
RESPIN++ – Deterministic Embedded Test

Lars Schäfer, Rainer Dorsch, Hans-Joachim Wunderlich
University of Stuttgart

Breitwiesenstr. 20-22, D-70565 Stuttgart, Germany
{rainer.dorsch,wu}@informatik.uni-stuttgart.de

Abstract

RESPIN++ is a deterministic embedded test method tai-
lored to system chips, which implement scan test at core
level. The scan chains of one core of the system-on-a-chip
are reused to decompress the patterns for another core. To
implement the RESPIN++ test architecture only a few gates
need to be added to the test wrapper. This will not affect the
critical paths of the system. The RESPIN++ method re-
duces both test data volume and test application time up to
one order of magnitude per core compared to storing com-
pacted test patterns on the ATE. If several cores may be
tested concurrently, test data volume and test application
time for the complete system test may be reduced even fur-
ther. This paper presents the RESPIN++ test architecture
and a compression algorithm for the architecture.

1 Introduction

A system-on-a-chip (SoC) usually contains various pre-
designed and pre-validated embedded cores such as mem-
ory cores, processor cores, interface cores, mixed-signal
cores and analog cores. This SoC design style increases the
designer’s productivity, but at the same time test complex-
ity of the chip increases and the core’s accessibility from the
chip pins is reduced. The accessibility problem is addressed
by isolating the cores during test from the system environ-
ment using test wrappers and transport the test data on a
test access mechanism (TAM) from the test data source to
the core under test (CUT) to the test data sink [19, 20, 23].
Nevertheless, higher test data volume is necessary to test
the chip, higher ATE-chip bandwidth and more test pins
are necessary to keep the test times low, and higher tim-
ing resolution is necessary to avoid yield loss. This leads to
a significant rise in test costs as predicted in the ITRS road
map [22].

This work was supported by the DFG under grant Wu 245/1-4.

Deterministic embedded test (DET) methods reduce the
test data volume by storing a compactly encoded represen-
tation of the test patterns on the ATE and decoding this rep-
resentation on-chip. Similarly, the test responses are en-
coded on-chip and compared with the encoded representa-
tion on the ATE. This paper focuses on test pattern com-
paction. In the next section we summarize prior work on
on-chip decoders. Section 3 introduces the RESPIN++ test
architecture and in Section 4 an encoding algorithm for the
test data for the RESPIN++ architecture is presented. Some
experimental results are presented in Section 5. Section 6
summarizes this work.

2 Prior Work

Storing test data in an encoded representation on the
ATE was previously proposed many times. As on-chip de-
coders linear feedback shift registers (LFSRs) were pro-
posed, which decode seeds for the LFSR to test patterns
[11, 12, 17]. Other methods reduce the width of the test
patterns and thus the test data volume to be stored on the
ATE [3]. Manymethodsmake use of the non-randomnature
of test patterns and use encoding methods known from data
compression such as variants of Huffman coding [1,13,14],
run-length coding [15] or Golomb coding [4, 6]. If an em-
bedded processor is available there are methods which only
store differences between test vectors [16] or geometric
shapes, which characterize the test vectors [9].
The recently presented RESPIN method (REusing Scan

chains for test Pattern decompactIoN) [7, 8] significantly
reduces test data volume, test application time, or both
compared to previously discussed decoding techniques.
RESPIN uses the scan chains of one embedded core to de-
code test patterns for another core or interconnections. The
RESPIN method consists of a test architecture and an al-
gorithm which compacts the test data for the architecture.
Figure 1 illustrates the test architecture of RESPIN in an ex-
ample system. The scan chains of the embedded tester core
(ETC), which is the MPEG core in this example, are used
for the decompression of the patterns for the CUT, which

is the CPU core in this example. For each core used to de-
code test patterns only an additional multiplexer and some
wiring is needed in the test wrapper. The critical paths of
the system remain untouched.
In the RESPIN architecture the compressed test informa-

tion is transported from the ATE to the chip on a k = 1-bit
narrow test access mechanism (TAM). To transform the en-
coded test data into test patterns the scan chains of the ETC
are reused. The test patterns are transported on a l-bit wide
TAM with a high bandwidth from the ETC to the CUT (see
Fig. 1).
For manufacturing test, test application time is often

more important than test data volume, especially if the
ATE memory is not fully utilized by the encoded test data.
RESPIN++ allows to trade off efficiently between test data
volume and test application time, which is impossible in the
RESPIN architecture. The only change with respect to the
RESPIN architecture is the addition of XOR gates to the
inputs of the ETC’s scan chains. Thus this architecture is
called RESPIN+⊕ or just RESPIN++. The test data encod-
ing algorithm is entirely new.

ROM

PCI
DSP

RAM

UARTMPEG

CPU

Wide TAM

Narrow TAM

ATE

ETC

CUT

k

Figure 1. SoC with the RESPIN Test Architec-
ture

3 RESPIN++ Test Architecture

The RESPIN and the RESPIN++ test architectures use
scan chains of an arbitrary core to decode the test data stored
on the ATE. The core reused for decoding is called embed-
ded tester core (ETC). The core which is tested is called
core under test (CUT).
In the RESPIN++ test architecture either k bit per clock

=1 =1=1

ETC

tc

"0"

1 0

(a) ETC Test Architecture

=1

ETC

=1=1

(b) Modification for 2 Bits
per Clock Cycle

=1=1=1

CUT

ETC

E3

E4

E5

E6

E7

E8

E1

E2

C1

C2

C3

C4

(c) Complete Architecture

Figure 2. RESPIN++ Test Architecture

cycle are scanned in from the narrow TAM or k bit are

2

scanned in every n-th cycle in order to facilitate low cost
testers operating at a larger period n. The selection of the
narrow TAM width k and tester period n allow a trade-off
between test application time and test data volume. E.g. a
smaller period n and a larger narrow TAM width k leads to
lower test application time and increases test data volume
for a given core.
Both the CUT and the ETC are equipped with scan

chains and isolated from their environments by a test wrap-
per during test. In order to operate the ETC as decoder in
the RESPIN++ architecture it is necessary to modify its test
wrapper slightly. To the input of each scan chain an XOR
gate is added. Figure 2(a) shows an ETC configuration for
k = 1, Figure 2(b) for k = 2. The inputs of the XOR gates
are connected to

• the output of the adjacent scan chain, as in the serial
access mode,

• a feedback wire from the output a scan chain in serial
access mode, and

• the narrow TAM (only the first k scan chains).

If the ETC is supposed to operate at a frequency higher than
the ATE’s frequency multiplexers with a control input tc
may be added to narrow TAM. tc may be used to force these
inputs of the XOR gates to 0, which are connected to the
narrow TAM. The signal tc selects between feedback mode
(tc = 0) and scan mode (tc = 1). Any ratio of cycles between
the two modes is possible. The parallel test access outputs
of the ETC are connected to the parallel test access inputs
of the CUT via the wide TAM (see Fig. 2(c)).
The RESPIN++ method achieves at least the same fault

coverage as compacted test patterns, if the simple design
rules of the RESPIN architecture are followed, which avoid
that the content of a scan cell in the ETC is mapped to two
scan cells of the CUT [7].

4 Encoding Algorithm

The pattern scanned into the CUT depends on the con-
tent of the scan chains of the ETC, which is the state of the
ETC. The state of the ETC is described by a state vector s.
In each clock cycle in scan or feedback mode, a state transi-
tion occurs in the ETC, which is described by a matrix mul-
tiplication. This leads to a sequence of states s1,s2,s3, . . .
which controls the test patterns scanned into the CUT. In
feedback mode the next state may be obtained by multiply-
ing the current state with the feedback matrix R:

si+1 = R · si. (1)

The following feedback matrix describes the example from
Figure 2(c).:

R=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

s=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

E1
E2
E3
E4
E5
E6
E7
E8

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In scan mode the next state can be derived from the scan
matrix S and the ATE vector v :

si+1 = R · si.+v (2)

v=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi
0
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

When scanning in two bits per clock cycle (see Fig-
ure 2(b)) feedback matrix and ATE vector look slightly dif-
ferent and are denoted as R2 and v2 respectively:

R2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

v2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi
0
0
x j
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The ATE vector introduces variables into the state vec-
tor s. For each test vector ti ∈ T it may be checked, if the
variables in the state vector s may be set in such a way that
the appropriate rows of s satisfy the specified bits in ti. This
may be done by solving the resulting set of linear equations.
To encode all test patterns out of T the algorithm repeatedly
passes through the following three phases:

1. In the scan phase m new variables are scanned in (see
Equation 2).

2. In the feedback phase the ETC is operated n cycles in
feedback mode. This fills up the pattern and does not
require data from outside. (see Equation 1).

3. In the encoding phase as many test vectors as possi-
ble are encoded by solving the set of linear equations.

3

If the set of linear equations has a unique solution for
a test vector ti ∈ T then ti is removed from T and the
variables present in the set for linear equations are set
appropriately. If more than one solution exists for the
set of linear equations, the operations are used as con-
straints for all further sets of equations.

The phases 1 through 3 are repeated until all vectors of the
test set T are encoded.

4.1 Restriction of Search Space

In every scan phase new variables are added to the state
vector. This may result in a continuous growth of the num-
ber of variables in the state vector. Only in the rare case,
when there exists a unique solution for the set of linear
equations in the encoding phase, variables are fixed. In or-
der to limit the continuous growth of the number of vari-
ables, some variables are forced to values, which satisfy
all constraints, if the number of unset variables xi exceeds
l. Setting only some variables improved encoding quality
and distinguishes the encoding algorithm from traditional
LFSR reseeding methods, which set all variables, when lin-
ear equations are solved [17,18,21]. To guarantee this limit,
in state si only the variables xi−l . . .xi−1 (∀i≥ l) are still un-
set. All variables x j with j ≤ (i− l) have been set to a fixed
value in the encoding phase of a previous cycle.
Additionally the probability for encoding of test patterns

depends on the number of constraints introduced during the
encoding of previous test patterns. If the encoding proba-
bility is very low, the number of unsuccessful attempts to
encode a test pattern per state is limited to a user defined
number u.

4.2 Example

This example shows how to compact the deterministic
test set T = {t1 = (10−1), t2 = (−011), t3 = (11−0)}
using the test architecture from Figure 2 (b). The test set
T consists of three partially specified 4-bit test cubes. The
hyphen indicates a don’t care bit. The first bit of a test cube
ti is scanned into the first scan cell C1 of the CUT, the sec-
ond into scan cell C2, and so on. Let l = 11 variables to be
maintained in the state vector of the ETC, let the ETC op-
erate m = 2 cycles per pattern in the scan phase and o = 1
cycle in the feedback phase. In the example, in each cycle
in the scan phase a new variable is scanned in.

4.2.1 Encoding

At first the circuit is operated in scan mode until all 11 vari-
ables are scanned in (see Fig. 3 (a) and (b)). Next encoding
t1 with the state of the CUT leads to the following set of
linear equations :

x8 = 1
x7 = 0
x4 = 1

(3)

This set of equations is satisfiable. Hence t1 is removed
from T and the set of equations is saved as a constraint for
encoding the remaining patterns. Now t2 is encoded with
the same state of the CUT. With the constraints from above
(equation 3) this yields the following set of equations

x8 = 1
x7 = 0
x4 = 1
x5 = 1

(4)

This set of equations is also satisfiable. Therefore t2 is
removed from T as well and the set of equations (4) is the
new set of constraints. It is impossible to encode t3 in this
step. Next, the two oldest variables x1 and x2 are set. Be-
cause they do not appear in the set of constraints (4) they
are set to an arbitrary value. In this example they are set to
0.
The ETC is afterwards operated one cycle in feedback

mode. After that (see Fig. 3 (c)) it is operated two cycles in
scan mode. Then the next encoding phase follows, trying to
match the remaining test cube t3. The set of constraints (4)
must still be valid, so the resulting set of equations is:

x8 = 1 (5)
x7 = 0 (6)
x4 = 1 (7)
x5 = 1 (8)

x11+ x3 = 1 (9)
x10 = 1 (10)

x8+ x3 = − (11)
x7 = 0 (12)

This set of equations is satisfiable as well, hence all test
vectors are compressed and all remaining variables x3 . . .x13
are set according to the set of equations (5) to (12). Vari-
ables that are not specified in those equations are set arbi-
trarily.

4.2.2 Test Data Volume and Test Application Time

Due to the fact that this example is small, no reduction in
test data volume can be observed. It takes 13 bits from the
ATE (x1, . . . ,x13) to apply the three test cubes which contain
only 12 bits. Note that x1and x2 were set arbitrarily and
x3,x6,x9,x12,x13 remain unspecified. These unspecified bits
can be used to encode more test cubes. In real application
only a very small fraction of bits remains unspecified. The

4

=1=1=1

CUT

ETC

x1 0 0

0 0 0

00

0 0

− −

(a) after 1 cycle

=1=1=1

CUT

ETC

+x1 +x1
x8+x3 x5+x3

x4+x2x7+x2

x6+x1

x8 x5

x7 x4

x9+x1

x10+x2

x11+x3
+x1

(b) after 11 cycles

=1=1=1

CUT

ETC

+x4

+x3+x3

x11+x6 x8+x6
+x4+x3
x7+x5x10+x5

x9+x4x4

x8+x3

x7x10

x11+x3

x12+x5

x13+x6
+x4

+x3

(c) after 14 cycles

Figure 3. Scan Phase

total test data volume reduction is in this example negative
12−13
12 = −8.3%.
Test application time is computed as follows: It takes 11

cycles in scan mode to fill ETC and CUT, then 1 cycle in
feedback mode and another 2 cycles in scan mode. This
sums up to 14 clock cycles.

4.3 Algorithmic Description

The formal representation of the algorithm used for test
data compression in the RESPIN++ architecture is shown
in Algorithm 1. After an initialization sequence, the three
phases described before are repeated until all test patterns
in T are encoded.
Algorithm 2 shows the encoding phase in more detail.

The patterns are encoded iteratively, the algorithm stops if
the encoding of u patterns failed. To make sure, that only l
variables are in the set of linear equations, the oldest vari-
ables are set in a way that they are compatible to the con-
straints.

5 Experimental Results

Experiments were performed with SoCs which contain
the ISCAS89 benchmarks [2] as cores. For the CUT it was
assumed that each scan chain had a length of 100 bit each.
The last chain was shorter, its length depends on the total
number of scan cells in the CUT. The chains of the ETC

Algorithm 1 RESPIN++ Algorithm
TestSet T;
TestCube t ;
INT l; //variables maintained in state vector
INT u; //max unsuccessful attempts
INT m; //new variables per pattern
INT o; //cycles in feedback phase
ScanPhase(k−m);
while T ̸= /0 do
ScanPhase(m);
FeedbackPhase(n);
EncodingPhase();

end while

contained 101 scan cells each. A significant influence of the
choice of the chain lengths on the results was not observed.
The algorithm associated with the RESPIN++ test archi-

tecture was implemented in C++. The sets of linear boolean
equations were solved using Gauss-Jordan elimination. The
number of unsuccessful attempts was limited to u= 100 per
state. The deterministic test patterns were generated by a
commercial ATPG tool. The ATPG patterns contained the
bit values 0, 1, and “don’t care”. The ATPG patterns were
encoded by RESPIN++. To reduce test data volume a two
level technique was used. In the first pass, only test vectors
for faults, which were not detected by 400 random patterns,
were encoded. In the second pass test vectors for all re-

5

Bench- Compacted Test Set RESPIN++
mark |TSC | Bits Cycles Bits Patterns Cycles

Red. # # Red.
s5378 117 25,038 25,252 17,332 31 % 165 17,497 31 %
s9234.1 145 35,815 36,062 17,198 52 % 161 17,359 52 %
s13207.1 240 168,000 168,700 26,004 85 % 242 26,246 84 %
s15850.1 119 72,709 73,320 32,226 56 % 306 32,532 56 %
s38417 93 154,752 156,416 89,132 42 % 854 89,986 42 %
s38584.1 131 191,784 193,248 63,232 67 % 599 63,831 67 %

Table 1. Comparison with compacted test set

Algorithm 2 EncodingPhase()
INT i= 0; //unsuccessful attempts
for all t ∈ T do
encode t with the current state;
solve resulting set of equations fulfilling all con-
straints;
if satisfiable then
T= T\{t};
add this set of equations to the constraints;

else
i= i+1;

end if
if i≥ u then
solve constraints;
if several solutions then
set oldest m variables;

else
set all l variables;
/* there is at least one solution because only solv-
able sets of equations are added to the constraints
*/

end if
break;

end if
end for

maining faults were encoded. These remaining faults were
the faults not detected by the deterministic patterns of the
first pass and by link patterns that occur, when encoding the
deterministic patterns in the first pass. For all benchmarks
100% fault efficiency was achieved.

5.1 Comparison with Compacted Test Patterns

This section compares test application time and test data
volume of the RESPIN++ architecture and a standard scan
test architecturewith unencoded but compacted test patterns
stored on the ATE. It is assumed that both architectures
may use 1 ATE scan channel for testing the CUT. In the

RESPIN++ architecture a k = 1 bit narrow TAM was cho-
sen and the first m= 100 bits per test pattern were scanned
into the ETC from the narrow TAM (i.e. one cycle in feed-
back mode per test pattern). In the standard architecture the
test patterns are scanned into the CUT in serial mode.
Table 1 shows the results of the comparison. Column 1

contains the name of the benchmark, Column 2 the num-
ber of test patterns in the compacted test set, Column 3 the
number of bits to be stored on the ATE and Column 4 the
number of cycles needed to test the circuit. Comparing this
with the test data volume (Column 5) and test application
time (Column 8) of the RESPIN++ architecture shows a
reduction of up to 85% for both values. The comparison
in the number of patterns applied to the CUT (Column 2
and 7) shows that for the large benchmarks, the RESPIN++
method needs more patterns. Scanning in more than one bit
per cycle from the ATE (i.e. k > 1) will reduce the number
of applied patterns in the RESPIN++ method considerably.
This implies that for large designs the feedback phase is not
necessary in manufacturing test.

5.2 Comparison with DET Methods

In this section the RESPIN++ method is compared with
other DET methods, which decode test data on the chip.
Two methods, FDR and Golomb implement the decoding
algorithm in hardware [4,5], another method, GPBC, needs
a microprocessor to decode the test data [9]. Comparing the
test data volume of all four methods (columns 2, 4, 5 and
6 of Table 2) shows that although the RESPIN++ method
does not need a microprocessor for test pattern decoding,
the test data volume is only slightly larger than the test data
volume of GBPC. FDR and Golomb require often a higher
test data volume than RESPIN++.
The test application time is given by a few initializa-

tion cycles for the ETC plus the test data volume applied
to the CUT in bits divided by the throughput of the decoder
(=number of bits generated by the decoder in each clock cy-
cle). A low test application time therefore requires a high
throughput of the decoder. GBPC is limited by the width of

6

Bench- FDR GPBC Golomb RESPIN++
[5] [9] [4]

mark Bits Bits Bits Bits
s5378 12,307 10,057 - 17,332
s9234.1 21,647 14,666 22,495 17,198
s13207.1 35,236 22,458 35,122 26,004
s15850.1 36,284 24,446 30,581 32,226
s38417 74,905 60,478 91,088 89,132
s38584.1 93,878 - 120,350 63,232

Table 2. Compressed Test Data

the data path of the CPU (typically up to 32 bits). Golomb
and FDR are variable-to-variable codes, i.e. the throughput
is variable. The RESPIN++ architecture generates as many
bits per clock cycle as scan chains of the ETC are available.
In practice, several hundred scan chains are often present in
a core [10], thus the RESPIN++ architecture has a high and
constant throughput of the decoder.

5.3 System Test

This sections shows the control of the user over the opti-
mization goal test application time and test data volume. We
performed experiments with k= 1 and varied the number of
bits per test patterns scanned in from the narrow TAM. For
larger cores the width k of the narrow TAM may be var-
ied and the ETC obtains in each cycle data from the narrow
TAM. We discuss the implications of this feature on system
test.
During system test, all cores of the system must be

tested. The system integrator may choose to use the band-
width of the narrow TAM to transport the compressed test
data of one core to the ETC of this core and if the test of this
core is completed another core is tested in the same way.
Alternatively, several cores may be tested concurrently and
the narrow TAM may be time multiplexed to transport test
data to the ETCs of the cores tested concurrently. Testing
cores concurrently requires more ETCs but it reduces the
test application time and test data volume on the ATE for
the complete system test considerably.
In the previous experiments the cores had scan chains of

length 100 and 100 bits were scanned in the ETC per test
pattern. If two cores would be tested concurrently, in the
first 50 cycles, the data are for the ETC which tests the first
core and the second 50 cycles for the ETC which tests the
second core. In the RESPIN++ method this is modeled by
operating the ETC 50 cycles in scan phase and 50 cycles in
feedback phase.
To assess the effect of concurrent test of the cores on the

test data volume and test application time for the system, an
experiment was performed in which we had assumed that a

system had 40 cores of the type s9234. Then we performed
a system test, in which we varied the number of cores tested
concurrently. We did not make use of the fact that the cores
in the experiment were identical.
The results of the experiment in table 3 show that the

more cores are tested concurrently, the lower becomes the
system test application time and system test data volume.
Column 1 shows the number bits per test pattern which are
loaded from the ATE to the ETC. If m bits per test pattern
are loaded from the ATE, then the encoding took into ac-
count that the ETC operated m clock cycles in scan and
101−m clock cycles in feedback mode. Column 2 shows
the resulting number of bits which need to be stored on the
ATE per core. Column 3 shows number of patterns ap-
plied to test this core and Column 4 the test application time
per core. Columns 5 to 7 refer to the system test. Col-
umn 5 gives the maximum number of cores which may be
tested concurrently using a single bit time multiplexed nar-
row TAM. The total test data volume in Column 6 is given
by the sum of test data volume of the individual cores, in
the example by 40 times Column 2. The test application
time in Column 7 for the system test is given by the sum of
the test application time of the cores divided by the number
of cores tested concurrently. When 20 cores are tested con-
currently, the test data volume and the test application time
for the complete system are reduced by approximately 60%
compared to a sequential test of all cores in the RESPIN
architecture.

6 Summary

The RESPIN++ test method has been developed for the
deterministic embedded test of SoCs. This deterministic
embedded test method consists of a test architecture and an
encoding algorithm for this architecture. In the architecture
test patterns for a core are decoded with the scan chains for
another core, which is idle during the test of the first core.
In order to reuse the scan chains of a core as an embedded
tester core, only minor modifications in its test wrapper are
necessary. The associated encoding algorithm is based on
solving sets of linear equations and on multiplyingmatrices.
The method is characterized by a high throughput of the on-
chip test data decoder. The method reduces test application
time and test data volume up to one order of magnitude per
core and even more, if cores may be tested concurrently in
the system test.

References

[1] I. Bayraktaroglu and A. Orailoglu. Test Volume and Appli-
cation Time Reduction Through Scan Chain Concealment.
In Proceedings of the ACM/IEEE Design Automation Con-
ference (DAC), pages 151–155, 2001.

7

Bits Core System
per Pattern Bits Patterns Cycles concurrency Bits Cycles
100 17,198 161 17,359 1 687,920 694,360
50 12,048 223 23,421 2 481,920 486,400
25 9,048 318 33,216 4 361,920 365,120
10 7,958 706 72,204 10 318,320 321,160
5 6,988 1,218 123,916 20 279,920 281,840

Table 3. System Test

[2] F. Brglez, D. Bryan, and K. Kozminski. Combinatorial Pro-
files of Sequential Benchmark Circuits. In Proceedings of
the International Symposium on Circuits and Systems (IS-
CAS), pages 1229–1234. IEEE, 1989.

[3] K. Chakrabarty and B. T. Murray. Design of built-in test
generator circuits using width compression. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, 17:1044–1051, October 1998.

[4] A. Chandra and K. Chakrabarty. Efficient test data com-
pression and decompression for system-on-a-chip using in-
ternal scan chains and Golomb coding. In Proceedings of the
Design Automation and Test in Europe (DATE), pages 145–
149, Munich, March 2001. IEEE Computer Society Press.

[5] A. Chandra and K. Chakrabarty. Frequency-directed run-
length (FDR) codes with application to system-on-a-chip
test data compression. In Proceedings of the VLSI Test Sym-
posium (VTS), pages 42–47, 2001.

[6] A. Chandra and K. Chakrabarty. System-on-a-Chip Test
Data Compression and Decompression Architectures Based
on Golomb Codes. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20, March 2001.

[7] R. Dorsch and H.-J. Wunderlich. Reusing scan chains for
test pattern decompression. In Proceedings of the IEEE Eu-
ropean Test Workshop (ETW), pages 124–132, Stockholm,
Sweden, May 2001. IEEE Computer Society Press.

[8] R. Dorsch and H.-J. Wunderlich. Tailoring ATPG for Em-
bedded Testing. In Proceedings of the IEEE International
Test Conference (ITC), pages 530–537, Baltimore, MD, Oc-
tober 2001. IEEE Computer Society Press.

[9] A. El-Maleh, S. al Zahir, and E. Kahn. A Geometric-
Primitives-Based Compression Scheme for Testing
Systems-on-Chip. In Proceedings of the VLSI Test Sympo-
sium (VTS), pages 54–59. IEEE Computer Society Press,
2001.

[10] X. Gu, S. Chung, F. Tsang, J. A. Tofte, and H. Rahma-
nian. An Effort-Minimized Logic BIST Implementation
Method. In Proceedings of the IEEE International Test Con-
ference (ITC), pages 1002–1010. IEEE Computer Society
Press, 2001.

[11] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and
B. Courtois. Built-In Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers. IEEE Transactions on Computers, 44(2):223–
233, February 1995.

[12] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois. Gen-
eration of Vector Patterns through Reseeding of Multiple-
Polynomial Linear Feedback Shift Registers. InProceedings

of the IEEE International Test Conference (ITC), pages 120–
129, Washington, DC, 1992. IEEE, IEEE Computer Society
Press.

[13] V. Iyengar, K. Chakrabarty, and B. Murray. Deterministic
Built-in Pattern Generation for Sequential Circuits. Jour-
nal of Electronic Testing Theory and Applications (JETTA),
15(1/2):97–114, August/October 1999.

[14] A. Jas, J. Ghosh-Dastidar, and N. Touba. Scan Vector Com-
pression/Decompression Using Statistical Coding. In Pro-
ceedings of the VLSI Test Symposium (VTS), pages 114–120,
Dana Point, CA, 1999. IEEE Computer Society Press.

[15] A. Jas and N. Touba. Test Vector Decompression Via Cycli-
cal Scan Chains and Its Application to Testing Core-Based
Designs. In Proceedings of the IEEE International Test Con-
ference (ITC), pages 458–464, Washington, DC, 1998. IEEE
Computer Society Press.

[16] A. Jas and N. Touba. Using an Embedded Processor for Ef-
ficient Deterministic Testing of Systems-on-a-Chip. In In-
ternational Conference on Computer Design (ICCD), pages
418–423, 1999.

[17] B. Koenemann. LFSR-Coded Test Patterns for Scan Design.
In Proceedings of the European Test Conference (ETC),
pages 237–242, München, 1991.

[18] C. V. Krishna, A. Jas, and N. A. Touba. Test Vector Encod-
ing Using Partial LFSR Reseeding. In Proceedings of the
IEEE International Test Conference (ITC), pages 885–893,
2001.

[19] E. J. Marinissen. On Using IEEE P1500 SECT for Test
Plug-n-Play. In Proceedings of the IEEE International Test
Conference (ITC), pages 770–777, Atlantic City, NJ, 2000.
IEEE, IEEE.

[20] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and
L. Whetsel. Towards a Standard for Embedded Core Test:
An Example. In Proceedings of the IEEE International Test
Conference (ITC), pages 616–627. IEEE, 1999.

[21] J. Rajski, J. Tyszer, and N. Zacharia. Test Data Decompres-
sion for Multiple Scan Designs with Boundary Scan. IEEE
Transactions on Computers, 47(11):1188–1200, November
1998.

[22] Semiconductor Industry Association. The International
Technology Roadmap for Semiconductors (ITRS). Interna-
tional SEMATECH, Austin, TX, 2001.

[23] Y. Zorian. Test Requirements for Embedded Core-based
Systems and IEEE P1500. In Proceedings of the IEEE In-
ternational Test Conference (ITC), pages 191–199, 1997.

8

