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Abstract—An efficient on-chip infrastructure for memory test 

and repair is crucial to enhance yield and availability of SoCs. A 

commonly used repair strategy is to equip memories with spare 

rows and columns (2D redundancy). To avoid the prohibitive 

storage requirements for failure bitmaps and the complex data 

structures inherent in most algorithms for offline repair analysis, 

existing heuristics for built-in repair analysis (BIRA) either use 

very simple search strategies or restrict the search to smaller 

local bitmaps. Exact BIRA algorithms work with sub analyzers 

for each possible repair combination. While a parallel implemen-

tation suffers from a high hardware overhead, a serial implemen-

tation leads to increased test times. Recently an integrated built-

in test and repair approach has been proposed which interleaves 

test and repair analysis and supports an exact solution with mod-

erate hardware overhead and reasonable test times. The search is 

based on a depth first traversal of a binary tree, which can be 

efficiently implemented using a stack of limited size. This algo-

rithm can be realized with different repair strategies guiding the 

selection of spare rows or columns in each step. In this paper the 

impact of four different repair strategies on the test and repair 

time is analyzed. 

 

I. INTRODUCTION 

State of the art systems-on-a-chip (SoCs) typically devote a 
large percentage of the chip area to various kinds of memory 
cores. According to the International Roadmap for Semicon-
ductors (ITRS) the percentage of memory in SoCs will con-
tinue to increase rapidly [6]. At the same time the shrinking 
feature sizes will lead to increasing parameter variabilities and 
a high susceptibility to defects. As memories are traditionally 
designed with more aggressive design rules than logic cores, 
they play a crucial role for the yield and reliability of a SoC. 
Embedding the necessary infrastructure for a built-in test and 
repair is essential to achieve acceptable yields and to guaran-
tee a satisfactory availability in the field [16, 17]. 

Memory repair relies on spare elements at different levels 
of the design hierarchy. The most common form of redun-
dancy, however, is 2D redundancy where both spare rows and 
spare columns are added to the memory [1, 4, 5-9, 11-15]. 
Usually the repair process for 2D redundancy consists of sev-
eral steps. First the memory is tested, and the information 
about faulty elements is collected in a failure bitmap. Then re-

pair analysis attempts to find an allocation of spare elements, 
such that all faults are covered at minimum cost. As a result 
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either the memory is identified as not repairable or a repair 

signature is obtained which is the basis for soft or hard repair.  
Strategies for 2D repair analysis have been investigated for 

more than two decades. However, the classical approaches 
have been developed for offline test and repair analysis and 
cannot be directly applied on chip [2, 4, 8, 13, 15]. Neverthe-
less, they provide the foundation for built-in repair analysis 
(BIRA). In particular, Kuo and Fuchs have shown that the 
problem of optimal 2D redundancy allocation is NP-complete, 
and they have also proposed a systematic branch and bound 
approach based on a binary search tree [8].    

To avoid the storage of large failure bitmaps and complex 
data structures for organizing the search, most approaches for 
built-in repair analysis either follow only very simple search 
strategies or they rely on divide and conquer techniques [1, 5, 
11, 14]. Divide and conquer strategies address both the mem-
ory itself, as proposed in [1], and the failure bitmap, which is 
replaced by a local failure bitmap in [5, 14]. 

CRESTA is a pioneering BIRA approach, which guarantees 
to find the optimal solution [7]. Similarly as the early work in 
[8] it is based on a binary search tree, but to reduce the search 
time and to simplify algorithmic control a separate sub ana-

lyzer is implemented for each path in the search tree. This way 
all possible solutions can be analyzed in parallel. However, the 
hardware cost grows rapidly with the number of redundancies. 
For a memory with r redundant rows and c redundant columns 
b(r + c, r) sub analyzers are needed, where b(n, k) denotes the 
binomial coefficient n over k. Processing of the b(r + c, r) sub 
analysis tasks serially as mentioned in [12] can reduce the 
hardware cost, but leads to very high test and analysis times. 

Recently an integrated built-in test and repair approach has 
been proposed which performs repair analysis concurrently 
with test application [10]. This way an optimal solution can be 
found without any failure bitmap. The basic algorithm per-
forms a depth first traversal of a binary search tree and is im-
plemented with a stack of size r + c. It is combined with a 
strategy to continuously reduce the problem complexity re-
quiring two content addressable memories (CAMs) with only 
2r·c entries, each. The depth first traversal can be realized with 
different repair strategies guiding the selection of spare rows 
or columns in each step. Depending on the repair strategy the 
way to find the optimal solution, and particularly the number 
of backtracks, may vary. Since backtracking in the search tree 
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requires a restart of the test, the repair strategy has impact on 
the overall test and repair time. 

This paper presents an experimental study to analyze the 
impact of the selected repair strategy on the overall test and 
repair time. Before the experimental setup and the achieved 
results are described in detail in section III, the integrated 
built-in test and repair approach presented in [10] is briefly 
summarized in section II. 

II. AN INTEGRATED BUILT-IN TEST AND REPAIR APPROACH 

As pointed out above, the integrated built-in test and repair 
approach proposed in [10] interleaves test generation and re-
pair analysis and relies on the depth first traversal of a binary 
search tree, which is guided by a user-defined repair strategy. 
Since there is no global failure bitmap, backtracking in the 
search tree requires a restart of the test, and therefore the 
number of backtracks is directly correlated to the test and re-
pair time. To show the interdependence between the selected 
repair strategy and the overall test and repair time, the fol-
lowing description concentrates on the algorithmic aspects. 
Details on the hardware implementation are explained in [10].  

A. Memory Repair as a Binary Search Problem 

In their early work Kuo and Fuchs have already shown how 
to organize the problem of 2D memory repair as binary search 
[8]. The underlying concepts and principles are explained with 
the help of the small example memory shown in Fig. 1.   

 
Fig. 1: Example 8 8-bit memory (2x2 spares) with several faulty locations. 

The memory of Fig. 1 is equipped with two spare rows and 
two spare columns, and the binary search tree of Fig. 2 repre-
sents all possible repair configurations exploiting these resour-
ces. Each edge in the tree corresponds to a repair decision 
“row repair” (R) or “column repair” (C) for a fault in the 
memory. A leaf is reached when a successful repair scheme is 
found or no more repair resources are available. In case of a 
successful repair, the path from the root to the leaf provides 
the repair signature. The highlighted path in Fig. 2 leads to a 
successful repair configuration, which is the only solution for 
this small example. For this path the edges are also labeled 
with the address of the first fault covered by the spare.  

For a memory with r redundant rows and c redundant col-
umns the maximum height of the tree, i.e. the maximum 
length of a path from the root to a leaf node, is r + c. The leaf 

nodes in a complete search tree correspond to all solutions 
using all resources. As there are r rows distributed among r + 
c spares, there are b(r + c, r) leaf nodes in a tree enumerating 
all possible repair configurations.  

 
Fig. 2: Complete search tree for the memory of Fig. 1. 

To reduce the size of the search tree Kuo and Fuchs propose 
to perform a “must repair” phase before starting the binary 
search [8].  

Observation 1 (“must repair”): For a memory with r redun-
dant rows and c redundant columns the following repair deci-
sions are mandatory: If there are more than c faults in a row, 
then there are not enough columns to cover all the faults, and a 
row must be selected for repair. Similarly, more than r faults 
in a column require a column repair. 

B. Basic Algorithm and Repair Strategies 

The basic algorithm presented in [10] also uses a binary 
search tree, but it interleaves test and repair analysis, i.e. 
whenever a new fault is detected during test, a (preliminary) 
repair decision is made and a new node is added to the search 
tree. If backtracking from node w to v in the search tree is 
necessary, the preliminary repair decisions between the two 
nodes must be cancelled and the test must be restarted with the 
(partial) repair signature corresponding to node v.  

To allow a low cost hardware implementation the binary 
search tree is traversed following a “depth first” strategy, be-
cause in this case a stack is sufficient, which doesn’t grow 
larger than the height of the search tree [3]. The core of the 
resulting on-chip infrastructure for repair analysis is thus a 
repair stack with at most r + c records. 

The complete test and repair process, which is referred to as 
basicSolve, is illustrated for the small example memory of Fig. 
1. If the test analyzes the memory row by row, then the faults 
are detected in the order (1, 2), (3, 4), (4, 4), (5, 1), (5, 6), (6, 
0), and (7, 0). To fully determine the search process, a repair 
strategy must be selected. A very simple solution is to prefer 
one spare type, e.g. to follow a “row first” strategy. In this 
case the search proceeds as shown in Fig. 3, where the nodes 
of the tree are labeled in the order of traversal. Since rows are 
the preferred spare parts, they are used to repair the first two 
faults at addresses (1, 2) and (3, 4). Then only spare columns 
are left for the faults at addresses (4, 4) and (5, 1), which are 
detected next. When the fault at address (5, 6) is detected, no 
more resources are available, and the search backtracks to 
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node number 2 in the search tree. The test is restarted with a 
row repair for the fault at address (1, 2) as partial repair sig-
nature. When the fault at address (3, 4) is detected again, a 
column repair is selected. Then the test and search process 
continues with a row repair for the fault at address (5, 1) and a 
column repair for the fault at address (6, 0). A first solution 
corresponding to the leaf node number 8 is found.  

 
Fig. 3: Depth first traversal using the “row first” repair strategy. 

To improve this solution, a repair configuration consisting 
of only 3 spares must be found, i.e. a path can be terminated as 
soon as it has reached length 3. In the example, the traversal of 
the rest of the tree does not reveal any other solutions. 

If a balanced use of spare parts is preferred, for example to 
provide a flexible basis for future repairs, the repair strategy 
can be changed to select the spare type with the most re-
sources. The resulting search tree is shown in Fig. 4 (in case of 
a tie the preference is given to rows as above). 

 
Fig. 4: Depth first traversal using the balanced repair strategy.  

With the balanced repair strategy, the first path already 
leads to the leaf node corresponding to the only solution. A 
first solution is reached in one pass without any restart of the 
test. As explained above for the remaining search only paths 
of length 3 have to be considered. Comparing the two exam-
ples shows that the repair strategy can also have an impact on 
the number of search nodes and the number of restarts needed 
to reach the first or the optimal solution. Other repair strate-
gies are for example “column first” or random. 

C. Continuous Reduction of the Search Space 

In the basic algorithm of section II.B, each backtrack in the 
search tree requires a restart of the test. To guarantee accept-
able test and repair times, it is therefore crucial to keep the 
number of backtracks low. The must repair criterion stated in 

Observation 1 provides the basis to achieve this goal. How-
ever, it is not restricted to a single preprocessing step as in 
many other BIRA approaches. As each repair changes the 
number of available spares, new situations fulfilling the must 
repair criterion may occur after a repair step. In particular, 
after a must repair step other must repair decisions may be 
necessary. Therefore, a dynamic must repair analysis is per-
formed as a preprocessing step and after each repair decision. 

For an efficient hardware implementation an intelligent 
fault list manages fault addresses. It consists of a table for row 
addresses and a table for column addresses, each of which is 
realized by a small CAM of size 2r·c. During test, each de-
tected fault address is compared against the contents of the 
two CAMs. If the number of faults with the same row address 
has already reached c, then, with the new fault, the must repair 
criterion for a row repair is fulfilled. Similarly, if the number 
of faults with the same column address is r, a column repair 
becomes mandatory. After the corresponding repair, a dyna-
mic must repair analysis is carried out for all faults in the fault 
list with the updated values for r and c. 

If neither a row nor a column must repair can be triggered, 
the row address of the new fault is stored in the row table, and 
the column address is entered in the column table. The maxi-
mum number of fault addresses which can be collected with-
out invoking a must repair is 2r·c [5]. Therefore it is sufficient 
to select 2r·c as the memory size both for the row and for the 
column table. This observation is also useful for pruning the 
search tree and for the early identification of non-repairable 
memories. If both tables are full, and a new fault is detected 
without leading to a must repair, then the memory is proven to 
be non-repairable and the search can be stopped. The basic 
algorithm of Section II.B combined with the proposed strategy 
is called intelligentSolve. Similar as for basicSolve, the selec-
tion of a repair strategy may also have an additional impact on 
the number of search nodes and the number of backtracks. 

III. EVALUATION OF REPAIR STRATEGIES 

In [10] it has been shown that the dynamic must repair 
analysis considerably decreases the test and repair time. How-
ever, the evaluation has been restricted to a “row first” repair 
strategy. The analysis presented in this paper focuses on the 
additional impact of the repair strategy on the overall test and 
repair time. Because a restart of the test is invoked by each 
backtrack, the overall test and repair time can be roughly esti-
mated as T = b · t, where b denotes the number of backtracks 
or restarts, and t denotes the duration of a single test. It should 
be noted that this estimation is pessimistic, as in most cases a 
restart will be invoked before the current test is completed. 

For the analysis presented in the sequel, both the algorithm 
intelligentSolve and a version of intelligentSolve stopping at 
the first solution (intelligentSolveFirst) have been simulated 
for a 1024 1024-bit memory with 5 spare rows and 5 spare 

columns. For each algorithm the repair strategies “row first”, 
“column first”, “balanced” and “random” have been compared 
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by repeated experiments with varying numbers and distribu-
tions of random defects. The number of random defects has 
been linearly increased ranging from one to fifteen. A random 
defect can result in a single faulty cell, a faulty row or column, 
a “line fault” consisting of several adjacent faulty cells in a 
row or column, or a cluster fault affecting up to 3 3 cells. The 

considered distributions of defect types are listed in Table 1. 
 

TABLE 1: DISTRIBUTION OF DEFECT TYPES. 

Distributions Defects 
d1 d2 d3 

Row 0.10 0.10 0.10 
Column 0.10 0.10 0.10 
Line Fault 0.10 0.20 0.40 
Cluster 0.05 0.10 0.20 
Single Cell 0.65 0.50 0.20 

 
Each experiment has been repeated 1000 times with ran-

domly generated addresses of the faulty locations. Since all 
the three defect distributions show similar trends, only the re-
sults for d2 are discussed in the following. Table 2 shows the 
number of restarts and the repair rates for intelligentSolve. The 
minimum value of restarts in each row is printed in bold face. 

 
TABLE 2: RESTARTS FOR INTELLIGENTSOLVE AND DEFECT DISTRIBUTION D2 

Restarts of the Test for Repair Strategy 
Defects Row 

First 
Column 

First 
Random Balanced 

Repair 
Rate 

1 2.006 2.001 2.002 2.022 1.000 
2 4.354 4.363 4.326 4.367 1.000 
3 7.456 7.424 7.363 7.290 1.000 
4 11.862 11.880 11.781 11.401 0.993 
5 17.528 17.226 16.652 16.045 1.000 
6 22.503 21.920 22.122 21.876 0.970 
7 28.839 28.378 28.658 28.606 0.873 
8 36.565 36.298 37.099 37.199 0.835 
9 38.030 38.054 38.424 39.111 0.753 

10 39.307 39.272 39.347 39.309 0.753 
11 29.934 29.945 29.942 29.946 0.047 
12 24.776 24.776 24.776 24.776 0.000 
13 16.733 16.733 16.733 16.733 0.000 
14 13.319 13.319 13.319 13.319 0.000 
15 10.768 10.768 10.768 10.768 0.000 

 
The strategy “random” yields the least number of restarts 

only in one case (2 random defects). The remaining results can 
be roughly divided into three classes. In the region where the 
defects allow a high repair rate over 90 % the balanced repair 
strategy provides the smallest number of restarts except for 
one case. When the repair rate goes down, the strategies “row 
first” and “column first” lead to shorter test times, and finally 
when no more repair is possible, all four strategies need the 
same time to prove this. Although there seem to be some 
trends in favor of specific repair strategies in certain situa-
tions, the absolute differences between the strategies are very 
small. However, each entry in Table 2 only shows the mean 
value for the results of 1000 random experiments. To get 
deeper insight into the behavior of the repair algorithm, it is 
necessary to analyze the distribution of results in more detail. 

For this purpose, Fig. 5 through Fig. 7 show some histograms 
of the results in the region where repair gets difficult, i.e. the 
repair rate is below 90 %. 

 
Fig. 5: Distribution of restarts for intelligentSolve and 7 random defects. 

 
Fig. 6: Distribution of restarts for intelligentSolve and 9 random defects. 

 
Fig. 7: Distribution of restarts for intelligentSolve and 11 random defects. 

The histograms show the frequencies of the different results 
achieved during 1000 experiments. First of all it can be ob-
served that the peaks are concentrated in the left corner of the 
histograms, which shows that the repair problem can be solved 
with a moderate number of backtracks in many cases. For 
example, for 7 random defects in more than half of the experi-
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ments a repair solution was found with less than 20 restarts 
(cf. Table 2). For 11 random defects the repair gets very diffi-
cult with a repair rate below 5%. But in this case, the dynamic 
must repair gets very effective and the number of restarts is 
reduced. As illustrated in Fig. 7, in about 175 cases the 
memory is identified to be non-repairable without any restart. 

 
TABLE 2: EXPERIMENTS WITH LESS THAN 20 RESTARTS FOR 

INTELLIGENTSOLVE  (FROM 1000 EXPERIMENTS) 

Number of experiments 
with less than 20 restarts 

Defects 
Row 
First 

Column 
First 

Random Balanced 

Repair 
Rate 

7 559 542 542 540 0.873 
9 403 401 395 394 0.753 

11 504 504 504 504 0.047 

 
However, regarding the impact of the different repair strate-

gies the histograms don’t show specific characteristics, and no 
significant interdependence between the repair strategy and 
the test and repair time can be confirmed for intelligentSolve.  

Nevertheless, this is not in contradiction to the example 
motivating this analysis in section II.B, where the main advan-
tage of the balanced search over the “row first” strategy was 
the quicker identification of a first solution. For the “row first” 
strategy it has already been shown in [10] that in most cases 
stopping at the first solution is a good alternative with respect 
to test and repair time and also provides good results with 
respect to the usage of spares. In the following the algorithm 
intelligentSolveFirst is therefore analyzed in more detail both 
with respect to test time and the quality of the solutions. 

 Similar as for intelligentSolve the average results cannot 
prove a significant difference between the different repair so-
lutions. Therefore only the histograms for hard to repair defect 
constellations are discussed. The histogram for 11 random de-
fects is not shown, because the repair rate is below 5% in this 
case, and most of the test and repair time is spent to identify 
the memory as non-repairable. This leads to a similar histo-
gram as the one shown for intelligentSolve in Fig. 7. But for 7 
and 9 random defects, where still a reasonable repair rate can 
be expected, some interesting observations can be made. As 
shown in Table 3, in the majority of the experiments only very 
few restarts are needed.   

 
TABLE 3: EXPERIMENTS WITH LESS THAN 9 RESTARTS FOR 

INTELLIGENTSOLVEFIRST (FROM 1000 EXPERIMENTS) 

Number of experiments 
with less than 9 restarts 

Defects 
Row 
First 

Column 
First 

Random Balanced 

Repair 
Rate 

7 920 923 928 924 0.873 
9 726 725 773 805 0.753 

11 327 334 329 333 0.047 

 
Therefore the x-axis of the histograms in Fig. 8 and Fig. 9 is 

cut off after 9 restarts to zoom into this region. The histograms 
show that in most of the cases intelligentSolveFirst needs only 
one restart to find the first solution. Furthermore, the balanced 

repair strategy has the highest peak for one restart and there-
fore offers the highest probability for a short test and repair 
time. 

 
Fig. 8: Distribution of the number of restarts for 7 random defects. 

 
Fig. 9: Distribution of the number of restarts for 9 random defects. 

In the experiments described above, also the necessary 
number of spares has been monitored. As expected, both the 
random and the balanced repair strategy on the average pro-
vide repair configurations with an equal number of rows and 
columns, while with “row first” and “column first” the pre-
ferred types are clearly dominating as long as not all resources 
are needed. As intelligentSolve guarantees to find the optimal 
solution, the overall number of spares in the optimal repair 
configuration is independent of the repair strategy. However, 
intelligentSolveFirst stops at the first solution, and the repair 
strategy may also influence the quality of the solution.  Fig. 10 
compares the overall number of used spares for intelligent-

Solve and intelligentSolveFirst with the 4 different repair 
strategies. The curves representing the average results norma-
lized to the results of intelligentSolve (optimal solution) allow 
two observations. Firstly, the solutions provided by intelligent-

SolveFirst need at most 20% more spares than the optimal 
solution. Second the balanced repair strategy leads to the best 
solutions in all cases. Again the average numbers can show 
some trends, but a better picture is obtained by analyzing ab-
solute repair qualities in more detail. For more than 8 random 
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defects both intelligentSolve and intelligentSolveFirst need 9 
or 10 spares in most cases. For 7 and 8 random defects there is 
already a wider spectrum of results, and Fig. 11 shows the 
histogram for 7 random defects as an example.  

 
Fig. 10: Used resources for intelligentSolve and 7 random defects. 

 
Fig. 11: Used resources for intelligentSolveFirst and 7 random defects. 

In the majority of the experiments (750/1000) the optimal 
solution found by intelligentSolve requires 7 spare elements. 
Using intelligentSolveFirst with a balanced repair strategy 
cannot provide exactly the same quality, but in around 700 of 
1000 experiments a solution with 7 or 8 spares is possible. In 
contrast to that, “row first” can find a solution with 7 or 8 
spares only in around 520 cases. These results just put a spot-
light on the absolute quality of the repair solutions, and a gen-
eralization is difficult, but they already show that the differ-
ences indicated by the average numbers are not negligible.  

IV. CONCLUSIONS 

The integrated built-in test and repair approach proposed in 
[10] interleaves test and repair analysis to support an optimal 
solution for 2D memory repair at low hardware cost. It is 
based on the depth first traversal of a binary tree, and the test 
and repair time is mainly determined by the number of back-
tracks. The traversal is guided by a repair strategy, and differ-
ent strategies can lead to different repair times. The experi-

mental analysis of the strategies “row first”, “column first”, 
“random” and “balanced” in this paper shows that a careful 
selection of the repair strategy becomes important when the 
search is stopped at the first solution to reduce the repair time. 
In particular for defect constellations where the memory is 
hard to repair but a reasonable repair rate can still be expected, 
the balanced repair strategy can help to find a solution in very 
short time. Furthermore, balanced repair more often provides 
solutions close to the optimal solution. If not all spares are 
needed, balanced repair also provides a more flexible basis for 
future repairs in the field.   
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