
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 6, JUNE 1998 531

Hardware-Optimal Test Register Insertion
Albrecht P. Stroele, Associate Member, IEEE, and Hans-Joachim Wunderlich, Associate Member, IEEE

Abstract—Implementing a built-in self-test by a “test per clock”
scheme offers advantages concerning fault coverage, detection
of delay faults, and test application time. Such a scheme is
implemented by test registers, for instance built-in logic block ob-
servers (BILBO’s) and concurrent BILBO’s (CBILBO’s), which
are inserted into the circuit structure at appropriate places. An
algorithm is presented which is able to find the cost optimal
placement of test registers for nearly all the ISCAS’89 sequential
benchmark circuits, and a suboptimal solution with slightly
higher costs is obtained for all the circuits within a few minutes
of computing time. The algorithm can also be applied to the
Minimum Feedback Vertex Set problem in partial scan design,
and an optimal solution is found for all the benchmark circuits.
The provably optimal solutions for the benchmark circuits

mainly use CBILBO’s which can simultaneously generate test
patterns and compact test responses. Hence, test scheduling is
not required, test control is simplified, and test application time
is reduced.

Index Terms—BILBO, built-in self-test, CBILBO, test register
insertion.

I. INTRODUCTION
A. Self-Testable Structures

BUILT-IN self-test (BIST) is one of the most important
techniques for testing large and complex systems. Test

registers are added at the primary inputs and outputs of a
circuit, and some additional test hardware is inserted into the
circuit. In a “test per scan” scheme, test registers feed and
evaluate a (partial) scan path (see Fig. 1).
It has been shown independently by several authors that

breaking all cycles in the circuit structure bounds the length of
the required test sequences to the sequential depth of the circuit
[1]–[5]. To keep the hardware overhead low, the number of
flip-flops that are integrated into the partial scan path in order
to break all cycles should be as small as possible, and the
NP-complete minimum feedback vertex set (MFVS) problem
has to be solved [6]. Chakradhar, Balakrishnan, and Agrawal
presented an algorithm for computing the MFVS exactly using
a branch and bound technique [7].
In a “test per clock” scheme, some system registers are

enhanced such that in special test modes they generate patterns
or compact test responses. Examples of these multimode test
registers are BILBO and GURT [8], [9]. A “test per clock”
scheme has advantages with respect to test application time,
delay testing, and defect coverage, but it often requires a higher
hardware overhead than the “test per scan” scheme.
Manuscript October 10, 1995. This work was supported in part by the DFG

under Grants Schm 623/5-1 and Wu 245/1-1. This paper was recommended
by Associate Editor T. Cheng.
A. P. Stroele is with the Institute of Computer Design and Fault Tolerance,

University of Karlsruhe, Germany.
H.-J. Wunderlich is with the Computer Architecture Laboratory, University

of Stuttgart, Germany.
Publisher Item Identifier S 0278-0070(98)05021-0.

Fig. 1. “Test per scan” scheme applied to a circuit with registers R1 R9,
combinational logic blocks (CLB), and pipeline structures.

Fig. 2. Part of a data path with register R1 and test register T2.

In order to obtain self-testable circuits, test registers must be
placed at appropriate positions [10]–[13]. The circuit structure
obtained from breaking all cycles, however, is not a priori
suited to a “test per clock” scheme since during self-testing
some test registers may have to generate patterns and compact
test responses concurrently (e.g., test register T2 in Fig. 2).
In particular with a circular self-test path, the intermediate

results of response compaction are used as test patterns. This
leads to a sufficiently high fault coverage if the circuit is
not random pattern resistant and all the states required for
testing are reachable [14], [15]. But in general, the patterns
are not exhaustive, (weighted) random, or deterministic. Then,
BILBO’s have to be employed, and at least two of them are
required in each cycle. In Fig. 2, register R1 must also be
enhanced to a BILBO register.

0278–0070/98$10.00 © 1998 IEEE

532 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 6, JUNE 1998

Fig. 3. “Test per clock” scheme.

Using BILBO’s, it is possible to segment the circuit into a
set of subcircuits that are completely bounded by test registers
(see Fig. 3). For testing a portion of the circuit, at least one test
register must collect test responses. Thus, the smallest region
that can be tested independently (test unit) consists of one test
register that can be configured as a multiple input signature
register, the block of logic connected to the inputs of this
register, and a set of test registers to generate test patterns
for the inputs of the block (cf., [11], [16], and [17]). In this
way, every test unit is uniquely determined by the test
register at its outputs. In Fig. 3, the test unit includes
test register (response compaction), the pipeline structure
connected to the inputs of and the test registers and
(pattern generation). Since a BILBO register cannot generate
pseudorandom patterns and compact test responses simulta-
neously, some subcircuits cannot be tested concurrently, e.g.,

and Test application must be scheduled such that
these conflicts of resources are avoided.
As a test register can generate patterns, analyze signatures,

and operate in system mode, it requires at least two control
signals. A test control unit is needed that supplies these control
signals for each test register according to the test schedule [18].

B. Multimode Test Registers
The general “test per clock” scheme requires at least two

multimode test registers to be placed in each cycle of the
circuit structure. In particular, problems arise when a register
feeds itself through combinational logic (self-adjacent register
[19]), e.g., register R3 in Fig. 4. Here register R3 must
be enhanced to a BILBO register T3, and an additional
test register T4 of the BILBO type that is transparent in
normal mode must be inserted into the feedback path. In [20],
transparent test registers as shown in Fig. 5 are called “fences.”
To reduce the additional overhead of transparent test regis-

ters, some authors propose using three latches for each bit of

(a) (b)

Fig. 4. (a) Part of a data path with self-adjacent register R3. (b) Self-testable
structure with BILBO register T3 and transparent BILBO register T4.

Fig. 5. Structure of a transparent test register.

Fig. 6. Circuit with two connected self-loops.

the test register such that it can generate patterns and compact
test responses independently. These test registers are called L3-
BILBO’s [21], [22] or CBILBO’s [23]. In Fig. 4, it is sufficient
to enhance R3 to a CBILBO, and an additional test register in
the feedback path is not required.
At register transfer level, registers can be enhanced

to BILBO’s or CBILBO’s, and additional BILBO’s and
CBILBO’s that are transparent in normal mode can be
inserted into arbitrary lines. After test registers have been
inserted, each cycle of the circuit structure must contain at
least one CBILBO or two BILBO’s. Regarding hardware
costs, CBILBO’s are more expensive than BILBO’s, and
inserting a whole transparent test register is more expensive
than enhancing an existing register. Nevertheless, in some
situations transparent test registers are useful. In order to
make the circuit of Fig. 6 self-testable, both registers R1 and
R2 can be enhanced to CBILBO’s. But the same goal can also
be achieved by inserting just one transparent CBILBO.
In this paper, we present an exact algorithm that determines

an appropriate placement of test registers and selects their
types such that the total hardware cost of all the built-in test
registers is minimum. As a special case, it also solves the
MFVS problem for partial scan and the “test per scan” scheme.

C. Optimal Test Register Placement
During “top-down” design or synthesis, test registers are

usually inserted at register transfer level [12], [24]–[28]. This
way, hierarchy can be exploited, and the underlying complex
optimization problem can be solved efficiently. But at RT-level
not all of the structural knowledge is yet available, and much

STROELE AND WUNDERLICH: HARDWARE-OPTIMAL TEST REGISTER INSERTION 533

(a)

(b)

Fig. 7. CSA: (a) data path and (b) its register graph.

better solutions are possible if gate level information is used.
As the gate level description of a system has much higher
complexity than the RT-level description, highly efficient
algorithms for the insertion of BIST cells (1-bit elements
of test registers) are required. In this paper, a hardware-
optimal algorithm is presented which finds a BIST solution
with minimum transistor overhead for nearly all the ISCAS’89
benchmark circuits [29].
The paper is organized as follows. In Section II, we discuss

the tradeoffs between test register insertion at RT-level and at
gate level. Practical examples show significant savings if the
more complex gate level description is used. In Section III,
test cell insertion at gate level is formulated as an optimiza-
tion problem in graph theory. In Section IV, a branch and
bound algorithm is presented which exploits an efficient divide
and conquer approach. Experimental results are presented in
Section V. Surprisingly, they show that BIST structures with
minimum hardware overhead often do not use BILBO-type
registers but mainly CBILBO’s. This also simplifies test sched-
uling and test control and has strong impact on the appropriate
target structures of self-testable systems aimed at by synthesis
algorithms. These consequences are discussed in Section VI.

II. TEST REGISTER INSERTION:
GATE LEVEL VERSUS RT LEVEL

Often, for a gate level circuit there is a variety of corre-
sponding register graphs. The register graph is determined
by the way the flip-flops are partitioned and assembled to
registers. The register configuration of the system mode is
not always optimal for testing. As an example, Fig. 7 shows a
carry save adder (CSA) and its register graph. Such a circuit
is often used for implementing sequential multiplication [30].
The register graph contains two self-loops, and two addi-

tional transparent test registers and of length are
required for making it self-testable. The resulting graph is
shown in Fig. 8.

Fig. 8. Test register graph including transparent test registers and

Fig. 9. Test register graph after inserting test register and splitting register

But looking at this circuit in more detail it is found that
the transparent test register is superfluous. At gate level,
the topology of the storage elements can be represented by a
so-called S-graph whose vertices correspond to flip-flops and
whose edges indicate combinational paths between flip-flops.
Flip-flop just feeds flip-flops and and flip-flop
feeds and so, the -graph contains self-loops for the
flip-flops but not for the flip-flops Hence, it is more
appropriate to split register into two registers of length

during testing, namely and
Then, the register graph contains

only one self-loop, and only one additional test register is
required (Fig. 9).
This example shows significant hardware savings if the test

registers are determined at gate level, but it also shows the
increase of the problem complexity. BIST insertion into the
register graph of Fig. 7 is trivial, but the corresponding gate
level description of the circuit has at least nodes, is not
very regular, and requires a very sophisticated algorithm. If test
cells are inserted at gate level, they have to be assembled to test
registers with appropriate feedback connections. Objectives of
this clustering may be a minimal routing and area overhead,
minimal test lengths, or an optimal test schedule [3], [31], [32].

III. PROBLEM STATEMENT AND SIMPLIFICATION
At gate level, a circuit is usually modeled by a directed

graph with nodes and edges The
nodes represent primary inputs pri-
mary outputs gates and flip-flops The edges
describe the lines that connect these elements. At the primary
inputs and outputs, test registers must be inserted in any case
and are not considered explicitly. The placement of test cells
is described by labels that have the following meaning:
for

if flip-flop is not modified;
if flip-flop is enhanced to a BILBO
cell;

if flip-flop is enhanced to a CBILBO
cell

534 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 6, JUNE 1998

Fig. 10. Labeled graph (top) and its TCC’s (bottom).

for
if gate is not modified;
if a transparent BILBO cell is inserted at
the output of

if a transparent CBILBO cell is inserted at
the output of .

In order to find an optimal placement, the following problem
has to be solved:

Given: Circuit graph
costs of enhancing a flip-flop to a BILBO cell
or a CBILBO cell,
costs of inserting a transparent BILBO cell
or a transparent CBILBO cell at the output
of a gate.

Find: Labeling such that is true
for each cycle of and the total cost
associated with the labeling is minimum

Problem MCP includes the problem of selecting flip-flops
for partial scan as a special case (costs of CBILBO cells
smaller than costs of BILBO cells), and it is NP-complete.
The authors of [7] developed an exact algorithm for selecting
partial scan flip-flops. But their graph transformations and
partitioning using strongly connected components cannot be
applied here.
The presented algorithm uses a preprocessing step similar

to [5] where iteratively all the nodes without predecessors or
without successors are removed since they cannot be part of
any cycle. Moreover, as the transistor cost of a transparent
test cell is the same for all the gate inputs and outputs, it is
sufficient to consider the outputs of combinational fanout-free
regions for possible insertion of transparent test cells.
Every cycle of a directed graph is completely included in

a strongly connected component (SCC) of [5]. Hence, all
SCC’s of can be considered separately. A minimum cost
placement for consists of minimum cost placements for all
the SCC’s of The SCC’s of are extracted by deleting
edges where and belong to different SCC’s.

IV. BRANCH AND BOUND SEARCH
At the beginning, the labels of all the nodes of are reset,

for all corresponding to the circuit without

Fig. 11. Labeled graph that is composed of a single TCC.

Fig. 12. Labeled graph with an empty set of TCC’s.

any test cells. Then in each step a node with is
selected and its label is set to 1 or 2. If the assigned label
makes true for a cycle of this cycle need
not be considered any more. If there are still cycles and two
of them share a node with then both cycles have
to be considered together since a test cell placed at would
have an impact on both cycles. On the other hand, if it is
possible to partition the cycles into subsets such that cycles
from different subsets do not share any nodes with label 0,
then these subsets can be considered separately. In this way
we get subproblems that can be solved independently, and the
optimal solution can be found much more efficiently. These
subsets of cycles are called -connected components (TCC’s,
connected during test application).
Definition: A -connected component of a graph is a

minimal subgraph of with the following characteristics:
• A TCC includes at least one cycle of with

(i.e. a cycle that contains no nodes with
CBILBO cells and at most one node with a BILBO cell).

• If includes two cycles and with

and and if these cycles share at least one
node with label 0, then all the nodes and edges of both
cycles belong to the same TCC.

The labeled graph of Fig. 10 has two TCC’s. The graph of
Fig. 11, however, cannot be divided since it is composed of
a single TCC. Fig. 12 shows a graph that does not contain
any TCC’s.
The TCC’s of a graph are unique. They describe a partition

of the set of nodes with label 0 that are included in at least
one cycle with Exactly these nodes are the
candidates for the insertion of further test cells. The TCC’s do
not contain any node with label 2. Nodes with label 1 may be
included in more than one TCC (for this purpose the node is
copied, see Fig. 10). If a graph does not contain any nonzero
labels, its TCC’s and its SCC’s agree.
The problem “minimum cost placement” is solved by a

depth first search algorithm building a tree whose nodes
represent TCC’s. The root node contains an SCC where all
the nodes are labeled with 0 and for each node v the set of

STROELE AND WUNDERLICH: HARDWARE-OPTIMAL TEST REGISTER INSERTION 535

Fig. 13. Search tree for a single SCC.

admissible labels contains all the possible labels 0, 1,
and 2. In the first level of the search tree, a node is labeled
using all the admissible labels from The assignment
of a label can divide the SCC into smaller TCC’s (second
level). Next, a second node is labeled (third level) and so
on. Fig. 13 shows an example.
The search is implemented by two alternating procedures.

Procedure A restricts the admissible labels for the nodes and
tries to simplify the graph by local transformations. Procedure
B selects a node that has not yet been considered and tries
all the admissible values When a specific label
is assigned to node the set of admissible labels is
restricted to this single label. After the assignment, procedure
B tries to divide the TCC into smaller ones. Then procedure
A is called for each of the resulting (smaller) TCC’s.

A. Procedure A
In procedure A, the following rules are applied until no more

changes are feasible. An optimal solution for the modified
graph is still an optimal one for the original graph:

is a combinational node,
and the number of incoming or
outgoing edges is 1, indeg or
outdeg and is not part
of a cycle with only one or two nodes,
ignore node i.e. remove
and replace every pair of edges

by an edge

is a sequential node, with
, and the number of incoming

and outgoing edges is 1, indeg
and its direct

predecessor and successor are two
sequential nodes, and is not part
of a cycle with only one or two nodes,
ignore node

By local inspection some labels of nodes can be excluded
as they cannot lead to an optimal solution:

there is a self-loop
the only admissible label for node
is 2,

there is a cycle with two nodes,
and

label 0 is not admissible for node ,

As far as cycle breaking is concerned, increasing the label
of a node from 0 to 1 is equivalent to adding 1 to all the
direct predecessors of that are labeled with 0 or 1. It is also
equivalent to adding 1 to all the direct successors of that
are labeled with 0 or 1. Consequently, for a minimum cost
labeling the node must not get the label 1 if one of the
equivalent options is less expensive.
We define and as the costs for labels

and respectively, and as the cost
for adding 1 to all the direct predecessors of that are labeled
with 0 or 1. is the cost for adding 1 to all the direct
successors of that are labeled with 0 or 1. An admissible
labeling is restricted by the following rule:

and
label 1 is not admissible for node

If later the labels of some predecessors or successors of are
increased from 0 to 1, this restriction will still hold.
Similarly, increasing the label of a node from 0 to 2

can be considered. Let be the total cost for increasing
the labels of all the direct predecessors of to 2, and let

be the total cost for increasing the labels of all the
direct successors of to 2. Then analogously to rule (v) the
following rule is established:

and there is not a
self-loop
and
label 2 is not admissible for node

After rules (v) and (vi) have been applied, it is possible that
for some nodes the only admissible label is 0. If these nodes
are involved in self-loops or have a label different from 0,
a solution with this (partial) labeling does not exist, and the
search tree can be pruned (see Subsection IV-C). Otherwise
these nodes can be eliminated from further consideration by
the following rule:

and there is not a
self-loop
ignore node

After all possible restrictions and simplifications have been
made, procedure B follows.

B. Procedure B
Procedure B selects a node that has not yet been con-

sidered for labeling (hence with label 0) and tries all the

536 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 6, JUNE 1998

admissible assignments The node is selected
by the following criteria:
• The number of admissible labels for should be
minimum.

• Setting should make it possible to divide the
TCC into smaller TCC’s, and the largest of these smaller
TCC’s should contain a minimal number of nodes.

The first of these two points is most important. Of course,
selecting a node with is best since no decisions
are required that may have to be reversed later.
If the newly assigned label is 1 or 2, it is tried to divide

the TCC into smaller TCC’s, and procedure A is called for
each of these. If the new label is the TCC cannot be
divided. In this case we set and when procedure
A is called, the application of rule (vii) reduces the graph by
ignoring node

C. Pruning the Search Tree
At each node of the search tree the cost of the current

labeling is computed. If this sum (current_cost) equals or
exceeds the value obtained by the best solution found so far
(best_cost), sons of this node in the search tree need not
be investigated and the search tree can be pruned. Also if
there is a node with and or a node
with no admissible label, the current (partial)

labeling cannot be extended to a minimum cost labeling, and
the search tree can be pruned at this point. Using these criteria
for pruning, most of the search space may be skipped while it
is still guaranteed that an optimal solution will be found.
After pruning, backtracking may be necessary. Starting from

the current node, the search tree is traversed backward until a
node is encountered where procedure B made a choice among
several possible assignments of labels. A different assignment
is made, and the search algorithm continues by again calling
procedure A and procedure B alternatingly.
As the underlying problem is NP-hard, some circuits might

be intractable by the exact algorithm. In this case good
suboptimal solutions are obtained by a heuristic approach. A
parameter quality 1 is introduced. This factor is used during
two steps of the algorithm. In procedure A the rules (v) and
(vi), which restrict the admissible labels, are modified to

and

label 1 is not admissible for node

and there is not a
self-loop
and

label 2 is not admissible for node ,

The second step where this parameter is applied occurs
during pruning the search tree. Here the tree is pruned if cur-
rent_cost best_cost quality. quality 1 yields an optimal
placement. Usually the costs of the suboptimal solutions are

distinctly below the limit as shown in the next
section.

V. EXPERIMENTAL RESULTS
The presented algorithm has been applied to the ISCAS’89

benchmark circuits [29]. For a given circuit the minimum
cost placement strongly depends on the hardware overheads
associated with the built-in test cells:

cost of replacing a D-flip-flop by a BILBO cell
cost of inserting a transparent BILBO cell
cost of replacing a D-flip-flop by a CBILBO cell
cost of inserting a transparent CBILCO cell.

For simplicity, it is assumed that the costs and
do not depend on the locations in the netlist, and increased
signal propagation times are not considered. Technology, de-
sign style, and the cell library have an impact on the cost
distribution.
For a minimum cost solution

does not have any CBILBO cells since a pair of BILBO cells
is always more favorable than a single CBILBO cell. For

an optimal solution does not have any
BILBO cells. In this case the problem reduces to determining
a minimum feedback vertex set.
The most interesting situations occur when
and hold. In order to get realistic

values, the hardware overheads were estimated by counting the
additional transistors in a way similar to [22] for two different
design styles. The resulting cost distributions are

parameter set I:

parameter set II:

For the validation of the algorithm, we are interested in
provably optimal solutions, computing times, and the impact
of the factor quality on the costs of the found solutions. The
solutions and computing times on a SUN Sparc 10 workstation
are listed in Table I for parameter set I, and in Table II for
parameter set II. The first column denotes the circuit, and #B,
#Bt, #C, and #Ct are the number of BILBO cells, transparent
BILBO cells, CBILBO cells, and transparent CBILBO cells,
respectively. Test cells at the primary inputs and outputs are
not counted. “Cost” is the sum of the overheads for these cells,
and is the value of the parameter quality where this solution
is found. The last column gives the computing time.
The correctness of the solutions can easily be verified. For

each node it is checked if the set of nodes that can be
reached on paths with label sum less than 2 includes the node

With the cost distribution of parameter set I, only CBILBO
cells are used. Parameter set II significantly increases the costs
for CBILBO’s, but even then the number of inserted BILBO
cells is very small (see Table II).
It is seen that the efficiency of the algorithm depends on

the cost distribution. For parameter set I, an optimal solution
is found for all the circuits but one, whereas with parameter
set II five circuits are hard to handle.

STROELE AND WUNDERLICH: HARDWARE-OPTIMAL TEST REGISTER INSERTION 537

TABLE I
TEST CELL PLACEMENT FOR PARAMETER SET I

The impact of on the costs is investigated in Table III
where the costs are compared for different values of For
values the heuristic solutions are very close to the
provably minimum cost solution found by but for

there is a distinct loss in quality for some circuits.
In another experiment the algorithm has been applied to the

S-graphs of the circuits. If the costs of CBILBO cells are set
less than the costs of BILBO cells, then the MFVS-problem for
implementing a partial scan path is solved. The algorithm is not
tuned to handle S-graphs and the MFVS-problem and cannot
use many of the graph reductions applied in [5] and [7], e.g., as
it is designed for a much more general problem. But for all the
benchmark circuits it found the provably optimal solution of
the MFVS problem within a few seconds of computing time.
Some authors propose not to break self-loops for a partial

scan design [1], [2], [5]. This problem can be solved by
removing the self-loop edges from the S-graph. Also for these
modified graphs the algorithm provides an optimal solution for
all the benchmark circuits with the exception of s38584, where
the factor qualitymust be reduced. The optimal solutions found
agree with the numbers reported in [7].
Generally, if testability analysis shows that some parts of

the circuit are easily testable without modifications or that
some cycles need not be broken as they do not cause poor
controllability or poor observability, then we can remove some
parts from the circuit graph before we solve the MCP problem.
Thus, the requirements for test registers can be reduced further.

TABLE II
TEST CELL PLACEMENT FOR PARAMETER SET II

It is also possible to model the effect of increased delays
due to inserted test cells. The cost of a test cell can be adjusted
such that it reflects the time slack of the considered gate or flip-
flop. Alternatively, the insertion of test cells may be prohibited
at some nodes by restricting the set of admissible labels. In the
latter case, however, it is no longer guaranteed that a solution
to the MCP problem always exists.
Furthermore, an estimation of the overheads regarding BIST

control logic and routing can be incorporated into the costs of
test cells. CBILBO’s generally require a smaller control effort
than BILBO’s (see next section).

VI. SELF-TESTABLE TARGET STRUCTURES
The solutions for the ISCAS’89 circuits give new insight

into the structure of self-testable circuits with a “test per clock”
technique and minimal hardware overhead. In most of the
circuits only CBILBO cells have to be placed, and in the
remaining circuits only very few BILBO cells are required. We
assumed a CBILBO cell up to 3.5 times more expensive than a
BILBO cell, but the overall hardware overhead of a CBILBO-
based approach is still smaller than a BILBO solution.
Hardware is not only saved within the data path, but test

control and routing the test control lines are also simplified
since CBILBO’s have a uniform test mode for both pat-
tern generation and response compaction. For example, the
hardward-minimal solution for the circuit of Fig. 3 uses only
two CBILBO’s, T1 and T2, as shown in Fig. 14.

538 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 6, JUNE 1998

TABLE III
COSTS FOR SOLUTIONS FOUND WITH PARAMETER SET
II AND DIFFERENT VALUES OF THE QUALITY FACTOR

The hardware-minimal circuit structures found by the al-
gorithm have also advantages with respect to test application
time. All test registers may work in parallel, and the maximal
degree of concurrency is not restricted by conflicts regarding
the modes of test registers, but only by the limits of power
dissipation during BIST operation [33].
The results obtained so far give also hints for an appropriate

data path structure to be used by high-level synthesis systems
and designers in order to implement self-testable systems.
Recent synthesis for testability approaches try to reduce the
number of cycles in a circuit. Avra and McCluskey try
to reduce the number of self-adjacent registers using a so-
called “incompatibility graph” [26], [34]. This graph indicates
possible self-loops as well as constraints between variables
due to the selected schedule, and graph coloring provides an
admissible assignment of variables to registers. In [35] and
[36], binding is formulated as a network flow problem for each
control step, such that area and timing is optimized and the
number of self-loops is minimized. Papachristou, Chiu, and
Harmanani consider “(extended) testable functional blocks”
consisting of functional units and the necessary test registers as
the basic blocks of a self-testable RT structure [12], [27]. Allo-
cation and binding of resources correspond to covering a given
data path with a minimal number of testable functional blocks.
But looking at the results of the hardware-optimal algorithm,

it is found that not only the number of cycles has an impact
on BIST costs. More important is the existence of a small

Fig. 14. CBILBO solution for the circuit of Fig. 3.

number of registers such that each cycle contains at least one
of these registers. The hardware-minimal BIST solution will
enhance these registers to CBILBO’s, and if binding maps all
the self-loops of variables to just these registers, a self-loop
does not cause any additional cost for BIST.
This problem is similar to designing a circuit that has an

MFVS with low cardinality and is optimal for partial scan.
In [37]–[39], retiming and resynthesis procedures have been
presented that reduce the MFVS of a circuit described at gate
level. In [40], a high-level synthesis method is proposed that
synthesizes data paths such that they have a MFVS consisting
of a small number of flip-flops. In contrast to partial scan
designs, BIST cells for a “test per clock” scheme may also
be inserted at combinational nodes. This can be exploited for
further optimizations.

VII. CONCLUSION
An exact algorithm has been presented that selects flip-

flops to be incorporated into multimode test registers or into
a partial scan path in order to implement a “test per clock” or
a “test per scan” scheme with minimum hardware overhead.
The algorithm finds provably optimal solutions for nearly all
the ISCAS’89 benchmark circuits, and the remaining circuits
can be handled by a heuristic version very efficiently. It also
considers BIST cells within the combinational logic, and takes
into account that the hardware costs of BIST cells depend on
their type. The MFVS problem of partial scan design is solved
as a special case.
The hardware-optimal solutions mainly use CBILBO’s such

that test control logic, routing of test control signals, and even
test application time are minimized, too.

ACKNOWLEDGMENT
The authors would like to thank G. Kiefer for assistance

with the implementation and the experiments.

STROELE AND WUNDERLICH: HARDWARE-OPTIMAL TEST REGISTER INSERTION 539

REFERENCES

[1] K.-T. Cheng and V. D. Agrawal, “A partial scan method for sequential
circuits with feedback,” IEEE Trans. Comput., vol. 39, pp. 544–547,
Apr. 1990.

[2] V. Chickermane and J. H. Patel, “An optimization based approach to
the partial scan problem,” in Proc. Int. Test Conf., 1990, pp. 377–386.

[3] R. Gupta, R. Gupta, and M. A. Breuer, “The BALLAST methodology
for structured partial scan design,” IEEE Trans. Comput., vol. 39, pp.
538–544, Apr. 1990.

[4] A. Kunzmann and H.-J. Wunderlich, “An analytical approach to the
partial scan problem,” J. Electronic Testing: Theory and Applications,
vol. 1, no. 2, pp. 163–174, 1990.

[5] D. H. Lee and S. M. Reddy, “On determining scan flip-flops in partial-
scan designs,” in Proc. Int. Conf. CAD, 1990, pp. 322–325.

[6] M. R. Garey and D. S. Johnson, Computers and intractability. New
York: Freeman, 1979.

[7] S. T. Chakradhar, A. Balakrishnan, and V. D. Agrawal, “An exact
algorithm for determining partial scan flip-flops,” in Proc. ACM/IEEE
Design Automation Conf., San Diego, CA, 1994, pp. 81–86.

[8] B. Koenemann, J. Mucha, and G. Zwiehoff, “Built-in logic block
observation techniques,” in Proc. Test Conf., Cherry Hill, NJ, 1979,
pp. 37–41.

[9] H.-J. Wunderlich, “Self test using unequiprobable random patterns,” in
Proc. Int. Symp. Fault-Tolerant Computing, 1987, pp. 258–263.

[10] M. S. Abadir and M. A. Breuer, “A knowledge-based system for
designing testable VLSI chips,” IEEE Design & Test Mag., vol. 2, no.
3, pp. 56–68, 1985.

[11] A. Krasniewski and A. Albicki, “Automatic design of exhaustively self-
testing chips with BILBO modules,” in Proc. Int. Test Conf., 1985, pp.
362–371.

[12] C. A. Papachristou, S. Chiu, and H. Harmanani, “A data path syn-
thesis method for self-testable designs,” in Proc. ACM/IEEE Design
Automation Conf., 1991, pp. 378–384.

[13] S.-P. Lin, C. A. Njinda, and M. A. Breuer, “A systematic approach for
designing testable VLSI circuits,” in Proc. Int. Conf. CAD, 1991, pp.
496–499.

[14] A. Krasniewski and S. Pilarski, “Circular self-test Path: A low cost BIST
technique for VLSI circuits,” IEEE Trans. Computer-Aided Design, vol.
8, pp. 46–55, Jan. 1989.

[15] F. Corno, P. Prinetto, and M. Sonza Reorda, “Making the circular self-
test path effective for real circuits,” in Proc. Int. Test Conf., 1994, pp.
949–957.

[16] G. L. Craig, C. R. Kime, and K. K. Saluja, “Test scheduling and
control for VLSI built-in self-test,” IEEE Trans. Comput., vol. 37, pp.
1099–1109, Sept. 1988.

[17] A. P. Stroele, “Partitioning and hierarchical description of self-testable
designs,” IFIP Transactions A: Computer Science and Technology, vol.
A-42, pp. 113–122, 1994.

[18] O. F. Haberl and H.-J. Wunderlich, “The synthesis of self-test control
logic,” in Proc. COMPEURO, 1989, pp. 5.134–5.136.

[19] C. L. Hudson and G. D. Peterson, “Parallel self-test with pseudo-random
test patterns,” in Proc. Int. Test Conf., 1987, pp. 954–963.

[20] R. Illman and S. Clarke, “Built-in self-test of the MACROLAN chip,”
in Proc. Int. Test Conf., 1989, pp. 735–744.

[21] S. Das Gupta, R. G. Walther, E. B. Eichelberger, and T. W. Williams,
“An enhancement to LSSD and some applications of LSSD in reliabil-
ity, availability and serviceability,” in Proc. Int. Symp. Fault-Tolerant
Computing, 1981, pp. 32–34.

[22] M. J. Ohletz, T. W. Williams, and J. P. Mucha, “Overhead in scan and
self-test designs,” in Proc. Int. Test Conf., 1987, pp. 460–470.

[23] L.-T. Wang and E. J. McCluskey, “Concurrent built-in logic block
observer (CBILBO),” in Proc. Int. Symp. Circuits and Systems, 1986,
pp. 1054–1057.

[24] V. D. Agrawal, C. R. Kime, and K. K. Saluja, “A tutorial on built-in
self-test, Part 1: Principles,” IEEE Design & Test Mag., vol. 10, no. 1,
pp. 73–82, 1993.

[25] , “A tutorial on built-in self-test, Part 2: Applications,” IEEE
Design & Test Mag., vol. 10, no. 2, pp. 69–77, 1993.

[26] L. Avra, “Allocation and assignment in high-level synthesis for self-
testable data paths,” in Proc. Int. Test Conf., 1991, pp. 463–472.

[27] H. Harmanani and C. A. Papachristou, “An improved method for RTL
synthesis with testability tradeoffs,” in Proc. Int. Conf. CAD, 1993, pp.
30–35.

[28] M. L. Flottes, D. Hammad, and B. Rouzeyre, “Automatic synthesis of
BISTed data paths from high level specification,” in Proc. European
Design and Test Conf., 1994, pp. 591–598.

[29] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” in Proc. Int. Symp. Circuits and Systems,
1989, pp. 1929–1934.

[30] D. Goldberg, “Computer arithmetic,” in Computer Architecture: A
Quantitative Approach, J. L. Hennessy and D. A. Patterson, Eds. San
Mateo, CA: Morgan Kaufmann, 1990.

[31] S. Narayanan, C. Njinda, and M. Breuer, “Optimal sequencing of scan
registers,” in Proc. Int. Test Conf., 1992, pp. 293–302.

[32] A. P. Stroele and H.-J. Wunderlich, “Configuring flip-flops to BIST
registers,” in Proc. Int. Test Conf., 1994, pp. 939–948.

[33] Y. Zorian, “A distributed BIST control scheme for complex VLSI
devices,” in Proc. VLSI Test Symp., 1993, pp. 4–9.

[34] L. Avra and E. J. McCluskey, “Behavioral synthesis of testable systems
with VHDL,” in Proc. COMPCON Spring’90, 1990, pp. 410–415.

[35] A. Mujumdar, R. Jain, and K. Saluja, “Incorporating testability con-
siderations in high-level synthesis,” J. Electronic Testing: Theory and
Applications, vol. 5, no. 1, pp. 43–55, 1994.

[36] A. Mujumdar, R. Jain, and K. Saluja, “Behavioral synthesis of testable
designs,” in Proc. Int. Symp. Fault-Tolerant Computing, 1994, pp.
436–445.

[37] D. Kagaris and S. Tragoudas, “Partial scan with retiming,” in Proc.
ACM/IEEE Design Automation Conf., 1993, pp. 249–254.

[38] S. T. Chakradhar and S. Dey, “Resynthesis and retiming for optimum
partial scan,” in Proc. ACM/IEEE Design Automation Conf., 1994, pp.
87–93.

[39] P. Pan and C. L. Liu, “Partial scan with pre-selected scan signals,” in
Proc. ACM/IEEE Design Automation Conf., 1995, pp. 189–194.

[40] S. Dey, M. Potkonjak, and R. Roy, “Synthesizing designs with low-
cardinality minimum feedback vertex set for partial scan application,”
in Proc. VLSI Test Symp., 1994, pp. 2–7.

Albrecht P. Stroele (A’90) received the diploma
degree in electrical engineering from the University
of Darmstadt, Germany, in 1980, and the Dr.rer.nat.
(Ph.D.) degree in computer science from the Uni-
versity of Karlsruhe, Germany, in 1992.
From 1981 to 1987, he was with Siemens where

he was involved in image processing and computer
design. Currently, he is Privatdozent at the Institute
of Computer Design and Fault Tolerance, University
of Karlsruhe. His research interests include fault
modeling, design for testability, built-in self-test

techniques, and cellular automata.
Dr. Stroele is a member of the steering committee of the GI/ITG Special

Interest Group on “Testmethoden und Zuverlässigkeit von Schaltungen und
Systemen.”

Hans-Joachim Wunderlich (A’86) received the
Dr.rer.nat. (Ph.D.) degree in computer science from
the University of Karlsruhe, Germany, in 1986.
From 1986 to 1991, he was the head of a research

group on automation of circuit design and test at
the University of Karlsruhe. From 1991 to 1996
he was a full Professor of Computer Science at
the University of Siegen. Since October 1996, he
has been the head of the Division for Computer
Architecture at the University of Stuttgart. He is
author and coauthor of three books and over 70

papers in the field of test, synthesis, and fault tolerance of digital systems.
Dr. Wunderlich has been a member of the program committee at numerous

conferences and a reviewer of research proposals submitted to NSF and
NATO. Within the European projects EUROCHIP and EUROPRACTICE he
has been a lecturer for courses on VLSI design and test.

