
Efficient Pattern Mapping for Deterministic Logic BIST

Valentin Gherman,
Hans-Joachim Wunderlich

Universität Stuttgart
Pfaffenwaldring 47
D-70569 Stuttgart

Germany

ghermanv@informatik.uni-stuttgart.de
wu@informatik.uni-stuttgart.de

Harald Vranken

Philips Research

Prof. Holstlaan 4, WAY-41
5656 AA Eindhoven

The Netherlands

harald.vranken@philips.com

Friedrich Hapke,
Michael Wittke

Philips Semiconductors

Georg-Heyken-Strasse 1
D-21147 Hamburg

Germany

friedrich.hapke@philips.com
michael.wittke@philips.com

Abstract
Deterministic logic BIST (DLBIST) is an
attractive test strategy, since it combines ad-
vantages of deterministic external testing and
pseudo-random LBIST. Unfortunately, previ-
ously published DLBIST methods are un-
suited for large ICs, since the computing
time and memory consumption of the
DLBIST synthesis algorithms increases ex-
potentially, or at least cubically, with the
circuit size. In this paper, we propose a novel
DLBIST synthesis procedure that has nearly
linear complexity in terms of both computing
time and memory consumption. The new
algorithms are based on binary decision
diagrams (BDDs). We demonstrate the effi-
ciency of the new algorithms for industrial
designs up to 4M gates.

Key words: Logic BIST, BDDs.

1. Introduction
Logic Built-In Self-Test (LBIST) for random
logic is becoming an attractive alternative in
IC testing. Recent advances in nanometer IC
process technology and core-based IC design
are leading to more widespread use of LBIST
since external testing is becoming more and
more difficult and costly. Also requirements
on in-field testing and limited access into ICs
that contain secure information, are demand-
ing LBIST solutions.

There is a wide range of deterministic logic
BIST methods that apply deterministic test
patterns and hence improve the low fault
coverage often obtained by pseudo-random
patterns. Straightforward is the application of
additional external deterministic patterns on
top of the pseudo-random test [8]. Unfortu-
nately, the very last percentages of fault cov-

erage require the largest amount of deter-
ministic patterns, so the benefits of LBIST
are severely reduced by this approach.

More efficient are compression and decom-
pression methods, where a small amount of
external test data is continuously fed into the
circuit [9][10]. However, this approach is no
longer a BIST method; it requires still ex-
ternal ATE and looses some benefits of BIST
like in-field testing. An alternative for in-
creasing the fault coverage is inserting test
points, which has been proposed for both
LBIST and external testing [4][5][11][17].
While the area increase due to test points
may be tolerable, they may also introduce
additional delays, which could require com-
plete resynthesis and new timing verification.
In contrast to the abovementioned LBIST
methods, pure deterministic LBIST schemes
try to avoid both modifying the core under
test (CUT) and applying additional patterns.
Their underlying methods can be classified
into “store and generate” schemes and “test
set embedding” schemes [14].

“Store and generate” schemes consist of
hardware structures which store the test pat-
terns on-chip in a compressed form and
implement an algorithm for decompression.
Widely known representatives of this method
are LFSR-reseeding [9], multi-polynomial
reseeding [6] and folding counter based-
LBIST [7].

“Test set embedding” schemes rely on a
pseudo-random test pattern generator plus
some additional circuitry that modifies the
pseudo-random sequence in such a way that
a set of deterministic patterns is embedded.
Widely known techniques are bit-flipping
[13] and bit-fixing [12]. In the bit-flipping

Figure 1: (a) Bit-flipping and (b) bit-fixing BIST schemes.

approach, the output sequences of an LFSR
are inverted at a few bit positions in order to
increase fault coverage (Figure 1.a), while
the bit-fixing approach applies constant
values (Figure 1.b). The test generation proc-
ess is controlled by a bit-flipping function
(BFF) or a bit-fixing function (BFX), re-
spectively.
We use the term pattern mapping for
referring to the embedding of a set of
deterministic patterns into a sequence of
pseudo-random patterns. A DLBIST synthe-
sis procedure consists of pattern mapping
and generation of the hardware structure to
implement the mapping, e.g. by means of a
BFF or BFX. The synthesis procedure for
generating the BFX as published in [12], is
based on rectangle covering, while the
synthesis procedure for generating the BFF
as published in [13], is based on manipulat-
ing sets of test cubes. In both cases, the
procedures are based on heuristics that
generally require at least cubical, but often
exponential, effort in terms of memory
consumption and computing time.

In this paper, we present a BDD-based
algorithm for test pattern mapping that
outperforms previously published algorithms
by several orders of magnitude.

2. The pattern mapping problem
The “test set embedding” schemes provide
both pseudo-random and deterministic test
stimuli. Usually, some of the pseudo-random
patterns generated by an LFSR, are altered
into deterministic test stimuli. Most of the
pseudo-random test patterns do not contrib-
ute to the fault coverage, since they only
detect faults that already were detected by
other pseudo-random patterns. Such useless

pseudo-random test patterns may therefore
be skipped or modified in any arbitrary way.
The key idea is to modify some useless
pseudo-random patterns into useful determi-
nistic test patterns to improve the fault cov-
erage. The deterministic test patterns are
determined by an ATPG tool, and they target
those faults that are not detected by pseudo-
random test stimuli. In such a deterministic
test pattern, only few bits are actually speci-
fied, while most of the bits are don’t care and
hence can arbitrarily be set to 0 or 1.

The method presented here can be applied to
both the bit-flipping and bit-fixing approach,
assuming a few modifications. For the sake
of simplicity, we will explain the method by
using the bit-flipping approach; also the ex-
perimental results are given for this method.
In the bit-flipping approach, the modification
of the pseudo-random patterns is realized by
inverting (flipping) some of the LFSR out-
puts, such that the deterministic stimuli are
obtained. The flipping is implemented by
combinational logic, called bit-flipping func-
tion (BFF). The BFF can be kept quite small
by exploiting the large number of useless
pseudo-random test patterns that may be
modified, and carefully selecting the pseudo-
random test patterns on which deterministic
test patterns are mapped.

As shown in Figure 2, the BFF inputs are
connected to the LFSR, the pattern counter,
and the shift counter, while the BFF outputs
are connected to the XOR-gates at the scan
inputs. The BFF determines whether a bit has
to be flipped based on the states of the LFSR
the pattern counter (PC), and the shift
counter (SC). The PC is part of the test
control unit, and counts the number of test
patterns applied during the self-test. The SC

(b) (a)

 BFX

1 0 ... ≥1 &

0 0 ... ≥1 &

0
1

...
0

...

...

...
CUT

...

...

...
CUT

 BFF

1 0 ...

0 0 ...

0
1

...
0

is also part of the test control unit, and counts
the number of scan shift cycles for shifting
data in/out the scan chains.

... ...

Circuit Under Test Circuit Under Test

M M
I I
S S
R R

Pattern
Counter

Shift
Counter

Test Control Test Control

+

+

+ L L
F F
S S
R R

BFL

... ...

Circuit Under Test Circuit Under Test

M M
I I
S S
R R

Pattern
Counter

Shift
Counter

Test Control Test Control

+

+

+ L L
F F
S S
R R

BFF

Figure 2: Bit-flipping DLBIST architecture.

The BFF realizes the mapping of determinis-
tic test stimuli to pseudo-random test stimuli.
Every specified bit (i.e. care bit) in a deter-
ministic pattern either matches to the corre-
sponding bit in the pseudo-random stimulus,
in which case no bit-flipping is required, or
the bit does not match, in which case bit-
flipping is required. For all unspecified bits
(i.e. don’t-care bits) in the deterministic
pattern, the corresponding bits in the pseudo-
random stimulus may be arbitrarily flipped
or not. The BFF should provide that (1) all
conflicting bits are flipped, (2) all matching
bits are not flipped while (3) the don’t-care
bits may be arbitrarily flipped or not.

We first consider a CUT with a single scan
chain. The LFSR generates a pseudo-random
sequence of test stimuli that is shifted into
the scan chain. The LFSR and SC are
updated in every clock cycle, while the PC is
updated when applying a new test pattern. In
every clock cycle, the DLBIST hardware
therefore has a unique state identified by the
states of the LFSR, PC, and SC. In principle,
the states of the PC and SC are already
sufficient to uniquely identify a bit in the
pseudo-random LFSR sequence. The LFSR
states add redundant information, which
however may be exploited for further logic
optimization of the BFF.

The on-set is the set of LFSR+PC+SC states
that correspond to the clock cycles in which
the pseudo-random LFSR output should be
flipped. Similarly, the off-set is the set of

LFSR+PC+SC states that correspond to
clock cycles in which the pseudo-random
LFSR output should not be flipped. The dc-
set is the set of LFSR +PC+SC states that
correspond to clock cycles in which the
pseudo-random LFSR output may be
arbitrarily flipped or not. The on-set and off-
set are disjoint. The dc-set contains all states
that are not in the union of the on-set and off-
set and is exploited to minimize the logic
implementation of the BFF. The size of the
on-set and off-set increases with the number
of specified bits and in contrast to standard
logic synthesis problems, the cubes in these
sets are very irregular. Hence, logic
minimization exploiting the on-set, off-set
and dc-set, may have exponential complexity
in terms of the number of specified bits.

In case of a CUT with multiple scan chains,
there are separate on-sets, off-sets, and dc-
sets associated with each scan chain. For a
CUT with n scan chains, the BFF now
consists of the n bit-flipping logics BFFi for
each scan chain. The size of the BFF
implementation can be minimized by sharing
logic between the BFFi for various scan
chains.

3. BDD-based pattern mapping
A binary decision diagram (BDD) is a well-
known representation of a logic function [1].
A BDD is a tree-like directed graph, starting
from a root vertex. A BDD contains non-
terminal vertices that have two outgoing
edges, and terminal vertices that only have
incoming edges. For example, Figure 3
shows the BDD representation of a parity
function. A second advantage of BDDs is
that the complexity of many operations on a
BDD scales linearly with the number of input
variables [2].

 a

b

c

b

c

0 1

0

0

0

1

1 1

1 1

0

0

a

b

c

b

c

0 1

0

0

0

1

1 1

1 1

0

0

Figure 3: BDD representation of parity
function.

In the BDD-based bit-flipping synthesis pro-
cedure, the on-set and off-set of the BFF are
represented by characteristic functions, the
on-BDD and the off-BDD. The on-BDD will
output the value ‘1’ if the input is taken from
the on-set, otherwise the output is ‘0’.
Similarly, the off-BDD will output ‘1’, only
if the input is selected from the off-set.
Checking whether an assignment is element
of the off-set or the on-set is linear in the
number of input variables of the BDD,
whereas the cubical representation requires
an effort linear in the cardinality of the sets.

In the presented approach, the sequence of
test stimuli is partitioned into two parts. The
first part of the sequence is used only for
pseudo-random fault detection, and no de-
terministic stimuli are embedded into this
part. The outputs of the BFF should be dis-
abled during this part. The LFSR+PC+SC
states for this first part of pseudo-random test
stimuli are included in the dc-set, since
increasing the dc-set gives more room for
logic optimization of the BFF. However, the
BFF will arbitrarily flip some pseudo-
random pattern-bits, and some detected faults
may no longer be detected by the modified
sequence with bit-flipping. In general, most
pseudo-random detectable faults are quickly
detected by the first few hundreds or
thousands pseudo-random test patterns.
Disabling the BFF can be achieved using
some simple additional circuitry that
considers the most significant bits of the PC.

Figure 4: Bit-flipping synthesis procedure.
All deterministic patterns are embedded into
the second part of the sequence, during
which the BFF is enabled. The second part

usually is 1/2, 1/4, or 1/8 of the total test
sequence.

The BDD-based bit-flipping synthesis proce-
dure is outlined in Figure 4.

4. Experimental results
Below, experiments are reported performed
on Linux GNU machines equipped with one
GB of memory and an AMD Atlon-XP
processor running at 1500 MHz. The BDD-
based computations were implemented using
the CUDD package [15].

The benchmark circuits are industrial designs
described in Table 1. The first column re-
ports the circuit name encoded like pN,
where N denotes the number of gates in the
circuit, while the second column gives the
number of scan flip-flops contained in each
design. The last two columns report the fault
coverage and the fault efficiency obtained
after applying 10,000 pseudo-random pat-
terns, which are the percentage of detected
faults, respectively, the percentage of de-
tected, redundant and not testable faults, with
respect to the total number of faults.

While the original cube-based pattern map-
ping is an iterative algorithm [13], where
ATPG, pattern mapping and fault simulation
are alternating, the BDD-based algorithm is a
single pass algorithm, which involves ATPG
and fault simulation less often. This is also a
consequence of the better algorithmic
properties and compactness of the BDD-
based representation, which allow on
optimization of the BFF implementation that
doesn’t need iterative algorithms. Hence
computing time savings are not only due to
substituting the cubical calculus by BDD-
based algorithms, also for ATPG and fault
simulation computing time is saved.

Table 2 shows that mapping time is reduced
from several days down to a few minutes,
and that also the other tasks have significant
improvements. The overall computing time
and the memory consumption is seen in
Table 3. The BDD-based approach reduces
computing time from more than a week
down to a few hours, while also the memory
requirements scale quite well with the circuit
size.

Fault simulation
of pseudo-random LFSR sequence

ATPG

Pattern mapping

BDD-based optimization and
logic synthesis of BFF

Fault simulation of pseudo-random
LFSR sequence with bit-flipping by BFF

Design # Flip-
flops

Random fault
coverage [%]

Random fault
efficiency [%]

p19k 1407 63.11 71.68

p59k 4730 87.30 97.30

p127k 5116 82.14 84.30

p278k 9967 79.92 81.61

p333k 20756 93.64 95.65

p951k 104624 92.91 92.92

Table 1: Benchmark characteristics.

Finally, the amazing improvements should
not be paid by less quality in terms of fault
efficiency and hardware overhead. Table 4
reports the fault efficiencies obtained in both
cases. In order to have comparable results of
time and memory, the fault efficiency of the
BDD-based approach was limited to the one
reached by the cube-based approach. By
spending more resources, even higher fault
efficiency could be obtained, only limited by
the resources given to the ATPG tool. The
last column (Cell area) shows the logic over-
head of the BFF implementation relative to
the cell area of the CUT, obtained using a
commercial synthesis tool and a proprietary
library. Again, the BDD-based approach
outperforms the cubical calculus.

The last design from Table 1 does not appear
in Table 2, 3 and 4 because it was just too
large for being subject of experiments done
with the cube-based representation. During
the generation of the BDD-based representa-
tion, no static or dynamic variable reordering
was used. The variables were a priori and
optimally arranged in groups corresponding
to the states of the LFSR, PC and SC. The
reported experimental results are obtained
with the same variable order for all the
designs.

Table 5 illustrates how the computational re-
sources are scaling when the targeted fault
efficiency is increased to levels close to the
maximum allowed by the ATPG tool. Most
of the additional run-time is consumed gen-
erating deterministic patterns, while the time
spent for fault simulation remains constant.
These final fault efficiencies are practically
not reachable by the cube-based approach in
the case of the last four designs. The figures
reported in the last column (Cell area) are
just giving the logic overhead of the BFF
implementation; the overhead of the other
parts of the DLBIST hardware may be
neglected. Table 5 also shows that the over-
head decreases significantly for the larger
design. The presented approach does not
only scale very well in terms of run-time and
memory, but also in terms of area overhead.

5. Conclusions
A new pattern mapping algorithm for “test
set embedding” deterministic BIST schemes
was proposed which exploits standard BDD
operations. This way, improvements of sev-
eral order of magnitude are obtainable com-
pared with the cube-based approach, e.g., in
terms of both run-time and memory require-
ments. With this approach, computing and
memory resources for DLBIST synthesis are
in the same order of complexity as the
resources required for ATPG or fault
simulation. The gains of efficiency can also
be used to obtain even better solutions in
terms of hardware overhead and fault
coverage.

Acknowledgment
This research work was supported by the
German Federal Ministry of Education and
Research (BMBF) in the Project AZTEKE
under the contract number 01M3063C.

 Cube-based BDD-based

Design ATPG time
[h:m]

Mapping time
[h:m]

Fault simulation
time [h:m]

ATPG time
[h:m]

Mapping time
[h:m]

Fault simulation
time [h:m]

p19k 00:12 02:48 00:52 00:00 00:02 00:01

p59k 00:15 01:50 00:29 00:01 00:02 00:03

p127k 02:19 74:28 20:38 03:49 00:12 00:11

p278k 05:20 193:10 37:23 01:59 00:06 00:21

p333k 06:46 88:16 44:31 00:37 00:11 00:17

Table 2: Computing time for the different tasks of the cube-based and BDD-based algorithm.

 Cube-based BDD-based

Design Total time [h:m] Total memory [MB] Total time [h:m] Total memory [MB]

p19k 03:52 47 00:07 22

p59k 02:34 114 00:08 34

p127k 97:25 382 04:40 94

p278k 235:53 400 02:52 111

p333k 139:33 529 01:21 147

Table 3: Run-time and memory consumption of the cube-based and BDD-based algorithm.

 Cube-based BDD-based

Design Fault efficiency [%] Cell area [%] Fault efficiency [%] Cell area [%]

p19k 96.87 25.26 97:55 6.95

p59k 99.06 27.12 99.17 14.09

p127k 94.67 27.86 95.82 12.83

p278k 90.83 25.77 91.56 15.49

p333k 97.46 12.07 97.56 4.04

Table 4: Fault efficiency and logic overhead of the cube-based and BDD-based algorithm.

Design # Embedded patterns Fault efficiency [%] Run-time [h:m] Memory [MB] Cell area [%]

p19k 237 99.99 00:10 29 10.38

p59k 137 99.19 00:08 35 14.32

p127k 761 99.79 10:41 208 31.11

p278k 1894 99.33 26:29 329 38.95

p333k 1396 99.53 03:12 246 9.12

p951k 259 99.67 14:22 666 1.49

Table 5: Performance of the BDD-based approach when the fault efficiency is close to 100%.

References
[1] S.B. Akers „Binary Decision Diagrams,” IEEE

Transactions on Computers, Vol. C-27, No. 6, June
1978, pp. 509-516.

[2] R.E. Bryant „Graph-Based Algorithms for Boolean
Function Manipulation,” IEEE Transactions on
Computers, C-35-8, August 1986, pp. 677-691.

[3] R.K. Brayton, G.D. Hachtel, C.T. McMullen and A.L.
Sangiovanni-Vincentelli „Logic Minimization
Algorithms for VLSI Synthesis,” Kluver Academic
Publishers, 1997.

[4] M.J. Geuzebroek, J.Th. van der Linden, A.J. van de
Goor „Test Point Insertion for Compact Test Sets, ”
Proceedings of International Test Conference, IEEE,
2000, pp. 506-514.

[5] J.P. Hayes, A.D. Friedman „Test Point Placement to
Simplify Fault Detection,” IEEE Transactions on
Computers, Vol. C-33, July 1974, pp. 727-735.

 [6] S. Hellebrand, S. Tarnik, J. Rajski, B. Courtois
„Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers,”
Proceedings of International Test Conference, 1992, pp.
120-129.

[7] H. Liang, S. Hellebrand, H.-J. Wunderlich „Two-
Dimensional Test Data Compression for Scan-Based
Deterministic BIST ,” Proceedings IEEE International
Test Conference, Journal of Electronic Testing - Theory

and Applications (JETTA), Vol. 18, No. 2, April 2002,
pp. 157-168.

[8] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab,
A. Hassan, J. Rajski „Logic BIST for Large Industrial
Designs: Real Issues and Case Studies,” Proceedings of
International Test Conference, IEEE, 1999, pp. 358-367.

[9] B. Koenemann „LFSR-Coded Test Patterns for Scan
Designs,” Proceedings of European Test Conference,
1991, pp. 237-242.

[10] J. Rajski, J. Tyszer, M. Kassab, N. Mukherjee, R.
Thompson, K.-H. Tsai, A. Hertwig, N. Tamarapalli, G.
Mrugalski, G. Eide, J. Qian „Embedded deterministic
test for low cost manufacturing test”, Proceedings of
International Test Conference, IEEE, 2002, pp. 301-310.

[11] B. H. Seiß, P. M. Trouborst and M. H. Schulz „Test
Point Insertion for Scan-Based BIST,” European Test
Conference (ETC), April 1991, pp. 253-262.

[12] N. A. Touba, and E. J. McCluskey „Altering a pseudo
random bit sequence for scan-based BIST,” Proceedings
IEEE International Test Conference, 1996, pp.167-175.

[13] H.-J. Wunderlich, G. Kiefer „Bit-Flipping BIST,”
Proceedings International Conference on Computer
Aided Design, IEEE, 1996, pp. 337-343.

[14] H.-J. Wunderlich „BIST for Systems-on-a-Chip,”
INTEGRATION, the VLSI journal, 1998, pp. 57-78.

[15] http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html

