
Software-Based Self-Test of Processors under Power Constraints

Jun Zhou, Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart
Pfaffenwaldring 47, D-70569 Stuttgart, Germany

Abstract

Software-based self-test (SBST) of processors offers
many benefits, such as dispense with expensive test
equipments, test execution during maintenance and in the
field or initialization tests for the whole system. In this
paper, for the first time a structural SBST methodology is
proposed which optimizes energy, average power con-
sumption, test length and fault coverage at the same time.

Key words: Test program generation, processor test,

low power test

1 Introduction

The principle of the SBST involves generation, storage
and execution of a test program. Its main advantages are
reusability at all the stages of the system life cycle, dis-
pense with expensive test equipment, and low design for
testability (DfT) overhead.

Originally, SBST was implemented as a purely func-
tional test, which did not consider the structure of the core
under test (CUT) but relied merely on the instruction set
architecture (ISA) [1, 2]. It was mainly applied to systems
with discrete components. However, a structural fault
model was not explored, and test quality could not be
assessed sufficiently. The advent of embedded processors
and core-based designs exhibits more options. With the
availability of the structure of a processor, structural
automatic test pattern generation (ATPG) can be com-
bined with SBST. Thus, either core vendors may deliver
test programs validated by fault simulation, or users of
soft cores may generate such programs.

SBST techniques based on emulated LFSR schemes
were proposed and analyzed in [3]. In [4], a method for
translating module level structural test patterns into proc-
essor level instructions was presented, and appropriate
control and observation sequences were generated. In [5]
a method for test program synthesis maximizing structural
coverage was proposed. Recently, Li et al. introduced a
deterministic functional self-test scheme based on emu-

lated LFSRs [6, 7]. The previous work was improved
leading to shorter test times and less memory requirement
in [8]. Corno et al. presented a method for test program
synthesis based on genetic algorithms [9, 10]. Most of the
previous work targeted stuck-at faults, only recently were
SBST schemes developed for detecting delay faults, e.g.
[11, 12].

Structural testing maximizes switching activities
within a circuit, which leads to an increased power con-
sumption. Special care has to be taken in order to avoid
reliability problems, reduced yield or even overheating.
As a result, numerous DfT schemes are proposed to limit
test power dissipation [13, 14, 15]. Without circuit modi-
fication, power can also be reduced through an appropri-
ate test scheduling, proper test pattern optimization or
system frequency decrease. The SBST operates under the
functional mode so that it meets the peak power specifica-
tion of the system. Nevertheless, it is of great significance
for reliability reasons to optimize programs causing
above-average switching activities. If such a test is de-
ployed autonomously, not only average power but also
energy consumption has to be optimized.

On the other hand, there are many research efforts on
compiler techniques, which optimize code to restrict or
minimize power [16, 17]. These techniques are inadequate
for test programs, as they are implemented to retain pro-
gram semantics. Program semantics is only subordinate
from a test viewpoint where the main objective is to en-
sure or even maximize fault coverage, while power is
reduced. For the first time, the presented paper combines
structural SBST and software optimization for testing
processors under power constraints. A novel method for
test program synthesis is proposed which tackles fault
coverage, test length, energy and average power con-
sumption at the same time.

We arrange the rest of this paper as follows. The next
section presents an overview of the methodology and de-
scribes the method of automatic test program generation.
Section 3 details an algorithm on software power optimi-
zation which does not affect fault coverage. We apply the
approach to a 32-bit RISC processor in Section 4. A short
conclusion is provided in Section 5.

2 Test program synthesis

The overall methodology contains two procedures.
First, based on the gate-level structure of a target proces-
sor, a test program is generated to provide maximal fault
coverage with a short test length and low switching ac-
tivities. Afterwards, the instruction sequence is optimized
in order to minimize power consumption without sacri-
ficing fault coverage. Though the stuck-at fault model is
adopted in this paper, the method itself is applicable for
any other combinational fault models, e.g. delay faults
which require test pairs or sequences.

Fig. 1 elaborates the steps of test program synthesis. A
standard ATPG generates structural test patterns for com-
binational modules, which are subject to a compaction
process. The greedy algorithm takes fault coverage and
correlation into account: at each time a pattern is selected
which detects the largest number of faults yet undetected.
If more alternatives are available, the one with the highest
correlation measured by bit transitions is picked. The
compaction ends once the fault coverage reaches that of
the original test set. This step results in both test data re-
duction and potential energy and power savings without
loss of fault coverage. In the end, the test set is mapped
into instruction sequences using a template-based test
program synthesis.

Fig. 1: Methodology for test program synthesis

The synthesis targets the modules which contribute to
the major part of the processor area and structural fault
coverage. For a standard processor, these are the arithme-
tic logic unit (ALU), the register file (RF) and the pro-
gram counter (PC), as part of the control unit. We leave
out test generation for the other components of the control
unit which constitute deeply sequential logic and suffi-
cient fault coverage for these parts requires special design
for testability means, e.g. [18]. In the following para-
graphs, we explain the essential code and the template
structures similar to [7].

ALU:

Structural patterns for the ALU can be directly parsed
into equivalent instructions. Suppose an ALU with two
32-bit inputs and 3 control bits leads to the format

(A:<1:32>, B:<33:64>, S:<65:67>). Following this format,
we extract an instruction whose operands are defined by
the first 64 bits and the opcode is specified by the last 3
bits. Results are saved in general-purpose registers and
fully observable. However, observing status signals needs
particular instructions. For instance, instruction “JZ”
(jump-if-zero) is able to access the status signal “Z”,
which indicates whether or not the relevant input is zero,
and hence is used to make “Z” observable. Fig. 2 repre-
sents the common structure for applying an ALU pattern
using instruction sequences with parameters in brackets.

1) set $[x], [A] ;[A] parsed from <1:32>

2) set $[y], [B] ;[B] parsed from <33:64>

3) [op] $[z], $[x], $[y] ;[op] parse from <65:67>

4) save $[z], ([c_res]) ;make the result ob-
;servable

5) set $[f], 0 ;set the flag

6) jz $[x], [status] ;access the status sig-
;nal, jump to “status" if
;x is zero

7) set $[f], MAXINT

8) status:

 save $[f], ([s_res]) ;make the status ob-
;servable

Fig. 2: Generating test instructions for the ALU

Program Counter (PC):

Program addresses, used as targets for branch instruc-
tions, are patterns for this unit. The generalized code in
Fig. 3 applies a provided PC pattern for testing.

Fig. 3: Generating test instructions for the PC

Register file (RF):

A standard memory test, for instance the modified al-
gorithmic test sequence (MATS) designed for stuck-at
faults of memories [19], is able to achieve high fault cov-
erage for the RF. A short MATS type test is implemented
this way:

1) set all the registers to 0;
2) R0 = <01…01>;
3) execute Ri = Ri + R0, where i is from 1 to (n-1);
4) run Ri = Ri + Ri, where i is from (n-1) to 0.
Even more complex march tests may be implemented,

but we are already likely to detect many faults in the RF

1) set $[x], [PC] ;load the target

2) jump $[x] ;apply the pattern

3) .org [val_pc] ;[val_pc] parsed from the pc
;pattern

 PC:

 save $[x],([res]) ;make the target observable

ISA 1: ATPG

2: Pattern compaction

3: Template-based test program synthesis

Netlist

Test program

as a by-product of the ALU and the PC test if we allocate
registers in a uniform way.

The above mentioned tests are altogether embedded
into templates, each of which applies an ALU and a PC
pattern. The coverage for the RF is maximized by regu-
lating register allocation during template instantiation. PC
responses are accumulated to reduce memory accesses
[20]. In the head template in Fig. 4, whose instance is at
the beginning of the final program, an initial value is
loaded into a register specially for the PC test. Then an
ALU pattern is applied using the code conforming to the
structure in Fig. 2. The last two instructions apply the next
pattern to the PC.

Fig. 4: pseudo code of the head template

An intermediate template bears the similar structure as
that of the head, only replacing the first instruction with
the one, in our case “Add”, for accumulation of PC re-
sponses. Its instances appear in the middle of the test pro-
gram. Eventually, the accumulated response is stored in
the instance of an tail template.

We generate the test set, containing both deterministic
and random patterns, for the PC with the same size as that
of the ALU. The former are designed in a way to cause
transitions of the PC as many as possible, while the latter
are only generated when the number of deterministic PC
patterns is still less. The test program is generated by
stepwise template instantiation where all the values for
parametric fields are determined either by patterns or by
register allocation.

3 Power optimization

The proposed method reaches high fault coverage
based on knowledge about the gate level structure which
can also be used for estimating switching activities of
internal nodes of a circuit. If the layout is known as well,
we can even take into account capacitances and specify
power more accurately by weighted switching activities.
In both cases we get a much better estimation of dynamic
power dissipation than by merely considering transitions
in registers at the program model level [16].

The test program synthesis described above considers
already switching activities of the registers. Now, we tune
two more factors to optimize a test program. One is the
order of the instructions and the other one is defining un-
specified bits in instruction words.

3.1 Test-oriented reordering

Test-oriented reordering of instructions offers more
degrees of freedom than traditional optimization where
program semantics plays an important role. We explain
this difference with the help of the code below:

… …
1) set $0, 512
2) set $1, 65535
3) add $2, $1, $0
4) save $2, (result_0)
5) set $2, 324
6) set $4, 790
7) sub $2, $2, $4
8) save $2, (result_1)
… …

The dependence graph (DG) of the shown code in Fig.
5 (a) displays the dependencies imposed by program se-
mantics. Since most of the order is fixed, there are only
few degrees of freedom for reordering, for example ex-
changing instruction 1 and 2, and putting 6 somewhere
before 7.

Fig. 5: program-oriented and test-oriented reordering

However, viewing the same code as part of the ALU
test, we divide instructions into units, where a pattern is
loaded, applied, and relevant responses are stored. Such a
unit forms a test behaviour. For the above code, two test
behaviours are extracted in Fig. 5 (b). Obviously, fewer
restrictions exist, as reordering is possible within or even
across test behaviours if no conflict is introduced.

For computing the power consumption during optimi-
zation, we have two options: simulation-integrated or
model-based. The former uses a gate level power analysis
tool for controlling test program optimization. This ap-
proach is computationally expensive, and as an alternative,
the second method builds a reference model for a target
ISA in advance [21]. Once created, the model is reusable
for code optimization, and the real power savings rely
much on the quality of the model.

Here we illustrate steps towards constructing the power
model. We use Hamming Distances (HD) as a measure-
ment characterizing transitions due to an instruction pair
(i, j). The switching activities of the instruction register
(IR), the RF and the ALU are easily predictable. For ex-
ample, transitions TIR at the output of IR are related to
instruction coding, and those for the RF, TRF, and the

(a) DG

(b) Test behaviors

.org [PC_pattern0]
PC0:
 set $[x], [ini_pc] ;setup the context for pc test

… … ;ALU test conforming to the
 ;structure in Fig. 2
 set $[e], [PC1] ;load the next pc pattern
jump $[e] ;apply the pattern

ALU ,TALU, depends on runtime data. For an n-bit in-
struction word, TIR is:

1

0
(,) (,) () (1)n m m

IR i j i jm
T i j HD C C C C−

=
= = ⊕∑

For a RF with two outputs, Q0 and Q1, let Q0i and Q1i
be the values of output registers of instruction i,

0i jQ → and 1i jQ → be the temporary values due to (i, j). Then
we model TRF as:

(,) (0 , 0) (0 , 0)

 (1 , 1) (1 , 1) (2)
RF i i j i j j

i i j i j j

T i j HD Q Q HD Q Q

HD Q Q HD Q Q
→ →

→ →

= +

+ +

Transitions of the ALU depend not only on the inputs
(A, B, S) but also on the function it operates. For this
reason, we consider transitions both at the inputs and the
output (Q):

(,) (,) (,)

 (,) () (3),
ALU i j i j

i j i j

T i j HD A A HD B B

HD S S HD Q Q
= +

+ +

Hence, the problem to model average power consump-
tion A(i, j) due to inter instruction effects [17] for a given
instruction pair (i, j) is finding relations between A(i, j)
and the above depicted factors. We can base the work on
regression analysis, which is a standard statistical method
to investigate relationships between dependent and inde-
pendent variables. In our case, the dependent variable is
A(i, j), and independent variables are TIR, TRF and TALU,
that is:

(,) (, ,) (4)IR RF ALUA i j f T T T ε= +

ε represents approximation discrepancy. If a linear re-
lationship is assumed, we further specify the above for-
mula as:

0 1 2 3(,) (5)(,) (,) (,)IR RF ALUA i j T T Ti j i j i jβ β β β ε= + + + +

β0, …, β3 are coefficients to be determined by the proc-
ess of multiple regression analysis based on samples. A
sample is an observation of the dependent and the inde-
pendent variables. Equation (1) to (3) facilitate calculation
for the values of independent variables. According to [17,
21], we explore Equation (6) to obtain values for the de-
pendent variable, where

i jA +
stands for the measured av-

erage power consumption of the loop (i, j), while
iBaseA

and
jBaseA are the basic average power when instruction i

or j executes stand-alone:
1

(,) () (6)
2 i ji j Base BaseA i j A A A+= − +

The reference power model is built by the following
steps below:

− simulate programs consisting loops of individual
instruction to generate basic power costs

iBaseA ;

− simulate programs consisting loops of instruction
pairs to get values for power costs i jA +

;

− use Equation (1), (2), (3) and (6) to create samples
by considering each possible instruction pair;

− perform multiple regression analysis to determine
values for coefficients β0, …, β3.

Since we work at the gate level, the model accordingly
describes gate-level power consumption, offering closer
estimation than the bit-transition model at the program
level. A comprehensive statistical analysis for validating
the model and parameter was done in [21].

3.2 Unused bit setting

Many existing publications use don’t-care bits to re-
duce transitions in test patterns [22]. A similar idea is ex-
plored in our work at the instruction level. Fig. 6 exempli-
fies a specification for an Add operation in SPARC v8
[23].

Fig. 6: Specification of Add in SPARC v8

According to its format specification, ADD computes
“r[rs1]+r[rs2]” if the 13th instruction bit is set to 0, else an
immediate is used, and “r[rd]” holds the result. Every bit
in Format 2 has its particular meaning, specifying either
the operation code or relevant operands. On the contrary,
in Format 1, 8 bits starting from Bit 5 to Bit 12 are de-
fined as “unused” and assigned by default zeros. However,
in some cases it is more power efficient, if other values
are assigned to those bits. Our second optimization factor
takes advantage of this observation.

Given the ISA, we are able to identify don’t-cares
(DCs) of each instruction under consideration. For an
instruction pair (i, j), where i is fully specified, we anno-
tate DCs of j in a way that switching activities due to (i, j)
are minimized. The reference model built previously can
be used once again during DC specification.

3.3 The overall optimization methodology

Before optimization starts, the raw code is partitioned
into blocks, each of which is an instance of templates.
Then the overall algorithm works in two phases on a
block basis:

 Test-oriented greedy reordering. First, test con-
straints are extracted with the guidance of tem-
plate structures. Then we identify unscheduled in-

Assembly Language Syntax

add regrs1, reg_or_imm, regrd

Format 1:
10 rd 000000 rs1 i=0 unused(zero) rs2

31 29 24 18 13 12 4 0

10 rd 000000 rs1 i=1 imm

31 29 24 18 13 12 0

Format 2:

structions that do not violate extracted test behav-
iors and for each of them, based on the power
model, we compute their costs with respect to the
last scheduled code. Finally the instruction with
the minimal cost gets scheduled.

 DC specification for the instruction to be sched-
uled.

The overall process ends if all instructions are sched-
uled.

4 Experimental results

We apply the entire methodology to a 32-bit RISC
processor [24]. It is mainly made up of the following
functional components: the ALU, the RF with 32 gen-
eral-purpose registers, the PC, the IR, the control unit.
The design contains 14,244 logic gates including 1,088
sequential cells. Fault simulation reports 48,784 uncol-
lapsed stuck-at faults.

The evaluation framework is an extension of [6] to
support measurements of gate-level fault coverage and
energy consumption in terms of switching activities. Test
bench integrates the gate-level processor core and the test
program binary. During simulation, two kinds of informa-
tion are recorded. Primary inputs of the processor are
captured and translated into patterns which are later fault
simulated to evaluate the structural fault coverage.
Switching activities during simulation are tracked in a file
named Value Change Dump (VCD). Based on such file,
we can used commercial tools, e.g. Primepower [25], for
energy estimation, if layout information of the technology
is available. As an alternative, it is straightforward to sum
up recorded transitions and treat the final number as en-
ergy consumption for the simulated code directly.

Moreover, we set up our experiments as follows:
1) Perform ATPG for the ALU alone to provide the de-

terministic patterns. The test set achieves 99.90% fault
coverage of this module;

2) Implement a MATS test for the RF, which is used
together with programs generated in step 3 to 6;

3) Synthesize the test set generated in step 1 into a test
program (Ori.TP), which reflects the rudimentary quali-
ties of our algorithm;

4) Compact ALU patterns in step 1, and then synthe-
size the new set into a program (Compacted);

5) Reorder the code generated in step 4 under test con-
straints. The new code is later referred as Reordered;

6) Specify DCs of the code in step 5. The new code is
termed as X-filling.

7) In the absence of program synthesis algorithms e.g.
[8], we conduct a sequential ATPG for comparison. Since
the fault coverage is too low to accept, a program with
randomized instructions is added. The number of test cy-
cles for them together is equal to that of Ori.TP generated
in step 3.

Throughout the steps above, ATPG and program syn-
thesis last only a few seconds, while compaction accounts
for the major part of the time required. The statistics on
test are reported in Tab. 1. The column of Ori.TP indicates
that the test program achieves high fault coverage for the
targeted modules as well as for the entire processor.
Column four exhibits the identical data for the cases of
Compacted, Reordered and X-filling, which imply we
successfully retain the fault coverage during the two-stage
optimization for low power. Another conclusion is also
drawn that with pattern compaction, we reduce 30% test
cycles without distinct impact on the overall fault cover-
age. The combination of sequential ATPG and the ran-
domized program only yields low test quality. Sequential
ATPG alone leads to 18.14% processor fault coverage
with 1,457 test cycles, while the improvement by the
randomized program, which contributes to a much larger
portion of cycles, is not remarkable.

Tab. 1: Comparison in fault coverage and test cycles

 Ori. TP Optimized ATPG +
randomized

ALU 99.90% 99.90% 2.87%
PC 92.38% 92.38% 66.40%
RF 98.46% 98.03% 17.96%

Fault
cov-
erage

Proc. 96.70% 96.33% 19.64%
No. 13,886 9,628 13,886 Test

cycles Ratio 1.0 0.6935 1.0

Tab. 2 details the outcome regarding energy and aver-
age power consumption. The last four rows clearly show a
persistent reduction of these two parameters through
every optimization step. In particular, row three indicates
that compaction not only results in shortening test length,
which means energy reduction as well, but also in mini-
mizing average power dissipation by concerning switch-
ing activities of registers throughout the process. More-
over, as shown in the first row, our methodology also
outperforms the combination of the sequential ATPG and
the randomized program in this aspect. According to the
experiment, the sequential ATPG patterns causes
1,215,280 transitions in total, which consequently bring
the average power consumption (transitions per test cycle)
to 834.10. Meanwhile, the randomized program consumes
average power of 525.40, which is higher than any of our
test programs but much lower than those structural pat-
terns. The reason for this observation is, the structural test
activates signal transitions as many as possible, while
high correlation among instructions ensures much lower
power consumption even for the case where random in-
structions with random data are used. Hence we come to
the conclusion that the SBST is low power in nature.

Tab. 2: Comparison in energy and average power
consumption

Energy Average power
Trans. Ratio Trans.

per cycle
Ratio

ATPG + ran-
domized

7,745,492 1.0 557.79 1.0

Ori. TP 6,205,081 0.8011 446.86 0.8011
Compacted 4,081,133 0.5269 423.88 0.7599
Reordered 3,904,869 0.5041 405.57 0.7271
X-filling 3,710,389 0.4790 385.37 0.6909

5 Conclusion

In this paper, we present a method to synthesize test pro-
grams, where fault coverage, test length, energy and av-
erage power dissipation are addressed at the same time.
Our experimental results indicate that this methodology
achieves high structural fault coverage by targeting at a
subset of modules of a processor. The program optimiza-
tion algorithm reduces energy and average power without
sacrificing fault coverage. Our future work focuses on
adapting the algorithm to the prevailing superscalar ar-
chitecture, where features like out-of-order execution
pose challenges to program synthesis as well as software
optimization for low power.

6 References

[1] S. M. Thatte and J. A. Abraham, “A Methodology for Func-

tional Level Testing of Microprocessors”, in Proceedings of
the International Symposium on Fault-Tolerant Computing,
1978, pp. 90-95.

[2] D. Brahme and J. A. Abraham, “Functional Testing of Mi-
croprocessors”, IEEE Transactions on Computers, Vol.
C-33, June 1984, pp. 475-485.

[3] S. Hellebrand, H.-J. Wunderlich, and A. Hertwig,
“Mixed-Mode BIST Using Embedded Processors”, in Pro-
ceedings of the IEEE International Test Conference, 1996,
pp. 195-204.

[4] R. S. Tupuri and J. A. Abraham, “A Novel Functional Test
Generation Method for Processors using Commercial
ATPG”, in Proceedings of the IEEE International Test
Conference, 1997, pp. 743-752.

[5] W. Zhao and C. Papachristou, “Testing DSP Cores Based
on Self-Test Programs”, in Proceedings of Design Automa-
tion and Test in Europe, 1998, pp. 166-172.

[6] L. Chen and S. Dey, “DEFUSE: A Deterministic Functional
Self-Test Methodology for Processors”, in Proceedings of
the 18th IEEE VLSI Test Symposium, 2000, pp. 255-262.

[7] L. Chen, S. Ravi, A. Raghunathan, and S. Dey, “A Scalable
Software-Based Self-Test Methodology for Programmable
Processors”, in Proceedings of the 40th Design Automation
Conference, 2003, pp. 548-553.

[8] N. Kranitis, G. Xenoulis, D. Gizopoulos, A. Paschalis, and
Y. Zorian, “Low-Cost Software-Based Self-Testing of
RISC Processor Cores”, in Proceedings of IEEE Design,
Automation & Test in Europe Conference, 2003, pp.

10714-10719.
[9] F. Corno, M. Sonza Reorda, G. Squillero, and M. Violante,

“On the Test of Microprocessor IP Cores”, in Proceedings
of IEEE Design, Automation & Test in Europe Conference,
2001, pp. 209-213.

[10] F. Corno, G. Gumani, M. Sonza Reorda, and G. Squillero,
“Fully Automatic Test Program Generation for Microproc-
essor Cores”, in Proceedings of IEEE Design, Automation
& Test in Europe Conference, 2003, pp. 1006-1011.

[11] W.-C. Lai, A. Krstic, and K.-T. Cheng, “Test Program Syn-
thesis for Path Delay Faults in Microprocessor Cores”, in
Proceedings of the 2000 IEEE International Test Confer-
ence, 2000, pp. 1080-1089.

[12] V. Singh, M. Inoue, K. K. Saluja, and H. Fujiwara, “Soft-
ware-Based Delay Fault Testing of Processor Cores”, in
Proceedings of the 12th Asian Test Symposium, 2003, pp.
68-77.

[13] Y. Zorian, “A Distributed BIST Control Scheme for Com-
plex VLSI Devices”, in Proceedings of IEEE VLSI Test
Symposium, 1993, pp. 4-9.

[14] S. Gerstendörfer and H.-J. Wunderlich, “Minimized Power
Consumption for Scan-Based BIST”, in Proceedings of the
IEEE International Test Conference, 1999, pp. 77-84.

[15] P. Girard, “Survey of Low-Power Testing of VLSI Circuits”,
IEEE Design and Test of Computers, vol. 19, no. 3, June
2002, pp. 82-92.

[16] C. Lee, J. K. Lee, T. Hwang, and S.-C. Tsai, “Compiler
Optimization on Instruction Scheduling for Low Power”, in
Proceedings of the 13th International Symposium on Sys-
tems Synthesis, 2000, pp. 55-60.

[17] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike
Tien-Chien Lee. "Instruction Level Power Analysis and
Optimization of Software", Journal of VLSI Signal Proc-
essing Systems, vol. 13, Aug./Sep. 1996, pp. 223-238.

[18] S. Hellebrand, H.-J. Wunderlich, “Synthesis of
Self-Testable Controllers”, in Proceedings of European
Design Automation Conference (EDAC/ETC/EuroAsic),
Paris, France, Mar. 1994, pp. 580-585

[19] A. J. van de Goor, Testing Semiconductor Memories, The-
ory and Practice. Gouda, the Netherlands: ComTex Pub-
lishing, 1998, ISBN: 90-80-427616.

[20] Ken Batcher and Christos Papachristou, “Instruction Ran-
domization Self Test for Processor Cores”, in Proceedings
of the 17th IEEE VLSI Test Symposium, 1999, pp. 34-40

[21] Marc Schuller, “Study of the Switching Activity of
RISC-Processors exemplified by the Leon-Processor”,
Thesis No. 2042, 2002, Faculty of Computer Science, Uni-
versity of Stuttgart, Germany (in German)

[22] R. Sankaralingam, R. R. Oruganti, and N. A. Touba, “Static
Compaction Techniques to Control Scan Vector Power Dis-
sipation”, in Proceedings of the 18th IEEE VLSI Test Sym-
posium, 2000, pp.35-40.

[23] “The SPARC Architecture Manual, Version 8”, SPARC
International, Inc., available under the URL:
http://www.sparc.com/standards/V8.pdf

[24] Specification of the RISC processor is available at:
http://www.iti.uni-stuttgart.de/~bartscgr/hapra05/hapra_skri
pt_06062005.pdf

[25] “Data Sheet: PrimePower Full-Chip Dynamic Power
Analysis for Multimillion-Gate Design”, Synopsys, Inc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

