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Abstract—We present a technique for making a circuit ready for
logic built-in self test by masking unknown values at its outputs. In
order to keep the silicon area cost low, some known bits in output
responses are also allowed to be masked. These bits are selected
based on a stuck-at -detection based metric, such that the impact
of masking on the defect coverage is minimal. An analysis based on
a probabilistic model for resistive short defects indicates that the
coverage loss for unmodeled defects is negligible for relatively low
values of .

Index Terms—Defect coverage, logic built-in self test (BIST), re-
sistive bridging faults (RBFs), X-masking.

I. INTRODUCTION

BUILT-IN self test (BIST) solves many of today’s testing
problems, including pin throughput issues, complexity of

test programs and test application at speed, and enables in-field
testing [1]. While BIST became industry standard for memo-
ries in the 1990s [2], there are still some obstacles for its ap-
plication to random logic. One class of circuits that are difficult
to handle using logic BIST (LBIST) consists of those that pro-
duce unknown values (X values) at the outputs. Sources of un-
known values include tri-stated or floating buses, uninitialized
flip-flops or latches, signals that cross clock domains in circuits
with multiple clock domains, and X values coming from analog
or memory blocks that are embedded in the random logic circuit.
If an unknown value is fed into a test response evaluator (TRE),
the signature can be affected. For the most popular TRE, the
multiple input signature register (MISR), a single X value in-
validates the whole signature.

This problem has been attacked from two directions. First,
X-tolerant compactors, i.e., TREs that are less vulnerable to X
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values, have been proposed, including X-COMPACT by Intel
[3] and Convolutional Compactor by Mentor Graphics [4]. The
second solution puts no restriction on the type of TRE used.
The unknown values that appear at the outputs of the circuit are
masked out by additional logic, such that only known values are
fed into the TRE [5]–[8]. X-tolerant compactors are space com-
pactors. They are typically designed such that they can tolerate
a certain number of Xs in addition to a number of faulty bits.1

While their area overhead is larger than for space compactors
without X tolerance, the exact overhead is a function of the as-
sumed maximal number of X values which can be present at
the same time. In contrast, masking is test set specific. It can be
used with space or time compaction. Its overhead depends on
implementation, e.g., whether any information is stored in the
tester [7]. It can be employed in a scheme that protects intellec-
tual property (IP). The technique proposed here is of the second
type, although it tackles problems which also exist for X-tol-
erant compactors, as will be explained below. The X-masking

logic (XML) is introduced between the circuit under test (CUT)
and the TRE. It consists of OR gates and synthesized control
logic. The first input of each OR gate is connected to an output
of the CUT, while the second input originates from the control
logic. When the control logic produces a logic-1, the output of
the OR gate is forced to logic-1, and hence the response of the
CUT is masked. The control logic is a combinational function
that uses as inputs the pattern counter and bit counter, which are
generally part of the LBIST test control logic for controlling the
number of applied patterns and the scan shift/capture cycles.

In principle, it is possible to mask out only the unknown
values in the response and to leave unchanged all the other
values. However, masking the unknown bits exactly would re-
sult in high silicon area cost of XML. Furthermore, this is not
necessary, as the vast majority of faults are detected by many
different patterns. Fig. 1 shows the number of detections per
stuck-at fault for the ISCAS circuit s5378, which is also repre-
sentative for other circuits. It indicates that not all known bits are
actually required for detection. Hence, we allow also some of the
known bits to be masked out, in a way that the stuck-at fault cov-
erage is not compromised (earlier works also used this approach
[5], [6]). However, the coverage of unmodeled defects might be
affected by masking out known bits. To reduce the likelihood of
coverage loss for unmodeled defects, we introduce more conser-
vative requirements for allowing a known bit to be masked out.

1They may be effective in presence of a higher number of Xs or faulty bits
with a certain probability. See [9] for a detailed study of such probabilities in
case of convolutional compactors.
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Fig. 1. Number of detections for stuck-at faults of s5378 (1000 random
patterns).

The requirements are based on -detection [10], [11] that has
been demonstrated to lead to test sets with high defect coverage
(a recent study is reported in [12]). In general, introducing XML
will lower the number of times a stuck-at fault is detected (even
if each fault is still detected at least once). For a given param-
eter , the number of detections for a stuck-at fault must
not decline below due to masking. For instance, assume that
a stuck-at fault is detected five times without masking of known
bits, and let be 3. Then, it is acceptable that the number of de-
tections with XML drops to 4 or 3, but not below. Increasing
leads to a higher number of stuck-at fault detections (and hence
hopefully to a better coverage of unmodeled defects) but also to
larger silicon area for the XML.

In this article, we study the impact of masking on unmod-
eled defects for the proposed architecture. For this purpose, we
consider resistive bridging faults (RBF) [13], [14] as surrogates
of unmodeled defects. The RBF model [15]–[17] takes into ac-
count several nontrivial electrical properties of resistive defects,
such as pattern dependency. Using the simulator from [17], we
compute the RBF coverage with and without masking of known
bits. Note that the information on RBF coverage is not available
to the XML synthesis procedure, which is guided by stuck-at
detection information only. For different values of we obtain
different implementations of XML which trade off unmodeled
defect coverage vs. silicon area cost. It turns out that the differ-
ence in RBF coverage with and without XML is not significant,
and for it practically disappears.

Current advanced X-masking solutions employ <DEFINE
LFSR.> LFSRs in combination with reseeding [6], weight as-
signment to individual stages of the LFSR [8] or reseeding with
tester support [7]. For a given set of responses, an LFSR gen-
erates control signals for masking. Similar to our method, the
technique from [6] accepts masking of some of the known bits
as long as the stuck-at fault coverage is not sacrificed. The LFSR
seeds are stored on-chip. However, the issue of unmodeled de-
fects is not dealt with in the mentioned papers. In contrast, we
use -detection information and study, for the first time, the

trade-off between unmodeled defect coverage and the size of
the logic. It turns out that the proposed XML requires less area
than the LFSR-based architecture from [6], although we use a
higher probability of X appearance.

Although our article focuses on X masking, the potential de-
crease of unmodeled defect coverage is also an issue for X-tol-
erant compactors [3], [4]. They are based on connecting a cir-
cuit output to multiple XOR trees. As a consequence, unknown
values on outputs may invalidate detections on circuit outputs
connected to the same XOR gates. Providing more compactor
outputs (XOR trees) will increase the circuit area and reduce the
probability that a defect is missed. Hence, the trade-off between
area cost and unmodeled defect coverage, which is under inves-
tigation in this article for the case of X masking, exists also for
X-tolerant compactors.

The remainder of the article is structured as follows: In Sec-
tion II, the XML is introduced and its synthesis is explained.
Essential information on the RBF model is summarized in Sec-
tion III. The experimental setup is described and the results are
reported in Section IV. Section V concludes the article.

II. X-MASKING LOGIC

A. Problem Formulation

Let the CUT have outputs, and let the test set consist of
patterns. Let the responses of the CUT be ,

, , where is
the value that appears at the th output of the CUT as a response
to the th test pattern in absence of any fault. The term “output”
stands for “primary output” for combinational and nonscan se-
quential circuits, scanout ports for full-scan circuits and primary
outputs and scan-outs for partial-scan circuits. We are looking
for a function such that
if (i.e., all unknown values are masked). Furthermore,
some that are important for preserving the fault coverage
(called relevant bits) must not be masked ( must
hold for these bits). In general, there are several possibilities to
select the set of relevant bits such that the desired fault coverage
can be achieved. The size of X-masking logic depends on the
number and exact positions of relevant bits. The algorithm for
selection of relevant bits in a way that leads to compact XML
blocks will be explained in Section II-C. For values of ,
for which and which are not among the relevant bits,
XML is allowed to assume either 0 or 1. This degree of freedom
is utilized for minimizing the XML logic, as introduced next.

B. Implementation

We describe the implementation of XML for deterministic
LBIST (DLBIST) based on bit flipping [18], [19]. However, the
technique does not impose any constraints on the used pattern
generator and TRE. Thus, it can be adapted to other LBIST ar-
chitectures or test compression.

Fig. 2 shows the DLBIST architecture without XML. An
LFSR is used as the source of random patterns. In order to
achieve the desired fault coverage, some of the bits produced
by the LFSR are inverted, which is controlled by bit-flipping

logic (BFL) (referred to in [20] as bit-fixing logic). BFL is
a combinational block that takes the LFSR state, the pattern
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Fig. 2. DLBIST without XML.

Fig. 3. DLBIST with XML.

number (from the pattern counter) and the bit number (from
the bit counter) and selects the LFSR outputs to be inverted by
driving a logic-1 at the inputs of the corresponding XOR gates.
The responses of the CUT are fed into a MISR.

The DLBIST architecture with XML is shown in Fig. 3. Sim-
ilarly to BFL, XML is a combinational logic block that has the
LFSR state, the pattern number and the bit number as inputs.
XML provides control signals to the OR gates between the CUT
and the MISR. A bit is masked iff XML generates a logic-1 at
the corresponding OR gate. Note that XML is not on the critical
path of the CUT. The impact on the circuit delay is due to the
added OR gates only, as long as the delay of XML does not ex-
ceed the delay of CUT itself.

The problem to synthesize the XML can be formulated as an
instance of logic synthesis with don’t care (DC) sets.[21]. The
value at the th output of the CUT when the th test pattern is
applied is uniquely determined by the triple (LFSR state, pattern
number, bit number), i.e., a state of (LFSR, pattern counter, bit
counter). With the notation of Section II-A, the logic synthesis
instance is composed as follows: the ON set consists of (LFSR,
pattern counter, bit counter) state triples that correspond to
with . The OFF set includes all those triples that corre-
spond to relevant bits (the description of how the relevant bits
are selected follows in Section II-C). All other triples constitute
the DC set.

Once the ON and OFF sets are known, logic synthesis can be
run. In general, compact ON and OFF sets will lead to smaller
logic, because a logic synthesis tool has more degrees of
freedom. While the ON set is given by the X values in the
responses, there are several alternative OFF sets, depending on
which bits are selected as relevant. Thus, both the number of

Fig. 4. Algorithm for selecting relevant bits.

relevant bits and the number of patterns they belong to should
be minimized.

C. Selection of Relevant Bits

For the sake of simplicity, we call a value at an output of
the circuit when a test pattern is applied a bit (so for outputs
and patterns there are bits). A subset of these bits has to
be selected as relevant bits that are excluded from masking. Re-
member that a triple (LFSR state, pattern number, bit number)
corresponds to a bit. The triples corresponding to relevant bits
are included into the OFF set of the logic synthesis problem for-
mulated above. If more bits are selected as relevant, the number
of fault detections, but also the silicon area cost is growing. As
an additional constraint, there is a parameter which is defined
as the minimal number of detections that must be preserved
when known bits are masked out. Obviously, a higher value of

requires more bits to be selected as relevant.
The selection algorithm uses the fault isolation table to select

relevant bits. The fault isolation table contains for each stuck-at
fault all bits for which it is detected when no XML logic is
introduced (the number of such bits is denoted as ). A bit is
said to detect a fault if the fault’s effect is observed at the output
of the circuit for the test pattern that corresponds to the bit. For
each fault , the number of detections must be guaranteed to
be at least . Note that if bits detecting a fault have
been selected as relevant, the actual number of detections will
typically be higher, because the XML could (but is not guaran-
teed to) leave other bits detecting this fault (but not selected as
relevant) unmasked.

The algorithm select_rel_bits is shown in Fig. 4. It constructs
the set RB of relevant bits such that each fault is detected by
at least bits from RB. This is done iteratively. In
each iteration, (Lines 2–10), a fault is picked and several bits are
selected as relevant, such that the fault is detected by a sufficient
number of bits ( number of detections of the fault ). The
selected bits might also detect other faults. This is checked in
Line 6. All faults whose number of detections is greater or
equal than the required number are excluded from
the fault isolation table (Line 7–8). Note that the fault from
Line 3 is always among these faults. The algorithm stops when
the fault isolation table is empty (Line 2).
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Fig. 5. Procedure for selecting relevant bits for a single fault (bit-based).

The sub-routine select_bits_for_fault (which is called
in Line 4 of Procedure select_rel_bits) has to select

relevant bits that detect the fault
(where is the number of detections of by bits selected for
other faults treated before ). The pseudo-code of Procedure
select_bits_for_fault is shown in Fig. 5. The goal is to select
bits from as few different patterns as possible. First, a suitable
pattern is selected according to cost function . Every pat-
tern is assigned a flag , with if any bit
from has already been selected as relevant and
otherwise. Let be the th pattern. Then

(1)

assigns lower cost to patterns already taken for some other
faults and to patterns that detect a high number of faults. Also,
patterns with a low number of unknown bits are preferred by

, because this helps to decouple unknown bits (ON set) and
relevant bits (OFF set). Bits detecting are collected (Lines 3
and 4). If there are less than bits, then bits from an additional
pattern are added (Line 2). At the end of the first stage, there is
a pool of at least bits (in at most patterns), from which
exactly bits are selected according to the cost function
(Line 6). of a bit (i.e., at the th output of the th pattern)
is defined as

(2)

prefers a bit position that corresponds to circuit output
and pattern such that the number of values for pattern
and other circuit outputs and for output and other patterns are
minimal. (Again, this is done in order to decouple the ON-set
from the OFF-set). The selected bits are added to RB in Line 4
of Procedure select_rel_bits in Fig. 4.

The computational complexity of Procedures select_rel_bits
and select_bits_for_fault is analyzed next. We assume that the
fault isolation table has been calculated as a pre-processing step
and hence the complexity to decide whether a fault is detected
at the bit is . Cost function can also be calculated
as a pre-processing step, so every call to has complexity

. The value of cost function depends on the flag New,

which is updated during the run time of the algorithm. Hence,
only the second and the third term in (1) can be calculated in
advance. The worst-case complexity of Line 3 of Procedure se-
lect_bits_for_fault is as it could be necessary to check all
the patterns. (Using known speed-up for priority queue imple-
mentation would not make the complexity logarithmic, as the
searched pattern must satisfy two conditions: minimal and
detection of fault .) Since this operation is repeated up to
times, Lines (1–5) have a complexity of . is up-
dated for every selected pattern. After Line (5), SB has less than

elements, out of which (having minimal ) have
to be selected. Using a heap representation, this can be done in

. The overall complexity of Procedure se-
lect_bits_for_fault is .

The loop in Lines 2–10 of Procedure select_rel_bits is re-
peated up to times, where is the number of faults. Line 3
requires if the FIT is represented by a heap. Overes-
timating by , the complexity of Line 4 is

. Lines 5–9 have a worst-case com-
plexity of ). The overall complexity of the method is

plus the pre-processing
time.

For comparison purposes, we implemented an alternative ver-
sion of Procedure select_bits_for_fault. For a given , it selects
all bits from at least patterns in which at least one bit detects
the fault. If there are less than such patterns then all the bits
from all the patterns are selected. If the number of such pat-
terns exceeds , selection is made based on the cost function

mentioned above. We refer to this relevant bits selection
method as “pattern-based,” while we call the method outlined
above “bit-based.” The pattern-based approach typically results
in more bits selected as relevant than the bit-based method for
the same value of .

The proposed algorithms can treat mid-size circuits such as
larger ISCAS benchmarks, because the complete fault isolation
table is calculated in advance. Methods which compute required
parts of the FIT on-the-fly may be required for industrial de-
signs.

III. RESISTIVE BRIDGING FAULT MODEL (RBF)

In this section, we provide a brief overview of the RBF model,
which is used as a surrogate of unmodeled defects in this article.
The material here is restricted to concepts necessary for under-
standing the analysis in this article; see, e.g., [17] for an in-depth
consideration.

The main difficulty when dealing with resistive faults is that,
unlike for the nonresistive case, there is an unknown value to
be taken into account, the resistance. This is because it cannot
be known in advance which particle will cause the short defect
corresponding to the bridge. Parameters like its shape, size, con-
ductivity, exact location on the die, evaporation behavior and
electromigration can influence the resistance of the short defect.
A short defect may be detected by a test pattern for one resis-
tance value, and the short between the same nodes may not be
detected by the same pattern for another resistance. This funda-
mentally changes the meaning of standard testing concepts, like
redundancy, fault coverage, and so forth.
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In order to handle this ambiguity, Renovell et al. [15], [16]
introduced the concept of analogue detectability interval (ADI)
and probabilistic bridging fault coverage. The ADI of a fault is
the range of bridge resistances for which the faulty logical value
is produced at one or more circuit outputs. It is calculated based
on electrical parameters of the logic gates at the bridge site. Most
ADIs are intervals of the type (i.e., there is a resistance
value such that all short defects between two nodes with
resistance below this value are detected and all other defects
between same two nodes are too weak to be detected), but the
existence of different types of ADIs has been demonstrated in
[16], [17].

The covered ADI (C-ADI) of a test set is defined as the union
of the ADIs of individual test patterns. Lobal ADI (G-ADI) is
the C-ADI of the exhaustive test set. Hence, C-ADI includes
all the bridge resistances for which the fault has been detected
by at least one test pattern, while G-ADI consists of all values
of for which the fault is detectable. If C-ADI of a test set
equals G-ADI, then this test set is as effective in detecting RBF
as the exhaustive test set. A bridging fault with resistance not in
G-ADI is redundant.

The RBF fault coverage (FC) [16], [17] is defined as

-

-

where is the probability density function of the short re-
sistance obtained from manufacturing data. Thus, FC relates
C-ADI to G-ADI, weighted by the likelihood of different values
of . In prior work, FC was referred to as G-FC to distinguish
it from approximative metrics.

We will use resistive bridge fault coverage FC in the experi-
ments of Section IV to estimate the impact of XML on the cov-
erage of unmodeled defects.

IV. EXPERIMENTAL RESULTS

We applied the XML synthesis approach to ISCAS 85 [22]
and combinational parts of ISCAS 89 [23] circuits. Table I
quotes the number of patterns in the test set (which are em-
bedded into the LFSR sequence), the number of outputs of a
circuit, its size in gate equivalents (GE) and the size of BFL.
Note that no BFL is required if the pseudo-random sequence
reaches 100% fault efficiency. As these circuits do not have
tri-state buses or multiple clock domains, they do not produce
X values at the outputs. Consequently, we assumed a scenario
when a preceding block induces unknown values at the cir-
cuit’s inputs. We used the test sets for stuck-at faults generated
by a commercial tool and randomly injected X values at the
inputs. Then, the X values have been propagated to the outputs
using three-valued logic simulation and resulting in realistic
correlations of unknown values at the outputs.

We performed two experiments: Experiment 1 and Experi-
ment 2. In Experiment 1, X values were randomly injected at
1% of the inputs. In Experiment 2, 3% of input values (instead
of 1%) were set to X. In order to obtain patterns with relatively
large and relatively small fractions of unknown values, we dis-
tributed X values as follows: we defined a random variable that
assumes values between 0 and 6 (with uniform probability). For

TABLE I
INFORMATION ON THE EMPLOYED CIRCUITS

a pattern, we first assign a random value between 0 and 6 to .
Then, we set of the positions in the pattern to X (resulting,
on average, in 3% unknown values across the patterns).

Logic synthesis has been performed using a tool based on
BDD’s (binary decision diagrams) developed at the University
of Stuttgart in cooperation with Philips. Details on the logic syn-
thesis procedure can be found in [24] (some of the features de-
scribed in that paper were not available when the experiments
were performed). For selecting relevant bits, we employed both
the bit-based and the pattern-based approach (explained in Sec-
tion II-C) with different values of .

A. Experimental Setup

In order to estimate the impact of XML on the coverage of
unmodeled defects, we simulated RBFs (see Section III) in the
circuits with and without XML. The fault set consisted of 10 000
randomly selected nonfeedback faults (i.e., those that do not in-
troduce asynchronous or combinatorial loops into the circuit),
where available. For calculating the RBF coverage FC, we em-
ployed the density function derived from one used in [25]
(which is based on the data in [13] and assigns lower proba-
bility to higher values of bridge resistance).

The RBF model cannot handle unknown values at circuit in-
puts in a meaningful way because the detection conditions are
affected by the input values even if one of the inputs has a con-
trolling value. Hence, we perform a Monte–Carlo simulation
of the circuit with and without XML. The X values in the test
set IP are set randomly, resulting in a test set . Resistive
bridging fault simulation is performed with test set without
unknown values. The simulation is repeated 100 times with test
sets . (All known bits in are preserved in
every , and the X values are set randomly.) The average RBF
coverage over is determined then.

Fault detections at some of the output bits should not be ac-
counted for. In absence of an XML, the output bits which are
X values do not contribute to detection. We refer to the test set-
ting without an XML as to the base scenario, and we denote the
output bits with unknown values as . If an XML is present,
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Fig. 6. Monte–Carlo estimation of unmodeled defect coverage.

then no detection is possible at the masked bits. Several different
architectures of XML are synthesized, using the bit-based and
the pattern-based approach and different values of , and the
XML silicon area cost is determined for these architectures. Let
the number of these architectures be , and let be the set of
bits masked by the th XML . (Note that
always holds).

In order to account for masking, we modified the RBF sim-
ulator from [17] such that fault detections by some patterns
at some outputs are excluded from consideration. Procedure

simulates the test set (which is not al-
lowed to have X values) not accounting for the detections at the
bits specified by .

The exact flow of the experiment is shown in Fig. 6. For
each of 100 test sets (which have been obtained from the
original test set by randomly assigning the X values, Line
3), we perform a total of simulation runs. The first run
(Line 4) determines RBF coverage for the base sce-
nario (i.e., when the bits with unknown values at the out-
puts do not contribute to fault detection). The same is repeated
for every of the XML architectures, resulting in RBF cov-
erages (Lines 5–7). Note that

is always greater or equal than any . The dif-
ference is the indicator of the coverage
loss for unmodeled defects due to masking out known values
by the th XML. The averaged RBF values (indicated by super-
script ) are the output of the experiment (Line 8).

B. Results

Table II summarizes the results for the pattern-based rele-
vant bit selection procedure and and Experiment 1 (X values
randomly injected at 1% of the inputs), while Table III con-
tains the results when the bit-based approach has been used. The
first three columns give the circuit name, the number “Bits” of
bits masked out in the base scenario (which is the number of
X values at the output) and “FC,” the average global fault cov-
erage FC for the base scenario. The remainder of the table con-
tains the data on XML architecture. For various values of ,
the size of synthesized logic in GEs (“LS”), the number of bits
masked out (“Bits”), and the average global fault coverage FC

(’FC’) are reported. For three of the circuits (c3540, c6288 and
c7552), G-ADI required for calculating FC was not available.
For these circuits, G-ADI in the denominator is over-approxi-
mated by , where is the maximal bridge resis-
tance for which a faulty effect can be produced. Note that by
over-approximating the denominator the fault coverage may be
below its real value. However, the base scenario and all XML
measurements are affected by this to the same extent, so com-
paring them is still meaningful.

From the table, it can be seen that the logic size does grow
with , however much slower than . The RBF coverage loss
is not dramatic even for , but for the difference to
the base scenario is very small for most circuits. Note that the
silicon area cost for and is quite similar in most
cases.

Results of Experiment 2 with 3% unknown values (only for
the bit-based method) are reported in Table IV. The structure of
Table IV is identical to Table III. It can be seen that the coverage
drop is quite severe for for some of the circuits. In partic-
ular, for c0499 and c1355 the loss is a double-digit number. In
such cases, higher values of are required in order not to lose
too much of the unmodeled defect coverage.

Fig. 7 shows the trade-off between the number of masked bits,
the logic size and the RBF coverage in graph form for 1% and
3% unknown values.

The results suggest that for low fractions of unknown values
the XML synthesis procedure based on stuck-at fault detection
is quite effective. Even if no -detection properties are taken
into account , the RBF coverage loss is small: only
for two out of 20 circuits (s5315 and cs38584) in Table III the
coverage loss is more than 0.5%. For small , the coverage
loss becomes negligible: for , the coverage loss is below
0.2% for all circuits and it is over 0.1% for only three circuits,
as opposed to 17 circuits for . But for a higher percentage
of X values, preserving -detection is essential in maintaining
the coverage of unmodeled defects.

C. Comparison With Earlier Work

Table V compares our results with those of [6] (industrial
circuits not available to us have been used in [7], [8]). We quote
the results obtained using the bit-based method for relevant
bit selection and , because it corresponds to the goal
of [6] (to ensure that every stuck-at fault is detected at least
once without considering unmodeled defects or -detection).
Column 2 (“Pat”) quotes the number of required test patterns.
These patterns are embedded into a sequence of length 10 K.
We assume that the other patterns (irrelevant in terms of fault
detections) from that sequence are masked out completely, as
is also done in [6, (section 4.5)]. Column 3 contains the size
of XML generated by our approach in GE, not including the
logic for masking out the irrelevant patterns mentioned above.
The synthesis and cost of such logic is highly related to the
way deterministic patterns are embedded into the test sets
and is beyond the topic of this article. The percentage of
values among the output bits is shown in the fourth column
(it corresponds to from [6] and is obtained from the data
of Table III as (100% “Base Bits”)/(“Pat” “Outs”) for the
respective circuits).
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TABLE II
EXPERIMENTAL RESULTS, PATTERN-BASED RELEVANT BIT SELECTION (1% X VALUES AT THE INPUTS)

TABLE III
EXPERIMENTAL RESULTS, BIT-BASED RELEVANT BIT SELECTION (1% X VALUES AT THE INPUTS)

Column 5 (“SeqL”) of Table V contains the length of the se-
quence used in [6], including those test patterns that are masked
out completely using the technique from Section 4.5 in that
paper; hence, the comparability with column “Pat” is limited.
In column 6, stuck-at fault coverage achieved by the patterns
used in [6] is quoted (in contrast to these numbers, the fault ef-
ficiency of the patterns employed in this work is always 100%).

The remainder of Table V summarizes the silicon area cost
of the architecture from [6] that should be compared with the
numbers in the third column. [6] reports results for ,
0.1% and , where is the percentage of the output
values set to randomly. Note that we set the input values to

with a probability larger than 0.2% and thus end up with more
values at the outputs, which are also correlated in a realistic

way (their percentage is quoted in column 4). For each , the
number of seeds and the number of stages in the LFSR
is quoted in [6]. We assume that the logic size of the overall

architecture from [6] in gate equivalent is calculated according
to the formula

(3)

We count a flip-flop as six GE: two gates for the RS circuit,
three gates for the multiplexer, and one gate for edge handling.
We assume that there are two XOR gates to implement feedback,
and we count an XOR gate as one GE, which is an under-ap-
proximation. Hence, the LFSR totals . We use the
number and not the higher number in calculation in order to
reflect the use of the technique from [6, Section 4.5]. Note that
the LFSR is not used for random pattern generation; it is a re-
source present exclusively for the purpose of masking X values.

bits have to be stored on-chip (reseeding information); we
assume a PLA implementation and count one bit as 1/4 GE. We
neglect the control logic for loading seeds from the PLA into
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TABLE IV
EXPERIMENTAL RESULTS, BIT-BASED RELEVANT BIT SELECTION (3% VALUES AT THE INPUTS)

Fig. 7. Results for c1355. (a) Number of masked bits and logic size as function of (1% Xs). (b) RBF coverage and logic size as function of (1% Xs). (c)
Number of masked bits and logic size as function of (3% Xs). (d) RBF coverage and logic size as function of (3% Xs).
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TABLE V
RESULT COMPARISON TO [6]

the LFSR and also the logic needed to implement the technique
from [6, Section 4.5].

The remaining columns of Table V contain the values of
and from [6] and the size of the logic in GE estimated using
(3). It can be seen that our solution most often requires less sil-
icon area cost despite a higher value of . Note that the results
obtained by the method from [6] might be improved by consid-
ering X values correlated in a realistic way (which is done in
this work by injecting unknown values at the inputs). However,
such results are not available for that method.

V. CONCLUSION

Logic blocks that produce unknown values at their outputs are
hard to deal with in a BIST environment, as the signature may
be corrupted by the unknown values. Masking the X values at
the outputs of such modules allows the use of arbitrary TREs,
including those vulnerable to X values. Since most faults are
detected by many patterns, some known bits can also be masked
without loss of stuck-at fault coverage.

We proposed a method to synthesize XML that works for
combinational, sequential, scan and partial scan circuits. It can
be integrated into any BIST architecture. While previous works
concentrated on sustaining the stuck-at coverage after masking,
we are using more conservative metrics based on -detection, in
order to preserve the coverage of unmodeled defects. To the best
of our knowledge, this is the first study that considers the effects
of X-masking on unmodeled defects. We estimated the cov-
erage of unmodeled defects using a sophisticated RBF model,
which accounts for pattern dependency. By varying , there is a
trade-off between the size of the synthesized XML and the cov-
erage of unmodeled defects. Relatively small values of were
sufficient to achieve practically the same coverage as with no
masking logic, as long as the fraction of X values to be masked
was relatively low. For a higher percentage of X values, sac-
rificing the -detection properties of the test set for the sake of
minimizing XML results in a significant drop in coverage of un-
modeled defects. In such cases, XML architectures synthesized
using a high value of should be used.
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