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Abstract 
 

Software-based self-test (SBST) of processors offers 
many benefits, such as dispense with expensive test 
equipments, test execution during maintenance and in the 
field or initialization tests for the whole system. In this 
paper, for the first time a structural SBST methodology is 
proposed which optimizes energy, average power con-
sumption, test length and fault coverage at the same time. 
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1 Introduction 
 

The principle of the SBST involves generation, storage 
and execution of a test program. Its main advantages are 
reusability at all the stages of the system life cycle, dis-
pense with expensive test equipment, and low design for 
testability (DfT) overhead. 

Originally, SBST was implemented as a purely func-
tional test, which did not consider the structure of the core 
under test (CUT) but relied merely on the instruction set 
architecture (ISA) [1, 2]. It was mainly applied to systems 
with discrete components. However, a structural fault 
model was not explored, and test quality could not be 
assessed sufficiently. The advent of embedded processors 
and core-based designs exhibits more options. With the 
availability of the structure of a processor, structural 
automatic test pattern generation (ATPG) can be com-
bined with SBST. Thus, either core vendors may deliver 
test programs validated by fault simulation, or users of 
soft cores may generate such programs. 

SBST techniques based on emulated LFSR schemes 
were proposed and analyzed in [3]. In [4], a method for 
translating module level structural test patterns into proc-
essor level instructions was presented, and appropriate 
control and observation sequences were generated. In [5] 
a method for test program synthesis maximizing structural 
coverage was proposed. Recently, Li et al. introduced a 
deterministic functional self-test scheme based on emu-

lated LFSRs [6, 7]. The previous work was improved 
leading to shorter test times and less memory requirement 
in [8]. Corno et al. presented a method for test program 
synthesis based on genetic algorithms [9, 10]. Most of the 
previous work targeted stuck-at faults, only recently were 
SBST schemes developed for detecting delay faults, e.g. 
[11, 12]. 

Structural testing maximizes switching activities 
within a circuit, which leads to an increased power con-
sumption. Special care has to be taken in order to avoid 
reliability problems, reduced yield or even overheating. 
As a result, numerous DfT schemes are proposed to limit 
test power dissipation [13, 14, 15]. Without circuit modi-
fication, power can also be reduced through an appropri-
ate test scheduling, proper test pattern optimization or 
system frequency decrease. The SBST operates under the 
functional mode so that it meets the peak power specifica-
tion of the system. Nevertheless, it is of great significance 
for reliability reasons to optimize programs causing 
above-average switching activities. If such a test is de-
ployed autonomously, not only average power but also 
energy consumption has to be optimized.  

On the other hand, there are many research efforts on 
compiler techniques, which optimize code to restrict or 
minimize power [16, 17]. These techniques are inadequate 
for test programs, as they are implemented to retain pro-
gram semantics. Program semantics is only subordinate 
from a test viewpoint where the main objective is to en-
sure or even maximize fault coverage, while power is 
reduced. For the first time, the presented paper combines 
structural SBST and software optimization for testing 
processors under power constraints. A novel method for 
test program synthesis is proposed which tackles fault 
coverage, test length, energy and average power con-
sumption at the same time.  

We arrange the rest of this paper as follows. The next 
section presents an overview of the methodology and de-
scribes the method of automatic test program generation. 
Section 3 details an algorithm on software power optimi-
zation which does not affect fault coverage. We apply the 
approach to a 32-bit RISC processor in Section 4. A short 
conclusion is provided in Section 5. 

 



2 Test program synthesis 
 

The overall methodology contains two procedures. 
First, based on the gate-level structure of a target proces-
sor, a test program is generated to provide maximal fault 
coverage with a short test length and low switching ac-
tivities. Afterwards, the instruction sequence is optimized 
in order to minimize power consumption without sacri-
ficing fault coverage. Though the stuck-at fault model is 
adopted in this paper, the method itself is applicable for 
any other combinational fault models, e.g. delay faults 
which require test pairs or sequences.  

Fig. 1 elaborates the steps of test program synthesis. A 
standard ATPG generates structural test patterns for com-
binational modules, which are subject to a compaction 
process. The greedy algorithm takes fault coverage and 
correlation into account: at each time a pattern is selected 
which detects the largest number of faults yet undetected. 
If more alternatives are available, the one with the highest 
correlation measured by bit transitions is picked. The 
compaction ends once the fault coverage reaches that of 
the original test set. This step results in both test data re-
duction and potential energy and power savings without 
loss of fault coverage. In the end, the test set is mapped 
into instruction sequences using a template-based test 
program synthesis. 

 
Fig. 1: Methodology for test program synthesis 

The synthesis targets the modules which contribute to 
the major part of the processor area and structural fault 
coverage. For a standard processor, these are the arithme-
tic logic unit (ALU), the register file (RF) and the pro-
gram counter (PC), as part of the control unit. We leave 
out test generation for the other components of the control 
unit which constitute deeply sequential logic and suffi-
cient fault coverage for these parts requires special design 
for testability means, e.g. [18]. In the following para-
graphs, we explain the essential code and the template 
structures similar to [7]. 

ALU: 

Structural patterns for the ALU can be directly parsed 
into equivalent instructions. Suppose an ALU with two 
32-bit inputs and 3 control bits leads to the format 

(A:<1:32>, B:<33:64>, S:<65:67>). Following this format, 
we extract an instruction whose operands are defined by 
the first 64 bits and the opcode is specified by the last 3 
bits. Results are saved in general-purpose registers and 
fully observable. However, observing status signals needs 
particular instructions. For instance, instruction “JZ” 
(jump-if-zero) is able to access the status signal “Z”, 
which indicates whether or not the relevant input is zero, 
and hence is used to make “Z” observable. Fig. 2 repre-
sents the common structure for applying an ALU pattern 
using instruction sequences with parameters in brackets. 

1) set $[x], [A] ;[A] parsed from <1:32> 

2) set $[y], [B] ;[B] parsed from <33:64> 

3) [op] $[z], $[x], $[y] ;[op] parse from <65:67> 

4) save $[z], ([c_res]) ;make the result ob- 
;servable 

5) set $[f], 0 ;set the flag 

6) jz $[x], [status] ;access the status sig- 
;nal, jump to “status" if  
;x is zero 

7) set $[f], MAXINT  

8) status:   

  save $[f], ([s_res]) ;make the status ob- 
;servable 

Fig. 2: Generating test instructions for the ALU 

Program Counter (PC): 

Program addresses, used as targets for branch instruc-
tions, are patterns for this unit. The generalized code in 
Fig. 3 applies a provided PC pattern for testing. 

 
Fig. 3: Generating test instructions for the PC 

Register file (RF): 

A standard memory test, for instance the modified al-
gorithmic test sequence (MATS) designed for stuck-at 
faults of memories [19], is able to achieve high fault cov-
erage for the RF. A short MATS type test is implemented 
this way:  

1) set all the registers to 0; 
2) R0 = <01…01>;  
3) execute Ri = Ri + R0, where i is from 1 to (n-1);  
4) run Ri = Ri + Ri, where i is from (n-1) to 0.  
Even more complex march tests may be implemented, 

but we are already likely to detect many faults in the RF 

1) set $[x], [PC] ;load the target 

2) jump $[x] ;apply the pattern 

3) .org [val_pc] ;[val_pc] parsed from the pc 
;pattern 

 PC:   

 save $[x],([res]) ;make the target observable 

ISA 1: ATPG 

2: Pattern compaction 

3: Template-based test program synthesis

Netlist 

Test program 



as a by-product of the ALU and the PC test if we allocate 
registers in a uniform way. 

The above mentioned tests are altogether embedded 
into templates, each of which applies an ALU and a PC 
pattern. The coverage for the RF is maximized by regu-
lating register allocation during template instantiation. PC 
responses are accumulated to reduce memory accesses 
[20]. In the head template in Fig. 4, whose instance is at 
the beginning of the final program, an initial value is 
loaded into a register specially for the PC test. Then an 
ALU pattern is applied using the code conforming to the 
structure in Fig. 2. The last two instructions apply the next 
pattern to the PC. 

 
Fig. 4: pseudo code of the head template 

An intermediate template bears the similar structure as 
that of the head, only replacing the first instruction with 
the one, in our case “Add”, for accumulation of PC re-
sponses. Its instances appear in the middle of the test pro-
gram. Eventually, the accumulated response is stored in 
the instance of an tail template. 

We generate the test set, containing both deterministic 
and random patterns, for the PC with the same size as that 
of the ALU. The former are designed in a way to cause 
transitions of the PC as many as possible, while the latter 
are only generated when the number of deterministic PC 
patterns is still less. The test program is generated by 
stepwise template instantiation where all the values for 
parametric fields are determined either by patterns or by 
register allocation. 
 
3 Power optimization 
 

The proposed method reaches high fault coverage 
based on knowledge about the gate level structure which 
can also be used for estimating switching activities of 
internal nodes of a circuit. If the layout is known as well, 
we can even take into account capacitances and specify 
power more accurately by weighted switching activities. 
In both cases we get a much better estimation of dynamic 
power dissipation than by merely considering transitions 
in registers at the program model level [16]. 

The test program synthesis described above considers 
already switching activities of the registers. Now, we tune 
two more factors to optimize a test program. One is the 
order of the instructions and the other one is defining un-
specified bits in instruction words. 

 

3.1 Test-oriented reordering 
 

Test-oriented reordering of instructions offers more 
degrees of freedom than traditional optimization where 
program semantics plays an important role. We explain 
this difference with the help of the code below: 

… … 
1) set $0, 512 
2) set $1, 65535 
3) add $2, $1, $0 
4) save $2, (result_0) 
5) set $2, 324 
6) set $4, 790 
7) sub $2, $2, $4 
8) save $2, (result_1) 
… … 

The dependence graph (DG) of the shown code in Fig. 
5 (a) displays the dependencies imposed by program se-
mantics. Since most of the order is fixed, there are only 
few degrees of freedom for reordering, for example ex-
changing instruction 1 and 2, and putting 6 somewhere 
before 7. 

 
Fig. 5: program-oriented and test-oriented reordering 

However, viewing the same code as part of the ALU 
test, we divide instructions into units, where a pattern is 
loaded, applied, and relevant responses are stored. Such a 
unit forms a test behaviour. For the above code, two test 
behaviours are extracted in Fig. 5 (b). Obviously, fewer 
restrictions exist, as reordering is possible within or even 
across test behaviours if no conflict is introduced. 

For computing the power consumption during optimi-
zation, we have two options: simulation-integrated or 
model-based. The former uses a gate level power analysis 
tool for controlling test program optimization. This ap-
proach is computationally expensive, and as an alternative, 
the second method builds a reference model for a target 
ISA in advance [21]. Once created, the model is reusable 
for code optimization, and the real power savings rely 
much on the quality of the model. 

Here we illustrate steps towards constructing the power 
model. We use Hamming Distances (HD) as a measure-
ment characterizing transitions due to an instruction pair 
(i, j). The switching activities of the instruction register 
(IR), the RF and the ALU are easily predictable. For ex-
ample, transitions TIR at the output of IR are related to 
instruction coding, and those for the RF, TRF, and the 

(a) DG

 
 

 

  
 

(b) Test behaviors 

.org [PC_pattern0] 
PC0: 
  set $[x], [ini_pc] ;setup the context for pc test  

… … ;ALU test conforming to the 
 ;structure in Fig. 2 
  set $[e], [PC1] ;load the next pc pattern 
jump  $[e] ;apply the pattern 



ALU ,TALU, depends on runtime data. For an n-bit in-
struction word, TIR is: 

1

0
( , ) ( , ) ( )                         (1)n m m

IR i j i jm
T i j HD C C C C−

=
= = ⊕∑  

For a RF with two outputs, Q0 and Q1, let Q0i and Q1i 
be the values of output registers of instruction i, 

0i jQ → and 1i jQ → be the temporary values due to (i, j). Then 
we model TRF as: 

( , ) ( 0 , 0 ) ( 0 , 0 )

               ( 1 , 1 ) ( 1 , 1 )                 (2)
RF i i j i j j

i i j i j j

T i j HD Q Q HD Q Q

HD Q Q HD Q Q
→ →

→ →

= +

+ +
 

Transitions of the ALU depend not only on the inputs 
(A, B, S) but also on the function it operates. For this 
reason, we consider transitions both at the inputs and the 
output (Q): 

( , ) ( , ) ( , )

               ( , ) ( )                                   (3),
ALU i j i j

i j i j

T i j HD A A HD B B

HD S S HD Q Q
= +

+ +
 

Hence, the problem to model average power consump-
tion A(i, j) due to inter instruction effects [17] for a given 
instruction pair (i, j) is finding relations between A(i, j) 
and the above depicted factors. We can base the work on 
regression analysis, which is a standard statistical method 
to investigate relationships between dependent and inde-
pendent variables. In our case, the dependent variable is 
A(i, j), and independent variables are TIR, TRF and TALU, 
that is: 

( , ) ( , , )                                                  (4)IR RF ALUA i j f T T T ε= +  

ε represents approximation discrepancy. If a linear re-
lationship is assumed, we further specify the above for-
mula as: 

0 1 2 3( , )      (5)( , ) ( , ) ( , )IR RF ALUA i j T T Ti j i j i jβ β β β ε= + + + +  

β0, …, β3 are coefficients to be determined by the proc-
ess of multiple regression analysis based on samples. A 
sample is an observation of the dependent and the inde-
pendent variables. Equation (1) to (3) facilitate calculation 
for the values of independent variables. According to [17, 
21], we explore Equation (6) to obtain values for the de-
pendent variable, where

i jA +
stands for the measured av-

erage power consumption of the loop (i, j), while
iBaseA  

and
jBaseA are the basic average power when instruction i 

or j executes stand-alone: 
1

( , ) ( )                                      (6)
2 i ji j Base BaseA i j A A A+= − +  

The reference power model is built by the following 
steps below: 

− simulate programs consisting loops of individual 
instruction to generate basic power costs 

iBaseA ; 

− simulate programs consisting loops of instruction 
pairs to get values for power costs i jA +

; 

− use Equation (1), (2), (3) and (6) to create samples 
by considering each possible instruction pair; 

− perform multiple regression analysis to determine 
values for coefficients β0, …, β3. 

Since we work at the gate level, the model accordingly 
describes gate-level power consumption, offering closer 
estimation than the bit-transition model at the program 
level. A comprehensive statistical analysis for validating 
the model and parameter was done in [21]. 
 
3.2 Unused bit setting 
 

Many existing publications use don’t-care bits to re-
duce transitions in test patterns [22]. A similar idea is ex-
plored in our work at the instruction level. Fig. 6 exempli-
fies a specification for an Add operation in SPARC v8 
[23]. 

 
Fig. 6: Specification of Add in SPARC v8 

According to its format specification, ADD computes 
“r[rs1]+r[rs2]” if the 13th instruction bit is set to 0, else an 
immediate is used, and “r[rd]” holds the result. Every bit 
in Format 2 has its particular meaning, specifying either 
the operation code or relevant operands. On the contrary, 
in Format 1, 8 bits starting from Bit 5 to Bit 12 are de-
fined as “unused” and assigned by default zeros. However, 
in some cases it is more power efficient, if other values 
are assigned to those bits. Our second optimization factor 
takes advantage of this observation. 

Given the ISA, we are able to identify don’t-cares 
(DCs) of each instruction under consideration. For an 
instruction pair (i, j), where i is fully specified, we anno-
tate DCs of j in a way that switching activities due to (i, j) 
are minimized. The reference model built previously can 
be used once again during DC specification. 
 
3.3 The overall optimization methodology 
 

Before optimization starts, the raw code is partitioned 
into blocks, each of which is an instance of templates. 
Then the overall algorithm works in two phases on a 
block basis:  

 Test-oriented greedy reordering. First, test con-
straints are extracted with the guidance of tem-
plate structures. Then we identify unscheduled in-

Assembly Language Syntax 

add regrs1, reg_or_imm, regrd 

Format 1: 
10 rd 000000 rs1 i=0 unused(zero) rs2 

31 29 24 18 13 12 4 0 

10 rd 000000 rs1 i=1 imm 

31 29 24 18 13 12 0 

Format 2: 



structions that do not violate extracted test behav-
iors and for each of them, based on the power 
model, we compute their costs with respect to the 
last scheduled code. Finally the instruction with 
the minimal cost gets scheduled. 

 DC specification for the instruction to be sched-
uled. 

The overall process ends if all instructions are sched-
uled. 
 
4 Experimental results 
 

We apply the entire methodology to a 32-bit RISC 
processor [24]. It is mainly made up of the following 
functional components: the ALU, the RF with 32 gen-
eral-purpose registers, the PC, the IR, the control unit. 
The design contains 14,244 logic gates including 1,088 
sequential cells. Fault simulation reports 48,784 uncol-
lapsed stuck-at faults. 

The evaluation framework is an extension of [6] to 
support measurements of gate-level fault coverage and 
energy consumption in terms of switching activities. Test 
bench integrates the gate-level processor core and the test 
program binary. During simulation, two kinds of informa-
tion are recorded. Primary inputs of the processor are 
captured and translated into patterns which are later fault 
simulated to evaluate the structural fault coverage. 
Switching activities during simulation are tracked in a file 
named Value Change Dump (VCD). Based on such file, 
we can used commercial tools, e.g. Primepower [25], for 
energy estimation, if layout information of the technology 
is available. As an alternative, it is straightforward to sum 
up recorded transitions and treat the final number as en-
ergy consumption for the simulated code directly. 

Moreover, we set up our experiments as follows:  
1) Perform ATPG for the ALU alone to provide the de-

terministic patterns. The test set achieves 99.90% fault 
coverage of this module; 

2) Implement a MATS test for the RF, which is used 
together with programs generated in step 3 to 6; 

3) Synthesize the test set generated in step 1 into a test 
program (Ori.TP), which reflects the rudimentary quali-
ties of our algorithm; 

4) Compact ALU patterns in step 1, and then synthe-
size the new set into a program (Compacted); 

5) Reorder the code generated in step 4 under test con-
straints. The new code is later referred as Reordered; 

6) Specify DCs of the code in step 5. The new code is 
termed as X-filling.  

7) In the absence of program synthesis algorithms e.g. 
[8], we conduct a sequential ATPG for comparison. Since 
the fault coverage is too low to accept, a program with 
randomized instructions is added. The number of test cy-
cles for them together is equal to that of Ori.TP generated 
in step 3. 

Throughout the steps above, ATPG and program syn-
thesis last only a few seconds, while compaction accounts 
for the major part of the time required. The statistics on 
test are reported in Tab. 1. The column of Ori.TP indicates 
that the test program achieves high fault coverage for the 
targeted modules as well as for the entire processor. 
Column four exhibits the identical data for the cases of 
Compacted, Reordered and X-filling, which imply we 
successfully retain the fault coverage during the two-stage 
optimization for low power. Another conclusion is also 
drawn that with pattern compaction, we reduce 30% test 
cycles without distinct impact on the overall fault cover-
age. The combination of sequential ATPG and the ran-
domized program only yields low test quality. Sequential 
ATPG alone leads to 18.14% processor fault coverage 
with 1,457 test cycles, while the improvement by the 
randomized program, which contributes to a much larger 
portion of cycles, is not remarkable. 

Tab. 1: Comparison in fault coverage and test cycles 

  Ori. TP Optimized ATPG + 
randomized 

ALU 99.90% 99.90% 2.87% 
PC 92.38% 92.38% 66.40% 
RF 98.46% 98.03% 17.96% 

Fault 
cov-
erage 

Proc. 96.70% 96.33% 19.64% 
No. 13,886 9,628 13,886  Test 

cycles Ratio 1.0 0.6935 1.0 

Tab. 2 details the outcome regarding energy and aver-
age power consumption. The last four rows clearly show a 
persistent reduction of these two parameters through 
every optimization step. In particular, row three indicates 
that compaction not only results in shortening test length, 
which means energy reduction as well, but also in mini-
mizing average power dissipation by concerning switch-
ing activities of registers throughout the process. More-
over, as shown in the first row, our methodology also 
outperforms the combination of the sequential ATPG and 
the randomized program in this aspect. According to the 
experiment, the sequential ATPG patterns causes 
1,215,280 transitions in total, which consequently bring 
the average power consumption (transitions per test cycle) 
to 834.10. Meanwhile, the randomized program consumes 
average power of 525.40, which is higher than any of our 
test programs but much lower than those structural pat-
terns. The reason for this observation is, the structural test 
activates signal transitions as many as possible, while 
high correlation among instructions ensures much lower 
power consumption even for the case where random in-
structions with random data are used. Hence we come to 
the conclusion that the SBST is low power in nature. 

 

 



Tab. 2: Comparison in energy and average power 
consumption 

Energy Average power  
Trans. Ratio Trans. 

per cycle 
Ratio 

ATPG + ran-
domized   

7,745,492 1.0 557.79 1.0 

Ori. TP 6,205,081 0.8011 446.86 0.8011 
Compacted 4,081,133 0.5269 423.88 0.7599 
Reordered 3,904,869 0.5041 405.57 0.7271 
X-filling 3,710,389 0.4790 385.37 0.6909 

 
5 Conclusion 
 
In this paper, we present a method to synthesize test pro-
grams, where fault coverage, test length, energy and av-
erage power dissipation are addressed at the same time. 
Our experimental results indicate that this methodology 
achieves high structural fault coverage by targeting at a 
subset of modules of a processor. The program optimiza-
tion algorithm reduces energy and average power without 
sacrificing fault coverage. Our future work focuses on 
adapting the algorithm to the prevailing superscalar ar-
chitecture, where features like out-of-order execution 
pose challenges to program synthesis as well as software 
optimization for low power. 
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