111 such that a slow-to-rise fault on the net J can be tested. The slow-to-fall transition fault on the net J

cannot be tested.

Note that there is only one initialization pattern for the slow-to-rise fault on the net J which has four specified bits,

while each of the two corresponding stuck-at faults has two test patterns with one or two specified bits. The

probabilities to randomly detect the slow-to-rise, the stuck-at ‘0’ and the stuck-at ‘1’ faults on the net J are 1/16, 5/8

and 3/8, respectively. The reduced testability of the transition fault is due to the fact that the initialization pattern

must not only set the required initial logic value on the target line, but it must also generate appropriate logic values

at the CUT outputs in order to define an useful activation pattern.

Figure 2 presents a comparison between the cumulative stuck-at and transition fault coverage of a pseudo-random

test sequence applied to a difficult to test industrial design that contains 5116 flip-flops arranged into 11 scan chains.

The lower level and the slower saturation of the transition fault coverage is due to the larger number of random

pattern resistant transition faults and to the larger number of pseudo-random patterns required by these faults to

achieve the same test confidence as in the case of the random resistant stuck-at faults.

This slow saturation is expected for any type of delay fault testing and it may be enhanced in the case of robust

delay fault testing. It increases the necessity of having long test sequences when DLBIST is used. Moreover, a

DLBIST scheme is necessary that is able to use the whole test sequence for pseudo-random fault detection.

3. Bit-flipping DLBIST for transition faults

The bit-flipping DLBIST scheme provides both pseudo-random and deterministic test patterns. Most of the

pseudo- random test patterns do not contribute to the fault coverage, since they only detect faults already detected by

previous pseudo-random patterns. Such useless pseudo-random test patterns may be modified into useful determi-

nistic test patterns to improve the fault coverage. The deterministic test patterns are determined by an ATPG tool,

and they target those testable faults not detected by pseudo-random test sequence. In such a deterministic test pattern

(cube), only few bits are actually specified, while most of the bits are don’t cares and hence can arbitrarily be set to

‘0’ or ‘1’.

The modification of the pseudo-random patterns is realized by inverting (flipping) some of the LFSR outputs, such

that they become compatible with the deterministic test cubes. This flipping is performed by combinational logic,

which implements a bit-flipping function (BFF). The BFF can be kept quite small by exploiting the large number of

useless pseudo-random patterns that may be modified, and carefully selecting the pseudo-random patterns which are

altered to deterministic patterns.

As shown in Figure 3, the BFF inputs are connected to the pattern counter (PC), shift counter (SC) and LFSR,

while the BFF outputs are connected to the XOR-gates at the scan inputs. The BFF determines whether a bit has to

be flipped based on the states of the PC, the SC and the LFSR. The PC is part of the test control unit, and counts the

number of test patterns applied during the self-test. The SC is also part of the test control unit, and counts the number

of clock cycles required for shifting test data in (and out of) the scan chains. If a phase shifter (PS) is attached to the

LFSR, its output may be used to control the operation of the BFF as well.

The BFF realizes the mapping of deterministic test cubes to pseudo-random test patterns in the following way.

Every specified bit (i.e. care bit) in a deterministic cube either matches to the corresponding bit in the pseudo-random

pattern, in which case no bit-flipping is required, or the bit does not match, in which case bit-flipping is required. For

all unspecified bits (i.e. don’t-care bits) in a deterministic cube, the corresponding bits in the associated pseudo-

random pattern may be arbitrarily flipped or not.

The BFF must provide that (1) all conflicting bits are flipped, (2) all matching bits are not flipped while (3) the

don’t-care bits may be arbitrarily flipped or not. A BDD-based method for the generation (mapping) and the logic

implementation of the BFF that scales well with the size of the core under test (CUT) is described in [6].

Below, each pattern of a test sequence that can detect faults not detected by any of its precedent patterns will be

referred to as an essential pattern. The embedding of deterministic test cubes into a pseudo-random test sequence

may corrupt the essential pseudo-random patterns even if they are not assigned to deterministic cubes. This is due to

the fact that the logic synthesis and optimization of the BFF are intensively using its don’t care (DC) set (set of input

assignments for which it does not matter whether they are mapped to ‘1’ or ‘0’) [6]. Consequently, the resulting bit-

flipping logic flips more bits than necessary for the embedding of the target deterministic test cubes and the conse-

quence is that essential pseudo-random test patterns may be corrupted.

Due to the slower saturation of the random transition fault coverage, the application of longer test sequences and

the protection of all the essential pseudo-random patterns become critical. A way to prevent the corruption of the

essential patterns without increasing the complexity of the BFF implementation is to utilize an additional combina-

tional module, here referred to as correction logic (CRL), to enable/disable the outputs of the bit-flipping logic

(Figure 3).

In the case of transition fault testing based on functional justification, the test control unit (Figure 3) has to be able

to provide pairs of capture clock cycles. In such a scheme, only the initialization pattern of each pair of test patterns

is generated by the DLBIST hardware. The activation pattern is generated by the CUT as a response to the first

pattern and only single test cubes have to be embedded into the pseudo-random sequence (just like in the case of

stuck-at fault testing). This is also true in the case of transition fault testing based on scan shifting, with the

observation that in this case the test control unit should generate one additional shift clock cycle instead of the first

capture clock cycle. For this reason, as long as ATPG support is provided the methodology presented here can also

be applied to the scan shifting approach. Moreover, this methodology is orthogonal to any method used to extend

transition faults testing to circuits with multi-cycle path logic, like modifying the wave form of shift and capture

clock signals or enhancing the scan design [15].

The steps used to implement the proposed scheme are detailed below.

1. Initial fault simulation is used to detect the transition faults that cannot be tested by the pseudo-random test se-

quence produced by an LFSR and, optionally, a PS. During this step a list L1 is generated containing the

indices of all the essential pseudo-random test patterns.

2. An ATPG tool is used to generate a limited number of deterministic initialization test cubes for all or a sub-set

of the transition faults that remained undetected by the pseudo-random test sequence.

3. A pseudo-random test pattern is assigned to each deterministic initialization test cube. For each such cube

only a limited number of pseudo-random patterns are checked starting with the ones at the minimum

Hamming distance. The essential pseudo-random test patterns are not allowed to be assigned. Each assigned

pseudo-random test pattern is modified by bit-flipping to become compatible with the corresponding

deterministic test cube.

During this step, a BDD-based representation is generated for the resulting BFF [6]. The BFF is only partly

specified and has a large DC-set.

4. The BDD-based representation of the BFF is optimized and transformed into a circuit description (e.g. RTL

VHDL or Verilog) [6][7]. The logic optimization procedure exploits the DC-set left by the incomplete

specification of the BFF. Consequently, the optimized bit-flipping logic flips additional bits besides the

conflicting bits in the assigned pseudo-random patterns, so that essential pseudo-random patterns (with the

index included in L1) may be corrupted.

5. In order to determine which of the patterns with the index in L1 have to be protected from being corrupted, the

embedded test sequence produced by the LFSR, PS (if any) and the bit-flipping logic, which is not allowed to

act on the patterns with the index in L1, is simulated to generate a second list L2 of indices corresponding to

the essential patterns in the embedded test sequence. The patterns whose indices are included in L1∩L2 need

to be protected from being corrupted by the bit-flipping logic. On the other hand, the patterns whose indices

are included in L2-L1 should remain modified by the bit-flipping logic.

6. A CRL (Figure 4) is built to prevent the bit-flipping logic from flipping the essential patterns which are

referenced in L1∩ L2. The modification of the patterns with the index in L2-L1 is allowed. In this way the

essential patterns will not be corrupted, while the useless patterns that become useful by means of bit-flipping

can still be generated. The CRL implements an incompletely specified function, whose on-set and off-set (sets

of input assignments that must be mapped to ‘1’ and ‘0’, respectively) contain the states of the PC, LFSR and

the output of the PS (if any) corresponding to the first scan clock cycle of the test patterns with the index in

L2-L1 and L1∩L2, respectively. The DC-set of the CRL function is used to optimize its implementation, ex-

actly as in the case of the BFF implementation [6][7].

The output of the CRL has to be kept constant during the scan clock cycles corresponding to each test pattern.

Due to the fact that some of the input signals to the CRL (the state bits of the LFSR and the output bits of the

PS (if any)) change during the scan clock cycles, a latch is used to store the output of the CRL. The operation

of the latch is controlled with the help of the scan enable signal (SE), so that its state can be changed only

before a new test pattern is scanned in.

Without the CRL, all the inputs of the BFF corresponding to the essential pseudo-random patterns should be

included into the OFF-set of the BFF. Consequently, the use of the CRL leaves more DC-space to optimize

the logic implementation of the BFF. On the other hand, storing the output of the CRL into a memory element

that cannot be written during the shift cycles increases significantly the degrees of freedom for the

optimization of the CRL.

While a BFF function has to be implemented for each scan chain, the CRL is common for all the scan chains.

7. In the end, a simulation of the embedded test sequence generated by the LFSR, PS (if any), BFF and CRL

determines the final transition fault coverage.

In order to limit the size of the correction logic, the set of deterministic cubes is embedded (mapped) only at the

end of the pseudo-random test sequence. The length of the pseudo-random sequence that can be modified is a frac-

tion given by a negative power of two of the total test length. The first part of the test sequence is used only for

pseudo-random fault detection and it is protected from being flipped by disabling the outputs of the BFF with the

help of an AND gate per scan chain, which is controlled by a combination of the most significant bits of the PC.

4. Experimental results

The experimental results reported below have been obtained using GNU Linux machines equipped with 2 GB of

memory and an Intel Pentium 4 processor running at 2.4 GHz. The industrial designs described in Table 1 have been

used as benchmark circuits. An industrial CAT tool has been employed to provide ATPG and fault simulation

support. In the tool version available to us, it is assumed that these circuits contain only single-cycle paths. The first

column (Design) reports the circuit name encoded as pN, where N denotes the number of nodes in the design. The

next two columns give the number of scan flip-flops (# Flip-flops) and scan chains (# Scan Chains) contained by

each design. The following column (Test length) shows the length of the test sequence. The last two columns report

the pseudo-random stuck-at and transition fault efficiencies, respectively. The fault efficiency is defined as the

percentage of the detected faults with respect to the total number of testable faults. For each design, the last entry line

corresponds to a test sequence whose application would require one second at the frequency of 100 MHz. It can

easily be observed that the transition fault efficiency is much lower. In general, increasing the test sequence length

has a stronger impact on the transition fault detection than on the stuck-at fault detection.

In Table 2, one can compare the results obtained using the bit- flipping DLBIST approach for the stuck-at and

transition fault testing of the designs in Table 1. Table 2 reports the number of embedded deterministic test cubes, the

ratio (percent) of specified bits in the set of embedded cubes, the achieved final fault efficiency and the cell area

overhead of the BFF and CRL implementations for both fault models. The overhead of the other parts of the

DLBIST hardware is relatively small and it may be neglected.

In order to limit the hardware overhead in the case of the three largest designs, the number of deterministic test

cubes embedded for transition fault testing has been limited to 800.

With the exception of the design p19K, the deterministic test cubes embedded for transition fault testing have

larger ratios of specified bits. This is due to the lower transition fault testability. In the case of the design p19K, this

lower testability has the effect that the ATPG tool delivers less deterministic test cubes with less detected faults and

also less specified bits per cube than in the case of stuck-at fault testing.

Table 1: Characteristics of the considered industrial designs.

In all cases, the final stuck-at fault efficiency is much higher than the final transition fault efficiency. Moreover,

this has been achieved along with a lower cell area overhead with the exception of the design p19K. The reason for

this difference is again the lower random testability of the transition faults with the consequence that more patterns

have to be embedded and more bits have to be flipped or preserved in the pseudo-random sequence. This seems not

to be the case of the p19K design, but, as mentioned before, here it was just the ATPG that provided fewer

deterministic test cubes to be embedded for transition fault testing. For a given test length, the DLBIST hardware

overhead depends on the random testability of the CUT and on the amount with which the fault efficiency has to be

increased.

In Table 3, one can observe the impact of increasing the test length on the final fault efficiency and cell area

overhead (BFF+CRL) of the considered DLBIST scheme used for transition fault testing. The run-time and memory

requirements are reported as well.

Design # Flip-
flops

Scan
chains

Test
length

Random stuck-at fault
efficiency [%]

Random transition fault
efficiency [%]

10K 80.80 73.66

32K 85.54 82.64
64K 90.38 86.97

p19K 1,407 29

1,923K 95.87 90.74

10K 97.12 81.87

32K 97.94 85.63
64K 98.11 87.31

p59K 4,730 20

192K 98.35 89.67

10K 84.42 55.83

32K 89.39 64.80

64K 91.65 68.53
p127K 5,116 11

187K 93.75 73.82

10K 84.29 63.86

32K 88.66 71.02
64K 90.62 75.00

p278K 9,967 32

318K 93.38 82.81

10K 95.62 66.66

32K 96.73 73.39

64K 97.14 76.39
p333K 20,756 30

140K 97.51 78.26

Table 2: DLBIST applied to stuck-at and transition fault test, in the case of a 10K patterns long test sequence.

As expected, the hardware overhead of the first two designs, for which the number of embedded patterns has not

been limited, is significantly reduced by the increase of the test length. Extending the test length from 10K to 64K

reduces the overhead by more than 10% of the CUT size. In the case of the last entry corresponding to the design

p19K, increasing the test length by 2 orders of magnitude has reduced the overhead to half of the level from the

previous entry, at the price of a large increase in the run-time and memory requirements.

As in the case of the previous experiments, the number of embedded deterministic test cubes for the three largest

designs has been limited to 800, in order to limit the hardware overhead. As long as the same number of

deterministic test cubes is embedded, it is difficult to predict the dependence of the hardware overhead on the length

of the test sequence. In this case, the overhead primarily depends on the average number of specified bits per embed-

ded test cube, which is determined by the number and the difficulty of the target faults. Longer pseudo-random test

sequences leave undetected faults which are more difficult to test. This tends to increase the number of specified bits

necessary to detect the remaining fault. On the other hand, this may also decrease the number of newly detected

faults per embedded test cube. That is why it is difficult to predict the evolution of the average number of specified

bits per embedded test cube when the length of the test sequence is augmented. Increasing the length of the test se-

quence also improves the pattern embedding opportunities. In the case of the design p127K, increasing the length of

the test sequence does not significantly change the overhead, but it improves the final fault efficiency by more than

11%. In the case of the designs p278K and p333K, increasing the test sequence length has a twofold beneficial

impact. Choosing a test sequence length of 318K and 140K, instead of 10K reduces the overhead by 11% and 7%,

respectively. In parallel, the final fault efficiency is improved by more than 8% and 3%, respectively. The increase of

the test length improves the coverage of the non-modeled defects as well [4]. In the case of the three largest designs,

increasing the length of the test sequence has no significant impact on the run-time and memory requirements.

 Stuck-at fault testing Transition fault testing

Design

Embedded
patterns

Ratio of
specified bits

[%]

Final fault
efficiency

[%]

Cell area
overhead

[%]

Embedded

patterns

Ratio of
specified bits

[%]

Final fault
efficiency [%]

Cell area
overhead

[%]
p19K 181 26.48 99.19 25 145 10.64 94.40 17

p59K 137 2.77 99.10 4 1,077 03.00 96.43 26

p127K 582 12.04 99.26 22 800 15.24 76.35 43

p278K 1,549 6.10 98.87 35 800 14.48 86.66 62

p333K 1,298 0.75 99.30 7 800 2.94 84.95 22

Table 3: Results obtained with the bit-flipping DLBIST used for transition fault testing.

Table 4 reports possible trade-offs between the fault efficiency and the hardware overhead in the case of the largest

three designs. The considered test sequences contain the maximum number of test patterns which can fit in one

second of test time at the frequency of 100 MHz. In the case of the designs p127K and p278K, 10 deterministic

patterns are already enough to obtain a larger fault efficiency than in the case when 800 deterministic test patterns are

embedded into a 10K long test sequence. In this way, the hardware overhead can be reduced to 1% from 43% and

62% (Table 3), respectively. In the case of the design p333K, similar fault efficiency can be achieved by embedding

100 deterministic test patterns, at the cost of 5.5%, instead of 22%, hardware overhead.

Design Test
length

Embedded
patterns

Run-time
[h:m]

Memory
[MB]

Final fault
efficiency

[%]

Fault efficiency
improvement [%]

Cell area
overhead

[%]
10K 145 00:16 58 94.40 20.74 17

32K 125 00:24 61 94.40 11.76 11

64K 105 00:23 67 94.40 7.43 7
p19K

1,923K 54 04:01 577 94.41 3.67 4

10K 1,077 07:22 252 96.43 14.56 26

32K 942 06:19 240 96.55 10.92 20

64K 865 05:45 230 96.64 9.33 18
p59K

192K 738 05:53 286 96.69 7.02 15

10K 800 32:55 716 76.35 20.52 43

32K 800 32:09 738 82.20 17.40 44

64K 800 31:47 755 84.98 16.45 44
p127K

187K 800 30:17 786 87.75 13.93 42

10K 800 29:01 1,408 86.66 22.80 62

32K 800 30:34 1,415 90.24 19.22 57

64K 800 32:16 1,431 91.84 16.84 54

p278K

318K 800 48:37 1,508 94.93 12.12 51

10K 800 33:40 758 84.95 18.29 22

32K 800 35:58 760 86.77 13.38 19

64K 800 35:29 742 87.61 11.22 17
p333K

140K 800 35:39 801 88.25 9.99 15

Table 4: Use of the maximum test length which can fit in one second of test time at the frequency of 100 MHz.

5. Conclusions

We presented an extension of the bit-flipping DLBIST scheme for transition fault testing. This is the first time

when a DLBIST scheme is used to test transition faults in circuits with standard scan design. A special combinational

module, the correction logic (CRL), has been introduced to further improve the pattern embedding. Due to the rather

low random-pattern testability of transition faults, the saturation of their random fault coverage requires significantly

longer test sequences, which in turn is beneficial for both limiting the hardware overhead and improving the

coverage of the modeled and non-modeled defects. The DLBIST scheme considered here can be applied to both

approaches to transition fault testing in circuits with standard scan design, functional justification and scan shifting.

Moreover, the presented methodology is orthogonal to any method that can be used to extend transition faults testing

to circuits with multi-cycle path logic.

Acknowledgments

This research work was supported by the German Federal Ministry of Education and Research (BMBF) in the

Project AZTEKE under the contract number 01M3063C.

Design Test
length

Embedded

patterns

Run-time
[h:m]

Memory
[MB]

Final fault
efficiency

[%]

Fault
efficiency

improvement
[%]

Cell area
overhead [%]

10 5:16 477 76.83 3.01 1
50 5:38 492 79.48 5.66 3
100 6:41 510 80.56 6.74 5

400 16:22 731 85.28 11.46 24

p127K 187K

800 30:17 786 87.75 13.93 42
10 23:44 1,150 87.96 5.15 1
50 24:00 1,169 88.98 6.17 4
100 26:44 1,190 90.71 7.90 6.5
400 34:53 1,306 93.26 10.45 27.5

p278K 318K

800 48:37 1,508 94.93 12.12 51

10 5:33 528 81.29 3.03 1.5

50 7:36 630 83.32 5.06 4

100 9:44 661 84.47 6.21 5.5

400 31:05 786 87.28 9.02 11.5

p333K 140K

800 35:39 801 88.25 9.99 15

References

[1] F. Brglez “On Testability Analysis of Combinational Networks,” IEEE International Symposium on Circuits
and Systems (ISCAS), 1984, pp. 221–225.

[2] C. A. Chen, S. K. Gupta “BIST Test Pattern Generators for Two-Pattern Testing-Theory and Design
Algorithms,” Transactions on Computers, Vol. 45, No.3, 1996, pp. 257–269.

[3] C. Dufaza, Y. Zorian “On the Generation of Pseudo-deterministic Two-patterns Test Sequence with LFSRs,”
IEEE European Design and Test Conference (EDAC), 1997, pp. 69–76.

[4] P. Engelke, V. Gherman, I. Polian, Y. Tang, H.-J. Wunderlich, B. Becker “Sequence Length, Area Cost and
Non-Target Defect Coverage Tradeoffs in Deterministic Logic BIST,” IEEE Workshop on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), 2005, pp. 11–18.

[5] K. Furuya, E. J. McCluskey “Two-Pattern Test Capabilities of Autonomous TPG Circuits,” IEEE Interna-
tional Test Conference (ITC), 1991, pp. 704–711.

[6] V. Gherman, H.-J. Wunderlich, H. Vranken, F. Hapke, M. Wittke, M. Garbers “Efficient Pattern Mapping for
Deterministic Logic BIST,” IEEE International Test Conference (ITC), 2004, pp. 48-56.

[7] V. Gherman, H.-J. Wunderlich, R. Mascarenhas, J. Schloeffel, M. Garbers “Synthesis of Irregular
Combinational Functions with Large Don’t Care Sets,” ACM Great Lakes Symposium on VLSI (GLSVLSI),
2007.

[8] P. Girard, C. Landrault, V. Moreda, S. Pravossoudovitch “An Optimized BIST Test Pattern Generator for
Delay Testing,” IEEE VLSI Test Symposium (VTS), 1997, pp. 94–100.

[9] K. Heragu, J.H. Patel, V. D. Agrawal “Segment Delay Faults: A New Fault Model,” IEEE VLSI Test
Symposium (VTS), 1996, pp. 32–39.

[10] J.L. Carter, V.S. Iyengar, B.K. Rosen “Efficient Test Coverage Determination for Delay Faults,” IEEE
International Test Conference (ITC), 1987, pp. 418-427.

[11] M. Keim, I. Polian, H. Hengster, B. Becker “A Scalable BIST Architecture for Delay Faults,” IEEE European
Test Workshop (ETW), 1999, pp. 98–103.

[12] A. Krstic, K. T. Cheng “Delay Fault Testing for VLSI Circuits,” Boston: Kluver Academic Publishers, 1998.
[13] W. Li, C. Yu, S. M. Reddy, I. Pomeranz “A Scan BIST Generation Method Using a Markov Source and

Partial Bit-fixing,” IEEE Design Automation Conference (DAC), 2003, pp. 554–559.
[14] N. Mukherjee, T. J. Chakraborty, S. Bhawmik “A BIST Scheme for the Detection of Path-Delay Faults,” IEEE

International Test Conference (ITC), 1998, pp. 422–432.
[15] S. Pateras “Achieving at-speed structural test,” IEEE Design & Test of Computers, Vol. 20, Issue 5, Sept.-Oct.

2003, pp. 26 – 33.
[16] J. Savir, G. S. Ditlow, P. H. Bardell “Random Pattern Testability,” IEEE Transactions on Computers, Vol. C-

33, No. 1, 1984, pp. 79–90.
[17] J. Savir “Skewed-Load Transition Test: Part I, Calculus,” IEEE International Test Conference (ITC), 1992,

pp.705–713.
[18] J. Savir, S. Patil “Broad-Side Delay Test,” IEEE Transactions on CAD of Integrated Circuits and Systems,

Vol. 13, No. 8, 1994, pp. 1057–1064.
[19] M. Sharma, J. H. Patel “Enhanced Delay Defect Coverage with Path-Segments,” IEEE International Test

Conference (ITC), 2000, pp. 385–392.
[20] G. L. Smith “Model for Delay Faults based upon Paths,” IEEE International Test Conference (ITC), 1985, pp.

342–349.
[21] W. Starke “Built-In Test for CMOS Circuits,” ITC’84, pp. 309–314.
[22] N. A. Touba, E. J. McCluskey “Altering a Pseudo-random Bit Sequence for Scan-Based BIST,” IEEE Interna-

tional Test Conference (ITC), 1996, pp. 167–175.
[23] J. A. Waicukauski, E. Lindbloom, B. K. Rosen, V.S. Iyengar “Transition Fault Simulation,” IEEE Design and

Test of Computers, Vol. 4, 1987, pp. 32–38.
[24] H.-J. Wunderlich “PROTEST: a Tool for Probabilistic Testability Analysis,” ACM/IEEE Design Automation

Conference (DAC), 1985, pp. 204–211.
[25] H.-J. Wunderlich, G. Kiefer “Bit-Flipping BIST,” IEEE International Conference on CAD (ICCAD), 1996, pp.

337–343.
[26] B. Wurth, K. Fuchs “A BIST Approach to Delay Fault Testing with Reduced Test Length,” IEEE European

Design and Test Conference (EDAC), 1995, pp. 418–423.

Figures

Fig. 1: Specified bits for testing stuck-at and transition faults.

Fig. 2: Cumulative stuck-at and transition fault coverage of a pseudo-random sequence applied to a difficult
to test industrial design. The transition fault test was based on functional justification.

Fig. 3: Architecture of the bit-flipping DLBIST.

0

20

40

60

80

100

0 10 30 50 70 90 11
0

13
0

15
0

17
0

19
0

Pseudo-random Patterns [K]

Fa
ul

t C
ov

er
ag

e
[%

]

Stuck-at
Testing

Delay
Testing

A

B

C

D G

E
J

F

I

H
K

=1

&

SI

SO

FF1

SE

FF2

FF3

FF4

Patterns which can test the
stuck-at 0, stuck-at 1 and slow-

to-rise faults on the wire J:

 A B C D

stuck at-0 1 X X X

stuck at-1 0 0 X X

slow-to-rise 0 0 1 1

slow-to-fall is untestable

≥1
≥1

≥1

&

&

M
I
S
R

CRL

BFF
Test Control Unit

Pattern Counter (PC)

Shift Counter (SC)

xor Scan Chain n

xor Scan Chain 2

xor Scan Chain 1

 Core Logic

L
F
S
R
+
P
S

Fig. 4: Bit-flipping Function (BFF) and Correction Logic (CRL).

Figure captions

Fig. 1: Specified bits for testing stuck-at and transition faults.

Fig. 2: Cumulative stuck-at and transition fault coverage of a pseudo-random sequence applied to a difficult
to test industrial design. The transition fault test was based on functional justification.

Fig. 3: Architecture of the bit-flipping DLBIST.

Fig. 4: Bit-flipping Function (BFF) and Correction Logic (CRL).

Test Control Unit
 Shift Counter Pattern Counter

BFF

Scan Path

Latch
SE

CRL

LFSR + PS

