
Proceedings 10th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Krakow, Poland, April 2007

 1

Abstract—An efficient on-chip infrastructure for memory test

and repair is crucial to enhance yield and availability of SoCs. A

commonly used repair strategy is to equip memories with spare

rows and columns (2D redundancy). To avoid the prohibitive

storage requirements for failure bitmaps and the complex data

structures inherent in most algorithms for offline repair analysis,

existing heuristics for built-in repair analysis (BIRA) either use

very simple search strategies or restrict the search to smaller

local bitmaps. Exact BIRA algorithms work with sub analyzers

for each possible repair combination. While a parallel implemen-

tation suffers from a high hardware overhead, a serial implemen-

tation leads to increased test times. Recently an integrated built-

in test and repair approach has been proposed which interleaves

test and repair analysis and supports an exact solution with mod-

erate hardware overhead and reasonable test times. The search is

based on a depth first traversal of a binary tree, which can be

efficiently implemented using a stack of limited size. This algo-

rithm can be realized with different repair strategies guiding the

selection of spare rows or columns in each step. In this paper the

impact of four different repair strategies on the test and repair

time is analyzed.

I. INTRODUCTION

State of the art systems-on-a-chip (SoCs) typically devote a
large percentage of the chip area to various kinds of memory
cores. According to the International Roadmap for Semicon-
ductors (ITRS) the percentage of memory in SoCs will con-
tinue to increase rapidly [6]. At the same time the shrinking
feature sizes will lead to increasing parameter variabilities and
a high susceptibility to defects. As memories are traditionally
designed with more aggressive design rules than logic cores,
they play a crucial role for the yield and reliability of a SoC.
Embedding the necessary infrastructure for a built-in test and
repair is essential to achieve acceptable yields and to guaran-
tee a satisfactory availability in the field [16, 17].

Memory repair relies on spare elements at different levels
of the design hierarchy. The most common form of redun-
dancy, however, is 2D redundancy where both spare rows and
spare columns are added to the memory [1, 4, 5-9, 11-15].
Usually the repair process for 2D redundancy consists of sev-
eral steps. First the memory is tested, and the information
about faulty elements is collected in a failure bitmap. Then re-

pair analysis attempts to find an allocation of spare elements,
such that all faults are covered at minimum cost. As a result

This work was supported by DFG grants HE 1686/2-1 and WU 245/4-1

either the memory is identified as not repairable or a repair

signature is obtained which is the basis for soft or hard repair.
Strategies for 2D repair analysis have been investigated for

more than two decades. However, the classical approaches
have been developed for offline test and repair analysis and
cannot be directly applied on chip [2, 4, 8, 13, 15]. Neverthe-
less, they provide the foundation for built-in repair analysis
(BIRA). In particular, Kuo and Fuchs have shown that the
problem of optimal 2D redundancy allocation is NP-complete,
and they have also proposed a systematic branch and bound
approach based on a binary search tree [8].

To avoid the storage of large failure bitmaps and complex
data structures for organizing the search, most approaches for
built-in repair analysis either follow only very simple search
strategies or they rely on divide and conquer techniques [1, 5,
11, 14]. Divide and conquer strategies address both the mem-
ory itself, as proposed in [1], and the failure bitmap, which is
replaced by a local failure bitmap in [5, 14].

CRESTA is a pioneering BIRA approach, which guarantees
to find the optimal solution [7]. Similarly as the early work in
[8] it is based on a binary search tree, but to reduce the search
time and to simplify algorithmic control a separate sub ana-

lyzer is implemented for each path in the search tree. This way
all possible solutions can be analyzed in parallel. However, the
hardware cost grows rapidly with the number of redundancies.
For a memory with r redundant rows and c redundant columns
b(r + c, r) sub analyzers are needed, where b(n, k) denotes the
binomial coefficient n over k. Processing of the b(r + c, r) sub
analysis tasks serially as mentioned in [12] can reduce the
hardware cost, but leads to very high test and analysis times.

Recently an integrated built-in test and repair approach has
been proposed which performs repair analysis concurrently
with test application [10]. This way an optimal solution can be
found without any failure bitmap. The basic algorithm per-
forms a depth first traversal of a binary search tree and is im-
plemented with a stack of size r + c. It is combined with a
strategy to continuously reduce the problem complexity re-
quiring two content addressable memories (CAMs) with only
2r·c entries, each. The depth first traversal can be realized with
different repair strategies guiding the selection of spare rows
or columns in each step. Depending on the repair strategy the
way to find the optimal solution, and particularly the number
of backtracks, may vary. Since backtracking in the search tree

Analyzing Test and Repair Times for 2D
Integrated Memory Built-in Test and Repair

Philipp Öhler1, Sybille Hellebrand1, and Hans-Joachim Wunderlich2
1University of Paderborn Germany

2University of Stuttgart Germany

Proceedings 10th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Krakow, Poland, April 2007

 2

requires a restart of the test, the repair strategy has impact on
the overall test and repair time.

This paper presents an experimental study to analyze the
impact of the selected repair strategy on the overall test and
repair time. Before the experimental setup and the achieved
results are described in detail in section III, the integrated
built-in test and repair approach presented in [10] is briefly
summarized in section II.

II. AN INTEGRATED BUILT-IN TEST AND REPAIR APPROACH

As pointed out above, the integrated built-in test and repair
approach proposed in [10] interleaves test generation and re-
pair analysis and relies on the depth first traversal of a binary
search tree, which is guided by a user-defined repair strategy.
Since there is no global failure bitmap, backtracking in the
search tree requires a restart of the test, and therefore the
number of backtracks is directly correlated to the test and re-
pair time. To show the interdependence between the selected
repair strategy and the overall test and repair time, the fol-
lowing description concentrates on the algorithmic aspects.
Details on the hardware implementation are explained in [10].

A. Memory Repair as a Binary Search Problem

In their early work Kuo and Fuchs have already shown how
to organize the problem of 2D memory repair as binary search
[8]. The underlying concepts and principles are explained with
the help of the small example memory shown in Fig. 1.

Fig. 1: Example 8 8-bit memory (2x2 spares) with several faulty locations.

The memory of Fig. 1 is equipped with two spare rows and
two spare columns, and the binary search tree of Fig. 2 repre-
sents all possible repair configurations exploiting these resour-
ces. Each edge in the tree corresponds to a repair decision
“row repair” (R) or “column repair” (C) for a fault in the
memory. A leaf is reached when a successful repair scheme is
found or no more repair resources are available. In case of a
successful repair, the path from the root to the leaf provides
the repair signature. The highlighted path in Fig. 2 leads to a
successful repair configuration, which is the only solution for
this small example. For this path the edges are also labeled
with the address of the first fault covered by the spare.

For a memory with r redundant rows and c redundant col-
umns the maximum height of the tree, i.e. the maximum
length of a path from the root to a leaf node, is r + c. The leaf

nodes in a complete search tree correspond to all solutions
using all resources. As there are r rows distributed among r +
c spares, there are b(r + c, r) leaf nodes in a tree enumerating
all possible repair configurations.

Fig. 2: Complete search tree for the memory of Fig. 1.

To reduce the size of the search tree Kuo and Fuchs propose
to perform a “must repair” phase before starting the binary
search [8].

Observation 1 (“must repair”): For a memory with r redun-
dant rows and c redundant columns the following repair deci-
sions are mandatory: If there are more than c faults in a row,
then there are not enough columns to cover all the faults, and a
row must be selected for repair. Similarly, more than r faults
in a column require a column repair.

B. Basic Algorithm and Repair Strategies

The basic algorithm presented in [10] also uses a binary
search tree, but it interleaves test and repair analysis, i.e.
whenever a new fault is detected during test, a (preliminary)
repair decision is made and a new node is added to the search
tree. If backtracking from node w to v in the search tree is
necessary, the preliminary repair decisions between the two
nodes must be cancelled and the test must be restarted with the
(partial) repair signature corresponding to node v.

To allow a low cost hardware implementation the binary
search tree is traversed following a “depth first” strategy, be-
cause in this case a stack is sufficient, which doesn’t grow
larger than the height of the search tree [3]. The core of the
resulting on-chip infrastructure for repair analysis is thus a
repair stack with at most r + c records.

The complete test and repair process, which is referred to as
basicSolve, is illustrated for the small example memory of Fig.
1. If the test analyzes the memory row by row, then the faults
are detected in the order (1, 2), (3, 4), (4, 4), (5, 1), (5, 6), (6,
0), and (7, 0). To fully determine the search process, a repair
strategy must be selected. A very simple solution is to prefer
one spare type, e.g. to follow a “row first” strategy. In this
case the search proceeds as shown in Fig. 3, where the nodes
of the tree are labeled in the order of traversal. Since rows are
the preferred spare parts, they are used to repair the first two
faults at addresses (1, 2) and (3, 4). Then only spare columns
are left for the faults at addresses (4, 4) and (5, 1), which are
detected next. When the fault at address (5, 6) is detected, no
more resources are available, and the search backtracks to

Proceedings 10th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Krakow, Poland, April 2007

 3

node number 2 in the search tree. The test is restarted with a
row repair for the fault at address (1, 2) as partial repair sig-
nature. When the fault at address (3, 4) is detected again, a
column repair is selected. Then the test and search process
continues with a row repair for the fault at address (5, 1) and a
column repair for the fault at address (6, 0). A first solution
corresponding to the leaf node number 8 is found.

Fig. 3: Depth first traversal using the “row first” repair strategy.

To improve this solution, a repair configuration consisting
of only 3 spares must be found, i.e. a path can be terminated as
soon as it has reached length 3. In the example, the traversal of
the rest of the tree does not reveal any other solutions.

If a balanced use of spare parts is preferred, for example to
provide a flexible basis for future repairs, the repair strategy
can be changed to select the spare type with the most re-
sources. The resulting search tree is shown in Fig. 4 (in case of
a tie the preference is given to rows as above).

Fig. 4: Depth first traversal using the balanced repair strategy.

With the balanced repair strategy, the first path already
leads to the leaf node corresponding to the only solution. A
first solution is reached in one pass without any restart of the
test. As explained above for the remaining search only paths
of length 3 have to be considered. Comparing the two exam-
ples shows that the repair strategy can also have an impact on
the number of search nodes and the number of restarts needed
to reach the first or the optimal solution. Other repair strate-
gies are for example “column first” or random.

C. Continuous Reduction of the Search Space

In the basic algorithm of section II.B, each backtrack in the
search tree requires a restart of the test. To guarantee accept-
able test and repair times, it is therefore crucial to keep the
number of backtracks low. The must repair criterion stated in

Observation 1 provides the basis to achieve this goal. How-
ever, it is not restricted to a single preprocessing step as in
many other BIRA approaches. As each repair changes the
number of available spares, new situations fulfilling the must
repair criterion may occur after a repair step. In particular,
after a must repair step other must repair decisions may be
necessary. Therefore, a dynamic must repair analysis is per-
formed as a preprocessing step and after each repair decision.

For an efficient hardware implementation an intelligent
fault list manages fault addresses. It consists of a table for row
addresses and a table for column addresses, each of which is
realized by a small CAM of size 2r·c. During test, each de-
tected fault address is compared against the contents of the
two CAMs. If the number of faults with the same row address
has already reached c, then, with the new fault, the must repair
criterion for a row repair is fulfilled. Similarly, if the number
of faults with the same column address is r, a column repair
becomes mandatory. After the corresponding repair, a dyna-
mic must repair analysis is carried out for all faults in the fault
list with the updated values for r and c.

If neither a row nor a column must repair can be triggered,
the row address of the new fault is stored in the row table, and
the column address is entered in the column table. The maxi-
mum number of fault addresses which can be collected with-
out invoking a must repair is 2r·c [5]. Therefore it is sufficient
to select 2r·c as the memory size both for the row and for the
column table. This observation is also useful for pruning the
search tree and for the early identification of non-repairable
memories. If both tables are full, and a new fault is detected
without leading to a must repair, then the memory is proven to
be non-repairable and the search can be stopped. The basic
algorithm of Section II.B combined with the proposed strategy
is called intelligentSolve. Similar as for basicSolve, the selec-
tion of a repair strategy may also have an additional impact on
the number of search nodes and the number of backtracks.

III. EVALUATION OF REPAIR STRATEGIES

In [10] it has been shown that the dynamic must repair
analysis considerably decreases the test and repair time. How-
ever, the evaluation has been restricted to a “row first” repair
strategy. The analysis presented in this paper focuses on the
additional impact of the repair strategy on the overall test and
repair time. Because a restart of the test is invoked by each
backtrack, the overall test and repair time can be roughly esti-
mated as T = b · t, where b denotes the number of backtracks
or restarts, and t denotes the duration of a single test. It should
be noted that this estimation is pessimistic, as in most cases a
restart will be invoked before the current test is completed.

For the analysis presented in the sequel, both the algorithm
intelligentSolve and a version of intelligentSolve stopping at
the first solution (intelligentSolveFirst) have been simulated
for a 1024 1024-bit memory with 5 spare rows and 5 spare

columns. For each algorithm the repair strategies “row first”,
“column first”, “balanced” and “random” have been compared

Proceedings 10th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Krakow, Poland, April 2007

 4

by repeated experiments with varying numbers and distribu-
tions of random defects. The number of random defects has
been linearly increased ranging from one to fifteen. A random
defect can result in a single faulty cell, a faulty row or column,
a “line fault” consisting of several adjacent faulty cells in a
row or column, or a cluster fault affecting up to 3 3 cells. The

considered distributions of defect types are listed in Table 1.

TABLE 1: DISTRIBUTION OF DEFECT TYPES.

Distributions Defects
d1 d2 d3

Row 0.10 0.10 0.10
Column 0.10 0.10 0.10
Line Fault 0.10 0.20 0.40
Cluster 0.05 0.10 0.20
Single Cell 0.65 0.50 0.20

Each experiment has been repeated 1000 times with ran-

domly generated addresses of the faulty locations. Since all
the three defect distributions show similar trends, only the re-
sults for d2 are discussed in the following. Table 2 shows the
number of restarts and the repair rates for intelligentSolve. The
minimum value of restarts in each row is printed in bold face.

TABLE 2: RESTARTS FOR INTELLIGENTSOLVE AND DEFECT DISTRIBUTION D2

Restarts of the Test for Repair Strategy
Defects Row

First
Column

First
Random Balanced

Repair
Rate

1 2.006 2.001 2.002 2.022 1.000
2 4.354 4.363 4.326 4.367 1.000
3 7.456 7.424 7.363 7.290 1.000
4 11.862 11.880 11.781 11.401 0.993
5 17.528 17.226 16.652 16.045 1.000
6 22.503 21.920 22.122 21.876 0.970
7 28.839 28.378 28.658 28.606 0.873
8 36.565 36.298 37.099 37.199 0.835
9 38.030 38.054 38.424 39.111 0.753

10 39.307 39.272 39.347 39.309 0.753
11 29.934 29.945 29.942 29.946 0.047
12 24.776 24.776 24.776 24.776 0.000
13 16.733 16.733 16.733 16.733 0.000
14 13.319 13.319 13.319 13.319 0.000
15 10.768 10.768 10.768 10.768 0.000

The strategy “random” yields the least number of restarts

only in one case (2 random defects). The remaining results can
be roughly divided into three classes. In the region where the
defects allow a high repair rate over 90 % the balanced repair
strategy provides the smallest number of restarts except for
one case. When the repair rate goes down, the strategies “row
first” and “column first” lead to shorter test times, and finally
when no more repair is possible, all four strategies need the
same time to prove this. Although there seem to be some
trends in favor of specific repair strategies in certain situa-
tions, the absolute differences between the strategies are very
small. However, each entry in Table 2 only shows the mean
value for the results of 1000 random experiments. To get
deeper insight into the behavior of the repair algorithm, it is
necessary to analyze the distribution of results in more detail.

For this purpose, Fig. 5 through Fig. 7 show some histograms
of the results in the region where repair gets difficult, i.e. the
repair rate is below 90 %.

Fig. 5: Distribution of restarts for intelligentSolve and 7 random defects.

Fig. 6: Distribution of restarts for intelligentSolve and 9 random defects.

Fig. 7: Distribution of restarts for intelligentSolve and 11 random defects.

The histograms show the frequencies of the different results
achieved during 1000 experiments. First of all it can be ob-
served that the peaks are concentrated in the left corner of the
histograms, which shows that the repair problem can be solved
with a moderate number of backtracks in many cases. For
example, for 7 random defects in more than half of the experi-

Proceedings 10th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Krakow, Poland, April 2007

 5

ments a repair solution was found with less than 20 restarts
(cf. Table 2). For 11 random defects the repair gets very diffi-
cult with a repair rate below 5%. But in this case, the dynamic
must repair gets very effective and the number of restarts is
reduced. As illustrated in Fig. 7, in about 175 cases the
memory is identified to be non-repairable without any restart.

TABLE 2: EXPERIMENTS WITH LESS THAN 20 RESTARTS FOR

INTELLIGENTSOLVE (FROM 1000 EXPERIMENTS)

Number of experiments
with less than 20 restarts

Defects
Row
First

Column
First

Random Balanced

Repair
Rate

7 559 542 542 540 0.873
9 403 401 395 394 0.753

11 504 504 504 504 0.047

However, regarding the impact of the different repair strate-

gies the histograms don’t show specific characteristics, and no
significant interdependence between the repair strategy and
the test and repair time can be confirmed for intelligentSolve.

Nevertheless, this is not in contradiction to the example
motivating this analysis in section II.B, where the main advan-
tage of the balanced search over the “row first” strategy was
the quicker identification of a first solution. For the “row first”
strategy it has already been shown in [10] that in most cases
stopping at the first solution is a good alternative with respect
to test and repair time and also provides good results with
respect to the usage of spares. In the following the algorithm
intelligentSolveFirst is therefore analyzed in more detail both
with respect to test time and the quality of the solutions.

 Similar as for intelligentSolve the average results cannot
prove a significant difference between the different repair so-
lutions. Therefore only the histograms for hard to repair defect
constellations are discussed. The histogram for 11 random de-
fects is not shown, because the repair rate is below 5% in this
case, and most of the test and repair time is spent to identify
the memory as non-repairable. This leads to a similar histo-
gram as the one shown for intelligentSolve in Fig. 7. But for 7
and 9 random defects, where still a reasonable repair rate can
be expected, some interesting observations can be made. As
shown in Table 3, in the majority of the experiments only very
few restarts are needed.

TABLE 3: EXPERIMENTS WITH LESS THAN 9 RESTARTS FOR

INTELLIGENTSOLVEFIRST (FROM 1000 EXPERIMENTS)

Number of experiments
with less than 9 restarts

Defects
Row
First

Column
First

Random Balanced

Repair
Rate

7 920 923 928 924 0.873
9 726 725 773 805 0.753

11 327 334 329 333 0.047

Therefore the x-axis of the histograms in Fig. 8 and Fig. 9 is

cut off after 9 restarts to zoom into this region. The histograms
show that in most of the cases intelligentSolveFirst needs only
one restart to find the first solution. Furthermore, the balanced

repair strategy has the highest peak for one restart and there-
fore offers the highest probability for a short test and repair
time.

Fig. 8: Distribution of the number of restarts for 7 random defects.

Fig. 9: Distribution of the number of restarts for 9 random defects.

In the experiments described above, also the necessary
number of spares has been monitored. As expected, both the
random and the balanced repair strategy on the average pro-
vide repair configurations with an equal number of rows and
columns, while with “row first” and “column first” the pre-
ferred types are clearly dominating as long as not all resources
are needed. As intelligentSolve guarantees to find the optimal
solution, the overall number of spares in the optimal repair
configuration is independent of the repair strategy. However,
intelligentSolveFirst stops at the first solution, and the repair
strategy may also influence the quality of the solution. Fig. 10
compares the overall number of used spares for intelligent-

Solve and intelligentSolveFirst with the 4 different repair
strategies. The curves representing the average results norma-
lized to the results of intelligentSolve (optimal solution) allow
two observations. Firstly, the solutions provided by intelligent-

SolveFirst need at most 20% more spares than the optimal
solution. Second the balanced repair strategy leads to the best
solutions in all cases. Again the average numbers can show
some trends, but a better picture is obtained by analyzing ab-
solute repair qualities in more detail. For more than 8 random

Proceedings 10th IEEE Workshop on Design and Diagnostics of Electronic Circuits and Systems, Krakow, Poland, April 2007

 6

defects both intelligentSolve and intelligentSolveFirst need 9
or 10 spares in most cases. For 7 and 8 random defects there is
already a wider spectrum of results, and Fig. 11 shows the
histogram for 7 random defects as an example.

Fig. 10: Used resources for intelligentSolve and 7 random defects.

Fig. 11: Used resources for intelligentSolveFirst and 7 random defects.

In the majority of the experiments (750/1000) the optimal
solution found by intelligentSolve requires 7 spare elements.
Using intelligentSolveFirst with a balanced repair strategy
cannot provide exactly the same quality, but in around 700 of
1000 experiments a solution with 7 or 8 spares is possible. In
contrast to that, “row first” can find a solution with 7 or 8
spares only in around 520 cases. These results just put a spot-
light on the absolute quality of the repair solutions, and a gen-
eralization is difficult, but they already show that the differ-
ences indicated by the average numbers are not negligible.

IV. CONCLUSIONS

The integrated built-in test and repair approach proposed in
[10] interleaves test and repair analysis to support an optimal
solution for 2D memory repair at low hardware cost. It is
based on the depth first traversal of a binary tree, and the test
and repair time is mainly determined by the number of back-
tracks. The traversal is guided by a repair strategy, and differ-
ent strategies can lead to different repair times. The experi-

mental analysis of the strategies “row first”, “column first”,
“random” and “balanced” in this paper shows that a careful
selection of the repair strategy becomes important when the
search is stopped at the first solution to reduce the repair time.
In particular for defect constellations where the memory is
hard to repair but a reasonable repair rate can still be expected,
the balanced repair strategy can help to find a solution in very
short time. Furthermore, balanced repair more often provides
solutions close to the optimal solution. If not all spares are
needed, balanced repair also provides a more flexible basis for
future repairs in the field.

 REFERENCES

[1] D. K. Bhavsar, ”An algorithm for row-column self-repair of RAMs and
its implementation in the Alpha 21264.” Proc. IEEE Int. Test Conf.
(ITC), Atlantic City, NJ, USA, pp. 311-318, September 1999.

[2] J. R. Day, “A fault-driven, comprehensive redundancy allocation algo-
rithm.” IEEE Design & Test of Computers, Vol. 2, No. 3, pp. 35-44,
June 1985.

[3] E. Horowitz, S. Sahni, S. Rajasekaran, “Computer Algorithms in C++.”
New York: Computer Science Press, 1998 (2nd printing).

[4] W.-K. Huang, Y.-N. Shen, and F. Lombardi, “New approaches for the
repair of memories with redundancy by row/column deletion for yield
enhancement.” IEEE Trans. on CAD of Integrated Circuits and
Systems, Vol. 9, No. 3, pp. 323-328, March 1990.

[5] C.-T. Huang, C.-F. Wu, J.-F. Li, and C.-W. Wu, “Built-in redundancy
analysis for memory yield improvement.” IEEE Trans. on Reliability,
Vol. 52, No. 4, pp. 386–399, December 2003.

[6] International Technology Roadmap for Semiconductors, ITRS 2005
Edition, http://www.itrs.net/Links/2005ITRS/Home2005.htm

[7] T. Kawagoe et al., “A built-in self-repair analyzer (CRESTA) for
embedded DRAMs.” Proc. IEEE Int. Test Conf. (ITC), Atlantic City,
NJ, USA, pp. 567-574, October 2000.

[8] S.-Y. Kuo and W. K. Fuchs, “Efficient spare allocation in reconfigur-
able arrays.” Proc. 23rd ACM/IEEE Design Automation Conf., DAC,
Las Vegas, NV, USA, pp. 385–390, June 1986.

[9] J.-F. Li, J.-C. Yeh, R.-F. Huang, and C.-W. Wu, “A built-in self-repair
design for RAMs with 2-D redundancy.” IEEE Trans. on VLSI
Systems, Vol. 13, No. 6, pp. 742–745, June 2005.

[10] P. Oehler, S. Hellebrand, and H.-J. Wunderlich, “An Integrated Built-in
Test and Repair Approach for Memories with 2D Redundancy.” Proc.
Eur. Test Symp. (ETS), Freiburg, Germany, May 2007

[11] M. Ottavi et al., “Simulation of reconfigurable memory core yield.”
Proc. 14th ACM Great Lakes Symp. on VLSI 2004, Boston, MA, USA,
pp. 136–140, April 2004.

[12] S. Shoukourian, V. Vardanian, and Y. Zorian, “An Approach for
Evaluation of Redundancy Analysis Algorithms.” Proc. IEEE Memory
Technology, Design and Testing Workshop (MTDT’01), San Jose, CA,
USA, pp. 51-55, August 2001.

[13] M. Tarr, D. Boudreau, and R. Murphy, “Defect analysis system speeds
test and repair of redundant memories.” Electronics, pp. 175-179, Jan.
12, 1984.

[14] T.-W. Tseng, J.-F. Li, and D.-M. Chang, “A built-in redundancy-analy-
sis scheme for RAMs with 2D redundancy using 1D local bitmap.”
Proc. Design, Automation and Test in Europe (DATE 2006), Munich,
Germany, pp. 53-58, March 2006.

[15] C.-L. Wey and F. Lombardi, “On the repair of redundant RAMs.” IEEE
Trans. on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 6, No. 2, pp. 222–231, March 1987.

[16] Y. Zorian, „Embedded memory test & repair: infrastructure IP for SoC
yield.“ Proc. IEEE Int. Test Conf. (ITC), Baltimore, MD, USA, pp.
340-349, October 2002.

[17] Y. Zorian, S. Shoukourian, “Embedded-Memory Test and Repair:
Infrastructure IP for SoC Yield.” IEEE Design & Test, Vol. 20, No. 3,
pp. 58-66, May/June 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

