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Abstract. In complex systems, embedded processors may be used to run software routines for test pattern gener-
ation and response evaluation. For system components which are not completely random pattern testable, the test
programs have to generate deterministic patterns after random testing. Usually the random test part of the program
requires long run times whereas the part for deterministic testing has high memory requirements.
In this paper it is shown that an appropriate selection of the random pattern test method can significantly reduce

the memory requirements of the deterministic part. A new, highly efficient scheme for software-based random
pattern testing is proposed, and it is shown how to extend the scheme for deterministic test pattern generation. The
entire test scheme may also be used for implementing a scan based BIST in hardware.
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1. Introduction

Integrating complex systems into single chips or im-
plementing them as multi-chip modules (MCMs) has
become a widespread approach. A variety of embed-
ded processors and other embedded coreware can be
foundon themarket, which allows to appropriately split
the system functionality into both hardware and soft-
ware modules. With this development, however, sys-
tem testing and maintenance has become an enormous
challenge: the complexity and the restricted accessibi-
lity of hardware components require sophisticated test
strategies. Built-in self-test (BIST) combined with the
IEEE 1149 standards can support both a low cost pro-
duction test and efficient periodic maintenance tests
[1]. The BIST equipment can further be used to test
idle resources on-line during system operation.
For conventional ASIC testing, a number of power-

ful BIST techniques have been developed in the past
[2–12]. For example, it has been shown that combining
random and efficiently encoded deterministic patterns
can provide complete fault coverage while keeping the
cost for extra BIST hardware and the storage require-

ments low [13–15]. In the case of embedded systems
such a high quality test is possible without any extra
hardware by just using the embedded processor to gen-
erate the tests for all other components.
Usually, this kind of functional testing requires large

test programs, and amemory spacenot always available
on the system. In this paper it will be shown how small
test programs can be synthesized such that a complete
coverage of all non-redundant stuck-at faults in the
combinational parts of the system is obtained. The cost
for extra BIST hardware in conventional system testing
is reduced to the cost of some hundred bytes of system
memory to store the test routines. The proposed BIST
approach can efficiently exploit design-for-testability
structures of the subcomponents. As shown in Fig. 1
during serial BIST the embedded processor executes a
program which generates test patterns and shifts them
into the scan register(s) of the component(s) to be
tested. Even more efficiently, the presented approach
may be used to generate test data for input registers of
pipelined or combinational subsystems.
The structure of the test program can be kept very

simple, if only random patterns have to be generated,



P1: SUD
JOURNAL OF ELECTRONIC TESTING: Theory and Applications KL549-13-HELLE February 26, 1998 9:1

128 Hellebrand, Wunderlich and Hertwig

Fig. 1. Serial BIST approach.

since then some elementary processor instructions can
be used [16–19]. Even linear feedback shift registers
(LFSRs) can be emulated very efficiently. But usually
not all the subcomponents of a system will be random
pattern testable, and for the remaining faults determin-
istic test patterns have to be applied. For this purpose,
compact test setsmay be generated as described in [20–
23] and reproduced by the test program, or a hardware-
based deterministic BIST scheme is emulated by the
test software [13–15, 24]. This kind of mixed-mode
testing may interleave deterministic and random test-
ing or perform it successively. In each case, the stor-
age requirements for the deterministic part of the test
program are directly related to the number of unde-
tected faults after random pattern generation. There is
a great trade-off between the run-time for the random
test and the memory requirements of the mixed-mode
program. Assume a small improvement of the random
test method which leads to an increase of the fault cov-
erage from 99.2% to 99.6%. This reduces the number
of undetected faults and the storage requirements by the
factor 1/2. Overall, the efficiency of a mixed-mode test
scheme can be improved to a much higher degree by
modifying its random part rather than its deterministic
part [25].
In this paper a highly efficient software-based ran-

dom BIST scheme is presented which is also used for
generating deterministic patterns. The rest of the pa-
per is organized as follows: In the next section, dif-
ferent random pattern test schemes to be emulated
by software are evaluated, and in Section 3 the ex-
tension to deterministic testing is described. Subse-
quently, in Section 4, a procedure for optimizing the
overall BIST scheme is presented, and Section 5 de-
scribes the procedure for generating the mixed-mode

test program. Finally, Section 6 gives some experimen-
tal results based on the INTEL 80960CA processor as
an example.

2. Emulated Random Pattern Test

Test routines exploiting the arithmetic functions of a
processor can produce patterns with properties which
are sufficient for testing randompattern testable circuits
[16, 18], even if they do not completely satisfy all the
conditions for randomness as stated in [26]. However,
for other circuits, in particular for circuits considered
as random pattern resistant, arithmetic patterns may
not perform as well. Linear feedback shift registers
(LFSRs) corresponding to primitive feedback polyno-
mials and cellular automata are generally considered
as stimuli generators with good properties for random
testing [27–29]. But the generated sequences still show
some linear dependencies, such that different primitive
polynomials perform differently on the same circuit.
In some cases, the linear dependencies may support
fault detection, for other circuits they perform poorly.
In the following, the fault coverage obtained by sev-
eral LFSR-based pattern generation schemes will be
discussed with some experimental data.

2.1. Feedback Polynomial

In contrast to hardware-based BIST, in a software-
based approach the number and the positions of the
feedback taps of the LFSR have no impact on the cost
of the BIST implementation. Thus, for a given length
the achievable fault coverage can be optimized without
cost constraints.
Assuming a test per scan scheme as shown in Fig. 2

the sensitivity of the fault coverage to the selected feed-
back polynominal has been studied by a series of ex-
periments for the combinational parts of the ISCAS85
and ISCAS89 benchmark circuits [30, 31].

Fig. 2. Scan-based BIST.
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Table 1. Absolute and normalized (w.r.t. worst LFSR) percentage of undetected non-redundant faults after
10,000 patterns.

Circuit P1 F Degree LFSR1 LFSR2 LFSR3 LFSR4 LFSR5 LFSR6 Average

c2670 157 2478 52 12.55 11.99 12.59 11.74 12.23 12.47 12.26
99.68 95.23 100.00 93.25 97.14 99.05 97.39

c3540 50 3291 17 0.03 0.12 0.06 0.15 0.09 0.09 0.09
20.00 80.00 40.00 100.00 60.00 60.00 60.00

s420.1 34 455 20 18.90 12.97 8.79 16.70 15.82 10.11 13.88
100.00 68.62 46.51 88.36 83.70 53.49 73.45

s641 54 465 22 2.58 1.72 5.59 2.15 1.51 1.94 2.58
46.15 30.77 100.00 38.46 27.01 34.70 46.18

s838.1 66 931 37 33.73 37.49 34.91 37.81 33.08 37.59 35.77
89.21 99.15 92.33 100.00 87.49 99.42 94.60

s9234 247 6475 52 9.87 10.83 10.75 9.37 11.07 9.93 10.30
89.16 97.83 97.11 84.64 100.00 89.70 93.07

Fault simulation of 10,000 random patterns was per-
formed for each circuit using several different feedback
polynomials, all of the same degree. Some typical re-
sults are shown in Table 1.
The first four columns contain the circuit name, the

number of inputs, the number of non-redundant faults
and the selected degree of the feedback polynomial
(the degrees of the polynomials have been selected,
such that they were compatible with the requirements
for the deterministic test described in Section 3). The
remaining columns show the characteristics for six
different LFSRs. The first entry reports the percent-
age of undetected non-redundant faults, and the sec-
ond entry normalizes this number to the correspond-
ing number for the worst LFSR (in %). The worst
and best performing LFSR are printed in bold, respec-
tively. The last column gives the average over all of the
LFSRs.
It can be observed that there is a big variance in the

performance of different LFSRs of the same degree.
For s641, e.g., the best LFSR reduces the number of
undetected faults down to 27% of the faults left unde-
tected by the worst polynomial.

2.2. Multiple-Polynomial LFSRs

One explanation for the considerable differences in
fault coverage observed in Section 2.1 is given by the
fact, that linear dependencies of scan positions may
prevent certain necessary bit combinations in the scan
patterns independent of the initial state of the LFSR

[3]. For different LFSRs the distribution of linear de-
pendencies in the scan chain is different and, depend-
ing on the structure of the circuit, may have a different
impact on the fault coverage.
As shown in Fig. 3 the impact of linear dependen-

cies can be reduced if several polynomials are used.
In this small example the LFSR can operate accord-
ing to two different primitive feedback polynomials
P0(X) = X3 + X2 + 1 and P1(X) = X3 + X + 1,
which are selected by the input I of themultiplexer. For
any given initial state (x0, x1, x2) the LFSR produces a
scan pattern (a0, . . . , a7), such that, depending on the
selected polynomial, the shown equations for P0(X) or
P1(X) hold for its components.

Fig. 3. Scan-based BIST with multiple-polynomial LFSR.
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initialize (LFSR);

for (i = 0; i < p; i++)

generate dN / pe patterns by LFSR(Pi);

Fig. 4. Successive multiple-polynomial scheme (SUC).

For polynomial P0 there is a linear relation a3+a5 =

x0 + x2 + x0 + x1 = x1 + x2 = a7, which prevents
the combination (1, 1, 1) at the inputs of the AND-
gate. This implies that the polynomial P0(X) can never
produce a test for the stuck-at-0 fault at node o2. In
contrast to that, for polynomial P1(X) the same input
positions are linearly independent and produce all pos-
sible nonzero bit combinations and thus a test for the
considered fault. Similarly, the stuck-at-0 fault at node
o1 cannot be tested using polynomial P1(X), but poly-
nomial P0(X) can provide a test. Using both polyno-
mials, each for a certain number of patterns, increases
the chance of detecting both faults.
Such a multiple-polynomial LFSR can be imple-

mented efficiently in hardware by sharing parts of the
feedback for several polynomials. A software emu-
lation is also very simple, since the basic procedure
to simulate an LFSR has to be modified only slightly.
To control the selection of feedback polynomials sev-
eral schemes are possible. The first is shown in Fig. 4
assuming N random patterns to be generated by p dif-
ferent polynomials Pi , i = 0, . . . , p � 1. LFSR(Pi )
denotes the LFSR operation corresponding to feedback
polynomial Pi .
The polynomials are applied successively to gen-

erate contiguous subsequences of dN/pe random pat-
terns, the schemewill therefore be referred to as scheme
SUC. For one polynomial the scheme degenerates to
the conventional single polynomial scheme. The pos-
sibility to switch between different distributions of lin-
ear dependencies is paid by the disadvantage that some
patterns may occur repeatedly up to p times. Hence,
an overall increase of the fault coverage cannot be ex-
pected, but experiments have shown that there is in-
deed an improvement for some circuits. Table 2 lists
the results for the same set of circuits as studied in the
previous section.
For each circuit 10,000 patterns were simulated us-

ing p = 2, . . . , 5 polynomials. For each experiment
the percentage of undetected non-redundant faults is re-
ported (1st line), as well as the corresponding normal-
ized numbers for the worst (2nd line) and for the best
single polynomial (3rd line) of the same degree (in %).
Applying the successive scheme for example to the

circuit c2670 with p = 4 reduces the number of

Table 2. Absolute and normalized (w.r.t. worst and best sin-
gle LFSR) percentage of undetected non-redundant faults for
scheme SUC after 10,000 patterns.

Circuit Degree p = 2 p = 3 p = 4 p = 5

c2670 52 12.55 12.55 8.76 12.55
99.68 99.68 69.58 99.68
106.90 106.90 74.62 106.90

c3540 17 0.03 0.12 0.09 0.12
20.00 80.00 60.00 80.00
100.00 400.00 300.00 400.00

s420.1 20 14.95 14.51 13.41 12.97
79.10 76.77 70.95 68.62
170.08 165.07 152.56 147.55

s641 22 1.94 1.94 1.94 1.72
34.70 34.70 34.70 30.77
128.48 128.48 128.48 113.91

s838.1 37 30.72 31.26 31.26 30.18
81.25 82.68 82.68 79.82
92.87 94.50 94.50 91.23

s9234 52 10.61 10.67 10.13 9.22
95.84 96.39 91.51 83.29
113.23 113.87 108.11 98.40

undetected faults down to 69.58% compared with the
worst single polynomial. Even more important is that
the scheme also outperforms the best single polynomial
and the number of remaining target faults for ATPG is
less than 75%, i.e., 25%of the faults left by the best sin-
gle polynomial are additionally coveredby this scheme.
The randomness of the sequence can be further in-

creased, if the polynomials are not used successively,
but selected randomly for each test pattern. This ran-
domselection canbe implementedby a secondLFSRas
shown in Fig. 5 and will be referred to as scheme RND.

Fig. 5. Hardware scheme for the random selection of feed-
back polynomials (RND).
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initialize (LFSR1);

initialize (LFSR2);

for (i = 0; i < N; i++)

{

select P based on state of LFSR2;

generate 1 pattern by LFSR1(P);

perform 1 state transition of LFSR2;

}

Fig. 6. Software routine for the random pattern gener-
ation scheme of Fig. 5 (RND).

The selection between p different feedback polyno-
mials for LFSR1 is controlled by dlog2 pe bits of the
state register of LFSR2. For a software implementa-
tion of the structure of Fig. 5, two additional registers
are required for storing the feedback polynomial and
the state of LFSR2. LFSR1 and LFSR2 can be emu-
lated by the same procedure, and the complete routine
to generate a sequence of N random patterns is shown
in Fig. 6.
Table 3 shows the percentage of undetected non-

redundant faults and the corresponding normalized

Table 3. Absolute and normalized (w.r.t. worst and best sin-
gle LFSR) percentage of undetected non-redundant faults for
scheme RND after 10,000 patterns.

Circuit Degree p = 2 p = 3 p = 4 p = 5

c2670 52 12.63 12.35 11.99 12.55
100.32 98.09 95.23 99.68
107.58 105.2 102.13 106.90

c3540 17 0.06 0.09 0.09 0.12
40.00 60.00 60.00 80.00
200.00 300.00 300.00 400.00

s420.1 20 12.75 14.51 14.29 17.14
67.46 76.77 75.61 90.69
145.05 165.07 162.57 194.99

s641 22 1.72 1.94 1.94 1.51
30.77 34.70 34.70 27.01
113.91 128.48 128.48 100.00

s838.1 37 38.56 33.40 36.95 36.84
101.98 88.34 97.73 97.43
116.57 100.97 111.70 111.37

s9234 52 9.61 11.24 10.16 10.75
86.81 101.54 91.78 97.11
102.56 119.96 108.43 114.73

numbers obtained by the scheme RND for p =

2, . . . , 5 feedback polynomials.
For the randomly selected polynomials, there is

a higher chance of pattern repetitions, but randomly
switching between different distributions of linear de-
pendencies may improve the quality of the patterns.
For some circuits, this results in an improvement of
fault coverage, so that the set of faults which remain
for deterministic testing is further reduced.

2.3. Multiple-Polynomial, Multiple-Seed LFSRs

Another way of improving the efficiency of a ran-
dom test is repeatedly using a new seed during pattern
generation as investigated for instance in [32]. This
technique can be combined with the use of multiple
polynomials as shown in Fig. 7.
As for the scheme RND, dlog2 pe bits of the state

register of LFSR2 are used to drive the selection be-
tween p different feedback polynomials of degree k
for LFSR1. The remaining k bits provide the seed for
LFSR1. In the sequel this scheme will be referred to as
the scheme RND2. The structure of the corresponding
test program is shown in Fig. 8.
Again, in this scheme patternsmay occur repeatedly,

but in addition to the advantage of randomly changing

Fig. 7. Multiple-polynomial, multiple-seed LFSR.

initialize (LFSR2);

for (i = 0; i < N; i++)

{

select seed S and polynomial P

based on state of LFSR2;

initialize LFSR1 with S;

generate 1 pattern by LFSR1 (p);

perform 1 state transition of LFSR2;

}

Fig. 8. Test program for the multiple-polynomial,
multiple-seed LFSR (RND2).
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Table 4. Absolute and normalized (w.r.t. worst and best sin-
gle LFSR) percentage of undetected non-redundant faults for
scheme RND2 after 10,000 patterns.

Circuit Degree p = 2 p = 3 p = 4 p = 5

c2670 52 12.31 12.15 12.15 12.55
97.78 96.51 96.51 99.68
104.86 103.49 103.49 106.90

c3540 17 0.12 0.18 0.18 0.18
80.00 120.00 120.00 120.00
400.00 600.00 600.00 600.00

s420.1 20 12.31 13.19 12.75 10.99
65.13 69.79 67.46 58.15
140.05 150.06 145.05 125.03

s641 22 1.94 1.94 1.94 2.15
34.70 34.70 34.70 38.46
128.48 128.48 128.48 142.38

s838.1 37 27.71 23.52 23.52 26.53
73.29 62.21 62.21 70.17
83.77 71.10 71.10 80.20

s9234 52 9.14 9.85 9.58 9.58
82.57 88.98 86.54 86.54
97.55 105.12 102.24 102.24

the distribution of linear dependencies this scheme is
also able to generate the all zero-vector which is often
needed for complete fault coverage.
Table 4 gives the results for p = 2, . . . , 5 polynomi-

als (percentage of undetected non-redundant faults and
the corresponding normalized numbers as in Tables 2
and 3).
As expected, not for all circuits the fault coverage

increases, but there are circuits where this technique
leads to significant improvements. For circuits s838.1
and s9234 the best results are obtained compared with
all the experiments before.

3. Software-Based Deterministic BIST

The structure of the multiple-polynomial, multiple-
seed random BIST scheme of Fig. 7 is very similar
to the deterministic BIST scheme based on reseeding
of multiple-polynomial LFSRs proposed in [13, 14],
see Fig. 9.
A deterministic pattern is encoded as a polynomial

identifier and a seed for the respective polynomial.
During test mode the pattern can be reproduced by
emulating the LFSR corresponding to the polynomial

Fig. 9. Deterministic BIST scheme based on a multiple-
polynomial LFSR by [14].

identifier, loading the seed into the LFSR and perform-
ing m autonomous transitions of the LFSR. After the
mth transition the scan chain contains the desired pat-
tern which is then applied to the CUT.
To calculate, the encoding systems of linear equa-

tions have to be solved. For a fixed feedback poly-
nomial h(X) = Xk

+ hk�1Xk�1
+ · · · + h1X + h0 of

degree k the LFSRproduces an output sequence (ai )i�0
satisfying the feedback equationai = ai�1·hk�1+· · ·+

ai�k · h0 for all i � k. The LFSR-sequence is com-
patible with a desired test pattern t = (t1, . . . , tm), if
for all specified bits ai = ti holds. Recursively apply-
ing the feedback equation provides a system of linear
equations in the seed variables a0, . . . , ak�1. If no so-
lution can be found for the given polynomial, the next
available polynomial is tried, and in [14] it has been
shown that already for 16 polynomials there is a very
high probability of success that a deterministic pat-
tern with s specified bits can be encoded into an s-bit
seed.
Hence, if p different polynomials are available and

the polynomial identifier is implemented as a “next bit”,
the seed and the next bits for a deterministic test set
T = {t1, . . . , tN } with maximum number of specified
bits smax require S(T ) := (smax + 1) · N bits of stor-
age. Minimizing S(T ) requires both minimizing the
maximum number of care bits smax and the number of
patterns N . In [24] an ATPG-algorithm was presented
which generates test patternswhere the number of spec-
ified bits smax is minimized. In a mixed-mode BIST
approach the number N of patterns is highly correlated
to the number of faults left undetected after random
testing.

4. Synthesizing the BIST Scheme

Since the efficiency of a mixed-mode BIST scheme
strongly depends on the number of hard faults to be
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covered by deterministic patterns, a major concern in
synthesizing the BIST scheme is optimizing the ran-
dom test. The experimental data of Section 2 show that
significant variances in the fault efficiency achieved by
different LFSR schemes exist, and that there is no uni-
versal scheme or polynomial working for all of the
circuits. In the sequel, a procedure is presented for
determining an optimized LFSR scheme. The selec-
tion of the LFSRs is guided, such that the fault effi-
ciency is maximized while satisfying the requirements
for an efficient encoding of deterministic patterns for
the random pattern resistant faults. Assuming a table
of primitive polynomials available the proposed proce-
dure consists of four steps:

(1) Perform ATPG to eliminate the redundant faults
and to estimate the maximum number of specified
bits, smax, to be expected in the test cubes for the
hard faults.

(2) Select M polynomials of degree smax randomly,
and perform fault simulation with the correspond-
ing shift register sequences. Rank the polynomials
according to the fault coverage achieved.

(3) Select the P best polynomials and store the high-
est fault coverage and the corresponding LFSR as
BEST SCHEME.

(4) Using 2 p P polynomials, simulate the
schemes SUC, RND, and RND2. Update BEST
SCHEME to the best solution obtained so far.

The number M is mainly determined by a limit of
the computing time to be spent. The number P is also
restricted by the computing time available, but in ad-
dition to that each LFSR requires two registers of the
processor for pattern generation. So, the register file
of the target processor puts a limit on P , too.
Table 5 shows the results achieved by this procedure

for the same set of circuits as studied in Section 2. For
the same degrees as used in Section 2 sequences of
10,000 random patterns were applied.
The second and third column show the best scheme

and the corresponding number of polynomials p, col-
umn 4 provides the fault efficiency FE (percentage
of detected non-redundant faults). The percentage of
faults left undetected by the best scheme is reported
in column UF. UFbest normalizes this solution to the
number obtained by the best single polynomial, UFworst
refers to the worst single polynomial.
Table 5 indicates that the search for an appropri-

ate random test scheme can reduce the number of
remaining faults significantly. The procedure needs

Table 5. Best schemes and relation to best and worst single
polynomial solution.

Best
Circuit scheme p FE UF UFbest UFworst

c2670 SUC 4 91.24 8.76 74.62 69.58
c3540 SUC 2 99.97 0.03 100.00 20.00
s420.1 SUC 1 91.21 8.79 100.00 63.33
s641 RND 5 98.49 1.51 100.00 27.01
s838.1 RND2 3 76.48 23.52 71.10 62.21
s9234 RND2 2 90.86 9.14 97.55 82.57

M + 3 · (P � 1) runs of fault simulations, but may
decrease the storage amount needed for deterministic
patterns considerably. These savings in memory for
the mixed-mode test program are particularly impor-
tant, if the test program has to be stored in a ROM for
start-up and maintenance test.

5. Generating Mixed-Mode Test Programs

Test programs implementing the random test schemes
and the reseeding scheme for deterministic patterns
were generated for the INTEL 80960CA as a target
processor. Since the part of the test program which
generates the deterministic patterns is a superset of
instructions required for implementing any of the ran-
dom schemes, only the example for the most com-
plex random scheme is shown. The mixed-mode test
program of Fig. 10 generates random test patterns by
multiple-polynomial, multiple-seed LFSR emulation,
and switches to the reseeding scheme afterwards.
The program of Fig. 10 requires 27 words in mem-

ory but assumes that all LFSRs fit into 32 bits registers.
This is always possible for random pattern genera-
tion, but encoding deterministic patterns may lead to
LFSR lengths exceeding 32 bits. In this case, the pro-
gram of Fig. 10 has to be modified in a straightfor-
ward way, and requires more memory. Table 6 gives
the relation between memory requirements and LFSR
lengths.

Table 6. LFSR length and memory require-
ments for the mixed-mode test program.

LFSR length 32 64 96 128

Memory requirements
(words) 27 41 52 63
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steps1 equ ... ; number of steps for lfsr1

steps2 equ ... ; number of steps for lfsr2

steps_det equ ... ; number of steps for deterministic test

len1 equ ... ; position of msb of lfsr1

len2 equ ... ; position of msb of lfsr2

testport equ ... ; address of testport

no_poly_bits equ ... ; number of bits for polynomial choice

mask equ ... ; define mask

start dq startvector ; define startvector for lfsr2

poly dq polynomials ; define polynomials for lfsr1

; and lfsr2 (poly[0])

seeds dq seedvectors ; define seeds for deterministic test

seed_offset equ seeds - start ; define offset for seed table

begin: lda testport, r10 ; load address of testport

lda steps_det, r11 ; load loop counter for lfsr1 in det. mode

lda steps1, r12 ; load loop counter for lfsr1

lda start, r14 ; load startvector address for lfsr1

ld (r14), r6 ; load startvector for lfsr2

ld 4(r14), r7 ; load polynomial for lfsr2

10: mov r6, r4 ; initialize lfsr1 with contents of lfsr2

and mask, r4, r15 ; compute poly-id

ld 8(r14) [r15*4], r5 ; load polynomial for lfsr1

lda no_poly_bits, r15 ; load number of bits for poly-id

11: shro no_poly_bits, r4, r4 ; shift poly-bits

lda steps2, r13 ; load loop counter for lfsr1

12: st r4, (r10) ; write testpattern to testport

mov r4, r8,

shlo 1, r8, r4 ; shift left

bbc len2, r8, 13 ; branch if msb of lfsr2 equal zero

xor r4, r5, r4 ; xor

13: subi r13, 1, r13 ; decrement loop counter

cmpibne r13, 0, 12 ; branch not equal zero

mov r6, r8

shlo 1, r8, r6 ; shift left

bbc len1, r8, 14 ; branch if msb of lfsr1 equal zero

xor r6, r7, r6 ; xor

14: subi r12, 1, r12 ; decrement loop counter

cmpibg r12, r11, 10 ; branch if r12 > steps_det
ld seed_offsets(r14) [r12*4], r6 ; load seed

cmpibne r12, 0, 10

Fig. 10. Mixed-mode BIST program.

In addition to the program size, memory has to be
reserved for storing the polynomials and the seeds
in order to decode the deterministic patterns. The
experimental results of the next section show that
these data form by far the major part of the memory
requirements.

6. Experimental Results

The described strategy for generating mixed-mode test
programs was applied to all the benchmark circuits for
M = 16 and P = 5, i.e., for each circuit M + 3 ·

(P � 1) = 28 runs of fault simulation were performed
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Table 7. Circuit characteristics and best ran-
dom scheme.

Circuit PI Degree Best scheme p

c2670 157 52 SUC 4
c3540 50 19 SUC 2
c7552 206 106 RND2 3
s420.1 34 20 SUC 1
s641 54 22 SUC 1
s713 54 22 SUC 1
s820 23 15 SUC 5
s832 23 15 RND2 5
s838.1 66 37 RND2 3
s953 45 15 SUC 1
s1196 32 17 RND2 2
s1238 32 17 RND2 2
s1423 91 25 RND2 5
s5378 214 25 RND 5
s9234 247 52 RND2 2
s13207 700 60 SUC 5
s15850 611 48 SUC 2
s38417 1664 106 RND2 4
s38584 1464 60 SUC 2

to determine the best random scheme. Tables 7 and 8
show the results.
The selected random schemes and their characteris-

tic data are reported in Table 7. Columns 2 and 3 list
the number of primary inputs PI and the degree of the
polynomials. The best random scheme and the num-
ber of polynomials p are reported in the subsequent
columns.
Table 8 shows the detailed results. The number of

non-redundant faults for each circuit is given in col-
umn 2. The efficiency of the random scheme is charac-
terized again by the fault efficiency FE, the percentage
of undetected non-redundant faults UF and the normal-
ized numbers for UF with respect to the best (UFbest)
and the average (UFaverage) single polynomial solution
in columns 3 through 6.
The reduction of the remaining faults obtained by the

best random test scheme is significant. For instance,
the circuit c7552 is known to be very random pattern
resistant, and a single polynomial solution in the aver-
age leads to a fault efficiency of 95.79% leaving 4.21%
of the faults for deterministic encoding. For the same
circuit, the RND2 scheme achieves a fault efficiency of
98.87%, and only 1.13% or, absolutely, 84 faults are

Table 8. Fault efficiency and percentage of undetected non-
redundant faults for the best random schemes after 10,000
patterns.

Circuit F FE UF UFbest UFaverage

c2670 2478 91.24 8.76 74.62 71.45
c3540 3291 99.97 0.03 100.00 33.33
c7552 7419 98.87 1.13 30.46 26.84
s420.1 455 91.21 8.79 100.00 63.33
s641 465 98.49 1.51 100.00 27.01
s713 543 98.71 1.29 100.00 70.11
s820 850 100.00 — — —
s832 856 99.77 0.23 24.73 4.21
s838.1 931 76.48 23.52 71.10 65.75
s953 1079 99.26 0.74 100.00 18.50
s1196 1242 99.28 0.72 68.57 40.91
s1238 1286 99.38 0.62 66.67 35.43
s1423 1501 100.00 — — —
s5378 4563 99.45 0.55 85.94 61.8
s9234 6475 90.86 9.14 97.55 88.74
s13207 9664 94.45 5.55 89.95 80.79
s15850 11336 94.89 5.11 94.28 89.96
s38417 31015 93.92 6.08 92.26 85.75
s38584 34797 98.77 1.23 95.35 82.55

left. This corresponds to a reduction of the remaining
faults down to 27%.
For circuits s820 and s1423 a careful selection of

the random scheme even makes the deterministic test
superfluous. Finally, it should be noted that for the
larger circuits already a small relative reduction means
a considerable number of faults which are additionally
covered by the random test and need not be considered
during the deterministic test. For example for circuit
s38417 a reduction down to 85.75% and 92.26%, re-
spectively, means that additional 313 and 158, respec-
tively, faults are eliminated during random test.
Table 9 shows the resulting number of test patterns

required for the random pattern resistant faults and the
amount of test data storage (in bits) for the best random
schemecompared to a random test using an average sin-
gle polynomial. This includes the storage needed for
the polynomials, the initial LFSR states for the random
test and the encoded deterministic test set. Since the
goal of this work was to determine the impact of the
random test on the test data storage, a standard ATPG
tool was selected to perform the experiments [33]. For
all circuits the fault efficiency is 100% after the deter-
ministic test.
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Table 9. Number of deterministic patterns and storage re-
quirements for the complete test data (in bits).

Deterministic Test data storage
patterns (bits)

Best Average Best Average
Circuit scheme polynomial scheme polynomial

c2670 73 77 4186 4239
c3540 1 1 59 59
c7552 51 92 6889 11644
s420.1 22 34 503 776
s641 7 11 261 321
s713 7 11 284 321
s820 0 32 95 559
s832 2 33 146 575
s838.1 78 120 3246 4749
s953 5 50 159 847
s1196 7 20 198 413
s1238 7 21 198 431
s1423 0 5 184 207
s5378 22 31 759 883
s9234 216 237 11766 12772
s13207 171 179 10796 11101
s15850 237 246 11826 12267
s38417 658 795 71491 85813
s38584 187 195 11529 12077

The results show that an optimized random test, in
fact, considerably reduces the number of deterministic
patterns and the overall test data storage. This is par-
ticularly true for the circuits known as random pattern
resistant. For example, for circuit c7552 the number of
deterministic patterns is reduced from 92 to 51 and the
reduction in test data storage is about 5K. For circuit
s38417 the best scheme eliminates 137 deterministic
patterns, which leads to a reduction in test data storage
of more than 14K. As shown in Table 10 already with
standard ATPG the proposed technique requires less
test data storage than an approach based on storing a
compact test set (cf. [9, 20–22]).
It can be expected, that the test data storage for the

presented approach could be reduced even further, if an
ATPG tool specially tailored for the encoding scheme
were used as described in [24].

7. Conclusion

A scheme for generating mixed-mode test programs
for embedded processors has been presented. The test

Table 10. Amount of test data storage for the proposed
approach and for storing a compact test set.

Deterministic Test data storage
patterns (bits)

Best Compact Best Compact
Circuit scheme test set scheme test set

c2670 73 51 4186 8007
c3540 1 97 59 4850
c7552 51 84 6889 17304
s420.1 22 43 503 1505
s641 7 24 261 1296
s713 7 23 284 1242
s820 0 95 95 2185
s832 2 96 146 2208
s838.1 78 75 3246 5025
s953 5 77 159 3465
s1196 7 117 198 3744
s1238 7 129 198 4128
s1423 0 29 184 2639
s5378 22 104 759 22256
s9234 216 116 11766 28652
s13207 171 235 10796 164500
s15850 237 113 11826 69043
s38417 658 91 71491 151424
s38584 187 141 11529 206424

program uses both new, highly efficient random test
schemes and a new software-based encoding of deter-
ministic patterns.
It has been shown that the careful selection of

primitive polynomials for LFSR-based random pat-
tern generation has a strong impact on the num-
ber of undetected faults, and a multiple-polynomial
random pattern scheme provides significantly bet-
ter results in many cases. The quality of the ran-
dom scheme has the main impact on the overall
size of a mixed-mode test program. As an exam-
ple, for the processor INTEL 80960CA test programs
were generated, and for all the benchmark circuits
a complete coverage of all non-redundant faults was
obtained.
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