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Abstract
A divide-and-conquer approach using circuit

partitioning is presented, which can be used to
accelerate logic BIST synthesis procedures. Many
BIST synthesis algorithms contain steps with a time
complexity which increases more than linearly with the
circuit size. By extracting sub-circuits which are
almost constant in size, BIST synthesis for very large
designs may be possible within linear time. The
partitioning approach does not require any physical
modifications of the circuit under test. Experiments
show that significant performance improvements can
be obtained at the cost of a longer test application time
or a slight increase in silicon area for the BIST
hardware.
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1. Introduction
The use of external automated test equipment

(ATE) for testing integrated circuits (ICs) is getting
more and more difficult and costly due to increasing
pin counts, test data volumes, and clock frequencies,
and due to capabilities for testing both digital, analog,
memory, and RF modules as integrated into system
chips. Built-in self-test (BIST) enables the use of low-
cost ATE since requirements on timing accuracy,
vector memory, and pin count are strongly reduced. At
the moment, BIST for embedded memories is mature
and widely used in industry, while industrial use of
BIST for random logic is increasing, and BIST for
analog and RF modules is emerging.

Logic BIST for industrial applications is
currently supported by a few commercial CAD tools
[1][2], based on the STUMPS architecture for pseudo-
random testing [3] combined with test point insertion
for improving test quality [4][5][6]. However, also
deterministic logic BIST has been shown to be a viable
solution [7][8][9][10][11][12][13][14]. Experimental
results in [14] obtained by applying deterministic logic
BIST to industrial circuits, show that complete fault
coverage is guaranteed at the cost of a small amount of

silicon area for the BIST hardware, while the impact
on the design process is less when compared to BIST
schemes based on test point insertion. In [14] also
tradeoffs are reported between test time, test quality,
and BIST silicon area: the silicon area can be reduced
considerably by applying more test patterns (i.e. longer
test time) and/or by decreasing the target fault
coverage (i.e. lower test quality).

Tradeoffs in ATE costs, test time, test quality,
and BIST silicon area are important factors that  affect
the costs and quality of each manufactured IC.
However, also non-recurring costs related to logic
BIST during the design process are important, in
particular the computation time used for logic BIST
synthesis. For large IC designs, this computation time
may become very large, in the order of days or even
weeks, which is unacceptable for meeting tight time-
to-market windows as typically present for consumer
electronics and mobile communication products.

This paper proposes circuit partitioning for
reducing the computation time during logic BIST
synthesis. By using circuit partitioning, a divide-and-
conquer approach is introduced: the circuit is divided
into a number of sub-circuits, and logic BIST synthesis
is performed for each sub-circuit. Also, the test
application is partitioned, so that for each sub-circuit
only a relatively small number of test patterns has to be
simulated. Experiments show that the sum of the
computation times for logic BIST synthesis for all sub-
circuits is typically less than the computation time for
logic BIST synthesis for the complete circuit in a
single run.

Circuit partitioning as a divide-and-conquer
approach has been successfully applied in the past on
test-related problems like ATPG and fault simulation,
e.g. as reported in [15][16][17][18]. In this paper,
circuit partitioning is proposed for the first time for
reducing time and space complexity of logic BIST
synthesis.

The circuit partitioning is used only during BIST
synthesis and does not require any physical
modifications of the circuit. The proposed approach is
orthogonal to core-based design [20]. For core-based
systems, BIST is typically applied at the core level,
and hence each individual core will have its own BIST



hardware, although sharing of BIST hardware between
cores is possible as well. For such core-based systems,
in which each core can still be a large circuit, circuit
partitioning is applied on the core level.
In this paper, the complexity of BIST synthesis is
discussed in Section 2, and the BIST scheme which has
been used in [14] is summarized as a case study. The
divide step of the circuit partitioning approach is
outlined in Section 3, followed by the conquer step in
Section 4. Finally, experimental results are presented
in Section 5, which show the tradeoffs between BIST
synthesis time, silicon area, and test time. Section 6
concludes the paper.

2. The complexity of BIST synthesis
The results reported in [14] were obtained using

the Bit-Flipping scheme which is described in detail in
[10][11][12][13]. The target structure (see Figure 1) is
based on the classical STUMPS scheme. Patterns are
generated on-chip using an LFSR. In order to detect all
faults (including hard-to-detect ones), a small
combinational module, the bit-flipping logic (BFL), is
added which modifies the LFSR output sequences at
certain predetermined bit positions.
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Figure 1: Target structure of a deterministic BIST
scheme

During logic BIST synthesis, the BFL is
constructed iteratively as sketched in Figure 2. In the
beginning of each iteration the current pattern
generator is simulated, and by fault simulation the
currently undetected faults as well as the essential
patterns for the already detected faults are determined.
Then deterministic patterns for the undetected faults
are computed by an ATPG tool, and the BFL is
enhanced such that some of these patterns are
generated while the essential old patterns remain
unchanged.

Similar to other BIST synthesis schemes, the
synthesis procedure includes various time-consuming
steps that are called repeatedly, such as logic
simulation to simulate the pattern generator hardware
and to obtain the MISR’s signature, and fault
simulation.

The time complexity of logic simulation is linear
with the circuit size, i.e. the time for logic simulation
of circuit activity in a single clock cycles increases
linearly. However larger circuits usually have longer

scan chains, and therefore logic simulation may require
to simulate more cycles. In addition, larger circuits
usually also require more test patterns. Both effects
cause that the overall time for logic simulation
increases more than linearly with the circuit size.

Fault simulation is among the most expensive
tasks in circuit design. Its computing time depends on
the size of the circuit, the length of the list of faults to
be simulated, and the number of patterns. The average
computational complexity for simulating all stuck-at
faults for a single pattern turns out to be between
quadratic and cubical [21]. Complexity analysis shows
that there is no hope for linear time fault simulation
[22]. This observation is true for sequential circuits
even if they have a pipeline structure. The situation is
different for circuits with full-scan design, since the
length of critical paths and hence the depth of the
purely combinational circuitry is bounded for timing
reasons. Modern fault simulation and ATPG tools
exploit this fact by an internal partitioning and may
handle full-scan designs with nearly linear effort
[21][22][23].

All these steps are performed repeatedly, and the
number of iterations in the BIST synthesis procedure
typically increases with the number of hard-to-detect
faults and thus with the circuit size. The total BIST
synthesis time may therefore increase more than
linearly with the circuit size.

The purpose of this paper is to show that the
same kind of partitioning which is successful for fault
simulation and ATPG provides significant gains for the
BIST synthesis.

pattern generator := LFSR only 
(without any BFL) 

Simulate current pattern generator 

Determine current fault coverage 

Sufficient fault 
coverage ? 

Invoke ATPG for some currently 
undetected faults 

Enhance BFL so that these 
deterministic patterns are generated by 

the modified pattern generator 

End 
yes 

no 

Figure 2: BIST synthesis procedure



Using circuit partitioning, the size of the sub-
circuits can be limited to a constant size and the BIST
synthesis time for such a sub-circuit is bounded. The
BIST synthesis time for a circuit when using
partitioning, is approximately equal to the sum of the
BIST synthesis times for all sub-circuits. Consequently
the BIST synthesis time now increases linearly with
the circuit size.

3. Partitioning the circuit
As the divide step of the divide-and-conquer

approach a number of sub-circuits is extracted from the
circuit under test, such that:
a) Each sub-circuit only contains a subset of the gates

and signals of the original circuit, and the size of
each sub-circuit is close to a user-specified upper
bound.

b) For each testable fault f in the original circuit there
is a sub-circuit containing the respective gate and
signal where the fault is located, and f is testable in
that sub-circuit.

c) If a test pattern p detects some fault f in a sub-
circuit, then the same fault f is detected by the same
pattern p in the original circuit. For this reason,
each sub-circuit includes all the (pseudo-) primary
inputs of the complete circuit, so that patterns for
sub-circuits are compatible with the original circuit.
Obviously the pseudo-primary inputs that do not
drive any logic in the sub-circuit are irrelevant
during BIST synthesis for the sub-circuit.

Condition a) addresses a desired cost function.
Conditions b) and c) ensure that the union of complete
test sets for all sub-circuits also achieves complete
fault coverage when applied to the original circuit.

The above conditions are satisfied if the sub-
circuits are selected based on the output cones of the
original circuit as sketched in Figure 3. An output cone
of a circuit contains all gates and signals of the
transitive fan-in of the output.
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Figure 3: Output cones

Sub-circuits are selected as unions of cones
where each cone is contained in exactly one sub-
circuit. The sub-circuits are determined by the
algorithm as shown in Figure 4.

The cone which has the highest overlap with any
other cone is selected as the initial cone. Next, new
cones Xi are added to the sub-circuit such that the
overlap value

( ) ( )i

i
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XSC
:SC,Xoverlap
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∩

=

is maximum, where |A| is the number of gates in circuit
A, and A∩B is the circuitry that is contained both in A
and B. This definition results in a range for the overlap
value between 0 (no overlap) and 1 (complete overlap
in which one circuit is completely contained in the
other circuit). The sub-circuit is constructed iteratively,
and in each iteration a new cone is added to the sub-
circuit. The loop terminates if the size of the sub-
circuit exceeds the user-specified upper bound
MaxSubCircuitSize and no cone is left that overlaps
more than MinOverlap.

Select cone X ∈ C which highly overlaps 
with some other cone in C

SC := X , C := C \ {X} 

Sub-circuit completed?

Select cone X ∈ C such that overlap(SC,X)
is maximum 

SC := SC ∪ X , C := C \ {X} 

no

C := set of all unprocessed cones 

return SC
yes

Figure 4: Extracting a sub-circuit for BIST synthesis

Figure 5 shows the BIST synthesis procedure
using circuit partitioning. New sub-circuits are
extracted as long as the set of cones C is not empty.
After the BIST synthesis is done for one sub-circuit, an
optional full-circuit fault simulation is performed in
order to remove cones from the list that are already
completely tested.

For example, Figure 6 shows a possible
partitioning of the circuit of Figure 3 with
MaxSubCircuitSize = 5 gates. The circuit is partitioned
into two sub-circuits: sub-circuit A contains cones 1
and 2, and sub-circuit B contains cone 3. This example
illustrates that the sub-circuits are not necessarily
disjoint. However, the algorithm for extracting the sub-
circuits as shown in Figure 4 in general provides that
the overlap of sub-circuits is small.
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Figure 5: BIST synthesis using circuit partitioning
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Figure 6: Partitioning of the circuit in Figure 3 into

two sub-circuits

4. Assembling BIST hardware for the
original circuit
According to the logic BIST synthesis as shown in

Figure 5, the partitioning of a circuit into n sub-circuits
will result in n pattern generators, i.e. one pattern
generator for each sub-circuit. The BIST hardware for
the original circuit is constructed as sketched in Figure
7, containing n pattern generators and a global test
controller. Let the test application time per pattern
generator be 2k, which results in a test application time
of n·2k patterns for the complete circuit. The test
controller contains a pattern counter with k + log2(n)
flip-flops. The lower k lines of the pattern counter are
connected to the respective pattern generators, e.g. as
described in Section 2, while the remaining most
significant bits are used to control a multiplexer which
selects the output of one of the pattern generators. This
architecture implies that the patterns, as generated by
the individual pattern generators, are applied to the
CUT sequentially.

Pattern generator n 
Pattern generator 2 

Pattern generator 1 

Pattern counter 
LSBMSB 0k-1 

Scan 
chain

n:1 MUX 

select

ld(n)

Test controller 

Figure 7: Synthesizing a pattern generator for the
original circuit

The structure shown in Figure 7 is general and
independent of the underlying BIST scheme. The
pattern generators may share logic and may be
minimized jointly in the synthesis process. For
example, when using the bit-flipping scheme, a single
LFSR can be used for all pattern generators, and
possibly the n BFLs may share logic.

5. Experimental results
We performed a series of experiments with the

ISCAS’89 benchmark circuits [19] and industrial
circuits from Philips [14]. The ISCAS circuits range in
size between 6K to 24K gates, while the circuits from
Philips range between 10K and 92K gates. In our
initial experiments we determined suitable parameters
for MaxSubCircuitSize and MinOverlap, resulting in
MaxSubCircuitSize = 2500 nodes and MinOverlap =
90% as optimal values. In subsequent experiments we
focused on determining tradeoffs between the CPU
time of the BIST synthesis procedure, the silicon area
for the BIST hardware, and the test application time.



Figure 8 shows the relative sizes of the sub-
circuits in one stacked column for each circuit. The
size of a sub-circuit is related to the size of the original
circuit. Due to the overlapping of the sub-circuits, the
sum of all sub-circuits can be more than 100%. On the
other hand, the sum can also be lower than 100%, if
test patterns for some sub-circuits randomly cover
faults of other cones (this is detected by the optional
fault simulation step in Figure 5 which we used in our
experiments), so that those cones were never extracted
and passed to the BIST synthesis tool.
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Figure 8: Size of the sub-circuit

Table 1 shows a comparison between the original
synthesis procedure without partitioning and the new
approach. The test length without circuit partitioning is
16,384 patterns, while the test length with partitioning
is 16,384 times the number of generated sub-circuits.
The first two columns of Table 1 show the circuit name
and the silicon area of the BIST pattern generator
synthesized without circuit partitioning using a 1 µm
CMOS technology. The right part of the table shows
the number of sub-circuits, the absolute size of the
combined pattern generator, its relative size with
respect to the approach without partitioning, and the
relative total computation time of the partitioning
procedure with respect to the original non-partitioning
approach. The computation time covers the whole
BIST synthesis procedure including the partitioning,
the BIST synthesis for all sub-circuits, and the final
assembly of the BIST hardware.

The rightmost column shows that the BIST
synthesis is significantly faster by using the circuit
partitioning approach. In 11 out of 16 circuits only less
than half the time was required, and in no case a
slowdown was observed. The fifth column shows that
at the same time the BIST silicon area is roughly the
same if the circuit partitioning approach is used: for
some circuits we observe a small decrease, and for
others a small increase. The circuit p13651 is an
exception because a large part of the circuit consists of
cones which are mutually highly overlapping. As a
consequence, a single sub-circuit was extracted that
had almost the size of the original circuit and this sub-
circuit therefore was much larger than
MaxSubCircuitSize. Experiments with different
parameter settings, forcing a partitioning into more

sub-circuits, resulted in worse computation times for
this circuit.

In general, Table 1 shows that without a
significant change in silicon area for the BIST
hardware, the synthesis procedure can be accelerated
considerably. However the price for this is a longer test
application time, which is still in an acceptable range if
the number of patterns per sub-circuit is e.g. 16,384.

Without
partitioning Using circuit partitioning

Circuit Silicon
area[mm2]

Sub-
circuits

Silicon
area[mm2]

Relative
silicon
area

Relative
CPU
time

s9234 0.394 3 0.438 111.2% 48.9%
s13207 0.190 2 0.189 99.5% 61.0%
s15850 0.432 3 0.378 87.5% 59.2%
s35932 0.052 3 0.060 115.4% 44.5%
s38417 1.286 6 1.390 108.1% 47.9%
s38584 0.277 4 0.281 101.4% 35.8%
p10705 0.408 3 0.337 82.6% 30.3%
p13651 0.085 1 0.089 104.7% 93.0%
p14473 1.760 6 2.273 129.1% 47.5%
p17718 0.447 4 0.419 93.7% 32.4%
p22383 2.936 7 2.432 82.8% 34.4%
p27530 1.176 3 1.143 97.2% 56.2%
p52251 0.217 4 0.200 92.2% 38.4%
p52922 1.799 13 1.297 72.1% 19.6%
p64984 3.153 11 2.434 77.2% 33.3%
p80590 1.149 16 1.189 103.5% 68.1%

Table 1: Partitioning vs. non-partitioning BIST
synthesis with a test length of 16,384 patterns per sub-

circuit

In order to get comparable results showing the
tradeoff between silicon area and test synthesis time
while keeping the test application time constant, we
ran the non-partitioning synthesis procedure using a
test length which is equal to the test length using
partitioning. Increasing the test length for the bit-
flipping algorithm of Figure 2 typically increases the
BIST synthesis time. However the resulting pattern
generator is smaller due to better random fault
coverage as well as due to a larger degree of freedom
for embedding deterministic patterns and minimizing
the BFL. The results are shown in Table 2.

Without
partitioning Using circuit partitioning

Circuit Silicon
area[mm2]

Sub-
circuits

Silicon
area[mm2]

Relative
silicon
area

Relative
CPU
time

s9234 0.389 3 0.438 112.6% 24.9%
s13207 0.127 2 0.189 148.8% 91.2%
s15850 0.289 3 0.378 130.8% 42.8%
s35932 0.047 3 0.060 127.7% 32.4%
s38417 0.642 6 1.390 216.5% 21.2%
s38584 0.163 4 0.281 172.4% 26.1%
p10705 0.273 3 0.337 123.4% 29.8%
p14473 1.730 6 2.273 131.4% 18.1%
p17718 0.254 4 0.419 165.0% 43.2%
p27530 0.873 3 1.143 130.9% 104.1%
p52251 0.148 4 0.200 135.1% 34.6%

Table 2: Partitioning vs. non-partitioning BIST
synthesis with equal test lengths



Compared to the previous experiments, the
performance gain during BIST synthesis is even larger:
For 7 out of the 11 cases less than 35% of the
computation time was needed using circuit
partitioning. However, column 5 shows that the size of
the pattern generator may increase by 12.6% up to
116.5% in one case.

6. Conclusion
A partitioning approach has been presented

which can be used to accelerate BIST synthesis
procedures. By extracting sub-circuits of similar sizes,
BIST synthesis for very large designs may be possible
within linear time.

Without requiring any physical modifications of
the circuit under test, experiments have shown that
significant performance improvements can be obtained
at the cost of a longer test application time or a slight
increase in silicon area for the BIST hardware.
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