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Abstract 
Deterministic logic BIST (DLBIST) is an 
attractive test strategy, since it combines ad-
vantages of deterministic external testing and 
pseudo-random LBIST. Unfortunately, previ-
ously published DLBIST methods are un-
suited for large ICs, since the computing 
time and memory consumption of the 
DLBIST synthesis algorithms increases ex-
potentially, or at least cubically, with the 
circuit size. In this paper, we propose a novel 
DLBIST synthesis procedure that has  nearly 
linear complexity in terms of both computing 
time and memory consumption. The new 
algorithms are based on binary decision 
diagrams (BDDs). We demonstrate the effi-
ciency of the new algorithms for industrial 
designs up to 4M gates.  
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1. Introduction 
Logic Built-In Self-Test (LBIST) for random 
logic is becoming an attractive alternative in 
IC testing. Recent advances in nanometer IC 
process technology and core-based IC design 
are leading to more widespread use of LBIST 
since external testing is becoming more and 
more difficult and costly. Also requirements 
on in-field testing and limited access into ICs 
that contain secure information, are demand-
ing LBIST solutions. 
 
There is a wide range of deterministic logic 
BIST methods that apply deterministic test 
patterns and hence improve the low fault 
coverage often obtained by pseudo-random 
patterns. Straightforward is the application of 
additional external deterministic patterns on 
top of the pseudo-random test [8]. Unfortu-
nately, the very last percentages of fault cov-

erage require the largest amount of deter-
ministic patterns, so the benefits of LBIST 
are severely reduced by this approach. 
 
More efficient are compression and decom-
pression methods, where a small amount of 
external test data is continuously fed into the 
circuit [9][10]. However, this approach is no 
longer a BIST method; it requires still ex-
ternal ATE and looses some benefits of BIST 
like in-field testing. An alternative for in-
creasing the fault coverage is inserting test 
points, which has been proposed for both 
LBIST and external testing [4][5][11][17]. 
While the area increase due to test points 
may be tolerable, they may also introduce 
additional delays, which could require com-
plete resynthesis and new timing verification. 
In contrast to the abovementioned LBIST 
methods, pure deterministic LBIST schemes 
try to avoid both modifying the core under 
test (CUT) and applying additional patterns. 
Their underlying methods can be classified 
into “store and generate” schemes and “test 
set embedding” schemes [14]. 
 
“Store and generate” schemes consist of 
hardware structures which store the test pat-
terns on-chip in a compressed form and 
implement an algorithm for decompression. 
Widely known representatives of this method 
are LFSR-reseeding [9], multi-polynomial 
reseeding [6] and folding counter based-
LBIST [7]. 
 
“Test set embedding” schemes rely on a 
pseudo-random test pattern generator plus 
some additional circuitry that modifies the 
pseudo-random sequence in such a way that 
a set of deterministic patterns is embedded. 
Widely known techniques are bit-flipping 
[13] and bit-fixing [12]. In the bit-flipping



  

 
 
 
 
 
 
 
 

 
Figure 1: (a) Bit-flipping and (b) bit-fixing BIST schemes.

approach, the output sequences of an LFSR 
are inverted at a few bit positions in order to 
increase fault coverage (Figure 1.a), while 
the bit-fixing approach applies constant 
values (Figure 1.b). The test generation proc-
ess is controlled by a bit-flipping function 
(BFF) or a bit-fixing function (BFX), re-
spectively. 
We use the term pattern mapping for 
referring to the embedding of a set of 
deterministic patterns into a sequence of 
pseudo-random patterns. A DLBIST synthe-
sis procedure consists of pattern mapping 
and generation of the hardware structure to 
implement the mapping, e.g. by means of a 
BFF or BFX. The synthesis procedure for 
generating the BFX as published in [12], is 
based on rectangle covering, while the 
synthesis procedure for generating the BFF 
as published in [13], is based on manipulat-
ing sets of test cubes. In both cases, the 
procedures are based on heuristics that 
generally require at least cubical, but often 
exponential, effort in terms of memory 
consumption and computing time. 
 
In this paper, we present a BDD-based 
algorithm for test pattern mapping that 
outperforms previously published algorithms 
by several orders of magnitude. 
 

2. The pattern mapping problem 
The “test set embedding” schemes provide 
both pseudo-random and deterministic test 
stimuli. Usually, some of the pseudo-random 
patterns generated by an LFSR, are altered 
into deterministic test stimuli. Most of the 
pseudo-random test patterns do not contrib-
ute to the fault coverage, since they only 
detect faults that already were detected by 
other pseudo-random patterns. Such useless 

pseudo-random test patterns may therefore 
be skipped or modified in any arbitrary way. 
The key idea is to modify some useless 
pseudo-random patterns into useful determi-
nistic test patterns to improve the fault cov-
erage. The deterministic test patterns are 
determined by an ATPG tool, and they target 
those faults that are not detected by pseudo-
random test stimuli. In such a deterministic 
test pattern, only few bits are actually speci-
fied, while most of the bits are don’t care and 
hence can arbitrarily be set to 0 or 1. 
 
The method presented here can be applied to 
both the bit-flipping and bit-fixing approach, 
assuming a few modifications. For the sake 
of simplicity, we will explain the method by 
using the bit-flipping approach; also the ex-
perimental results are given for this method. 
In the bit-flipping approach, the modification 
of the pseudo-random patterns is realized by 
inverting (flipping) some of the LFSR out-
puts, such that the deterministic stimuli are 
obtained. The flipping is implemented by 
combinational logic, called bit-flipping func-
tion (BFF). The BFF can be kept quite small 
by exploiting the large number of useless 
pseudo-random test patterns that may be 
modified, and carefully selecting the pseudo-
random test patterns on which deterministic 
test patterns are mapped. 
 
As shown in Figure 2, the BFF inputs are 
connected to the LFSR, the pattern counter, 
and the shift counter, while the BFF outputs 
are connected to the XOR-gates at the scan 
inputs. The BFF determines whether a bit has 
to be flipped based on the states of the LFSR 
the pattern counter (PC), and the shift 
counter (SC). The PC is part of the test 
control unit, and counts the number of test 
patterns applied during the self-test. The SC 
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is also part of the test control unit, and counts 
the number of scan shift cycles for shifting 
data in/out the scan chains. 
 
 

... ... 

Circuit Under Test Circuit Under Test 

M M 
I I 
S S 
R R 

Pattern 
Counter 

Shift 
Counter 

Test Control Test Control 

+ 

+ 

+ L L 
F F 
S S 
R R 

BFL 

... ... 

Circuit Under Test Circuit Under Test 

M M 
I I 
S S 
R R 

Pattern 
Counter 

Shift 
Counter 

Test Control Test Control 

+ 

+ 

+ L L 
F F 
S S 
R R 

BFF 

 
 
Figure 2: Bit-flipping DLBIST architecture. 
 
The BFF realizes the mapping of determinis-
tic test stimuli to pseudo-random test stimuli. 
Every specified bit (i.e. care bit) in a deter-
ministic pattern either matches to the corre-
sponding bit in the pseudo-random stimulus, 
in which case no bit-flipping is required, or 
the bit does not match, in which case bit-
flipping is required. For all unspecified bits 
(i.e. don’t-care bits) in the deterministic 
pattern, the corresponding bits in the pseudo-
random stimulus may be arbitrarily flipped 
or not. The BFF should provide that (1) all 
conflicting bits are flipped, (2) all matching 
bits are not flipped while (3) the don’t-care 
bits may be arbitrarily flipped or not. 
 
We first consider a CUT with a single scan 
chain. The LFSR generates a pseudo-random 
sequence of test stimuli that is shifted into 
the scan chain. The LFSR and SC are 
updated in every clock cycle, while the PC is 
updated when applying a new test pattern. In 
every clock cycle, the DLBIST hardware 
therefore has a unique state identified by the 
states of the LFSR, PC, and SC. In principle, 
the states of the PC and SC are already 
sufficient to uniquely identify a bit in the 
pseudo-random LFSR sequence. The LFSR 
states add redundant information, which 
however may be exploited for further logic 
optimization of the BFF. 
 
The on-set is the set of LFSR+PC+SC states 
that correspond to the clock cycles in which 
the pseudo-random LFSR output should be 
flipped. Similarly, the off-set is the set of 

LFSR+PC+SC states that correspond to 
clock cycles in which the pseudo-random 
LFSR output should not be flipped. The dc-
set is the set of LFSR +PC+SC states that 
correspond to clock cycles in which the 
pseudo-random LFSR output may be 
arbitrarily flipped or not. The on-set and off-
set are disjoint. The dc-set contains all states 
that are not in the union of the on-set and off-
set and is exploited to minimize the logic 
implementation of the BFF. The size of the 
on-set and off-set increases with the number 
of specified bits and in contrast to standard 
logic synthesis problems, the cubes in these 
sets are very irregular. Hence, logic 
minimization exploiting the on-set, off-set 
and dc-set, may have exponential complexity 
in terms of the number of specified bits. 
 
In case of a CUT with multiple scan chains, 
there are separate on-sets, off-sets, and dc-
sets associated with each scan chain. For a 
CUT with n scan chains, the BFF now 
consists of the n bit-flipping logics BFFi for 
each scan chain. The size of the BFF 
implementation can be minimized by sharing 
logic between the BFFi for various scan 
chains. 
 
3. BDD-based pattern mapping  
A binary decision diagram (BDD) is a well-
known representation of a logic function [1]. 
A BDD is a tree-like directed graph, starting 
from a root vertex. A BDD contains non-
terminal vertices that have two outgoing 
edges, and terminal vertices that only have 
incoming edges. For example, Figure 3 
shows the BDD representation of a parity 
function. A second advantage of BDDs is 
that the complexity of many operations on a 
BDD scales linearly with the number of input 
variables [2]. 
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Figure 3: BDD representation of parity 
function. 



 

  

In the BDD-based bit-flipping synthesis pro-
cedure, the on-set and off-set of the BFF are 
represented by characteristic functions, the 
on-BDD and the off-BDD. The on-BDD will 
output the value ‘1’ if the input is taken from 
the on-set, otherwise the output is ‘0’. 
Similarly, the off-BDD will output ‘1’, only 
if the input is selected from the off-set. 
Checking whether an assignment is element 
of the off-set or the on-set is linear in the 
number of input variables of the BDD, 
whereas the cubical representation requires 
an effort linear in the cardinality of the sets. 

 
In the presented approach, the sequence of 
test stimuli is partitioned into two parts. The 
first part of the sequence is used only for 
pseudo-random fault detection, and no de-
terministic stimuli are embedded into this 
part. The outputs of the BFF should be dis-
abled during this part. The LFSR+PC+SC 
states for this first part of pseudo-random test 
stimuli are included in the dc-set, since 
increasing the dc-set gives more room for 
logic optimization of the BFF.  However, the 
BFF will arbitrarily flip some pseudo-
random pattern-bits, and some detected faults 
may no longer be detected by the modified 
sequence with bit-flipping. In general, most 
pseudo-random detectable faults are quickly 
detected by the first few hundreds or 
thousands pseudo-random test patterns. 
Disabling the BFF can be achieved using 
some simple additional circuitry that 
considers the most significant bits of the PC. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Bit-flipping synthesis procedure. 
All deterministic patterns are embedded into 
the second part of the sequence, during 
which the BFF is enabled. The second part 

usually is 1/2, 1/4, or 1/8 of the total test 
sequence. 
 
The BDD-based bit-flipping synthesis proce-
dure is outlined in Figure 4. 
 
4. Experimental results  
Below, experiments are reported performed 
on Linux GNU machines equipped with one 
GB of memory and an AMD Atlon-XP 
processor running at 1500 MHz. The BDD-
based computations were implemented using 
the CUDD package [15]. 
 
The benchmark circuits are industrial designs 
described in Table 1. The first column re-
ports the circuit name encoded like pN, 
where N denotes the number of gates in the 
circuit, while the second column gives the 
number of scan flip-flops contained in each 
design. The last two columns report the fault 
coverage and the fault efficiency obtained 
after applying 10,000 pseudo-random pat-
terns, which are the percentage of detected 
faults, respectively, the percentage of de-
tected, redundant and not testable faults, with 
respect to the total number of faults. 
 
While the original cube-based pattern map-
ping is an iterative algorithm [13], where 
ATPG, pattern mapping and fault simulation 
are alternating, the BDD-based algorithm is a 
single pass algorithm, which involves ATPG 
and fault simulation less often. This is also a 
consequence of the better algorithmic 
properties and compactness of the BDD-
based representation, which allow on 
optimization of the BFF implementation that 
doesn’t need iterative algorithms. Hence 
computing time savings are not only due to 
substituting the cubical calculus by BDD-
based algorithms, also for ATPG and fault 
simulation computing time is saved. 
 
Table 2 shows that mapping time is reduced 
from several days down to a few minutes, 
and that also the other tasks have significant 
improvements. The overall computing time 
and the memory consumption is seen in 
Table 3. The BDD-based approach reduces 
computing time from more than a week 
down to a few hours, while also the memory 
requirements scale quite well with the circuit 
size. 

Fault simulation  
of pseudo-random LFSR sequence 

ATPG 

Pattern mapping 

BDD-based optimization and 
logic synthesis of BFF  

Fault simulation of pseudo-random 
LFSR sequence with bit-flipping by BFF 



 

  

Design # Flip-
flops 

Random fault 
coverage [%] 

Random fault 
efficiency [%] 

p19k 1407 63.11 71.68 

p59k 4730 87.30 97.30 

p127k 5116 82.14 84.30 

p278k 9967 79.92 81.61 

p333k 20756 93.64 95.65 

p951k 104624 92.91 92.92 

Table 1: Benchmark characteristics. 
 
Finally, the amazing improvements should 
not be paid by less quality in terms of fault 
efficiency and hardware overhead. Table 4 
reports the fault efficiencies obtained in both 
cases. In order to have comparable results of 
time and memory, the fault efficiency of the 
BDD-based approach was limited to the one 
reached by the cube-based approach. By 
spending more resources, even higher fault 
efficiency could be obtained, only limited by 
the resources given to the ATPG tool. The 
last column (Cell area) shows the logic over-
head of the BFF implementation relative to 
the cell area of the CUT, obtained using a 
commercial synthesis tool and a proprietary 
library. Again, the BDD-based approach 
outperforms the cubical calculus. 
 
The last design from Table 1 does not appear 
in Table 2, 3 and 4 because it was just too 
large for being subject of experiments done 
with the cube-based representation. During 
the generation of the BDD-based representa-
tion, no static or dynamic variable reordering 
was used. The variables were a priori and 
optimally arranged in groups corresponding 
to the states of the LFSR, PC and SC. The 
reported experimental results are obtained 
with the same variable order for all the 
designs. 

Table 5 illustrates how the computational re-
sources are scaling when the targeted fault 
efficiency is increased to levels close to the 
maximum allowed by the ATPG tool. Most 
of the additional run-time is consumed gen-
erating deterministic patterns, while the time 
spent for fault simulation remains constant. 
These final fault efficiencies are practically 
not reachable by the cube-based approach in 
the case of the last four designs. The figures 
reported in the last column (Cell area) are 
just giving the logic overhead of the BFF 
implementation; the overhead of the other 
parts of the DLBIST hardware may be 
neglected. Table 5 also shows that the over-
head decreases significantly for the larger 
design. The presented approach does not 
only scale very well in terms of run-time and 
memory, but also in terms of area overhead. 
 
5. Conclusions 
A new pattern mapping algorithm for “test 
set embedding” deterministic BIST schemes 
was proposed which exploits standard BDD 
operations. This way, improvements of sev-
eral order of magnitude are obtainable com-
pared with the cube-based approach, e.g., in 
terms of both run-time and memory require-
ments. With this approach, computing and 
memory resources for DLBIST synthesis are 
in the same order of complexity as the 
resources required for ATPG or fault 
simulation. The gains of efficiency can also 
be used to obtain even better solutions in 
terms of hardware overhead and fault 
coverage. 
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 Cube-based BDD-based 

Design ATPG time 
[h:m] 

Mapping time 
[h:m] 

Fault simulation 
time [h:m] 

ATPG time 
[h:m] 

Mapping time 
[h:m] 

Fault simulation 
time [h:m] 

p19k 00:12 02:48 00:52 00:00 00:02 00:01 

p59k 00:15 01:50 00:29 00:01 00:02 00:03 

p127k 02:19 74:28 20:38 03:49 00:12 00:11 

p278k 05:20 193:10 37:23 01:59 00:06 00:21 

p333k 06:46 88:16 44:31 00:37 00:11 00:17 

Table 2: Computing time for the different tasks of the cube-based and BDD-based algorithm.



 

  

 Cube-based BDD-based 

Design Total time [h:m] Total memory [MB] Total time [h:m] Total memory [MB] 

p19k 03:52 47 00:07 22 

p59k 02:34 114 00:08 34 

p127k 97:25 382 04:40 94 

p278k 235:53 400 02:52 111 

p333k 139:33 529 01:21 147 

Table 3: Run-time and memory consumption of the cube-based and BDD-based algorithm. 
 

 Cube-based BDD-based 

Design Fault efficiency [%] Cell area [%] Fault efficiency [%] Cell area [%] 

p19k 96.87 25.26 97:55 6.95 

p59k 99.06 27.12 99.17 14.09 

p127k 94.67 27.86 95.82 12.83 

p278k 90.83 25.77 91.56 15.49 

p333k 97.46 12.07 97.56 4.04 

Table 4: Fault efficiency and logic overhead of the cube-based and BDD-based algorithm. 
 

Design # Embedded patterns Fault efficiency [%] Run-time [h:m] Memory [MB] Cell area [%] 

p19k 237 99.99 00:10 29 10.38 

p59k 137 99.19 00:08 35 14.32 

p127k 761 99.79 10:41 208 31.11 

p278k 1894 99.33 26:29 329 38.95 

p333k 1396 99.53 03:12 246 9.12 

p951k 259 99.67 14:22 666 1.49 

Table 5: Performance of the BDD-based approach when the fault efficiency is close to 100%. 
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