
Proc. International Test Conference 1997 1

Using BIST Control for Pattern Generation

Gundolf Kiefer and Hans-Joachim Wunderlich

Computer Architecture Lab
University of Stuttgart, Breitwiesenstr. 20/22

D-70565 Stuttgart, Germany

Abstract

A deterministic BIST scheme is presented which
requires less hardware overhead than pseudo-random
BIST but obtains better or even complete fault cover-
age at the same time. It takes advantage of the fact that
any autonomous BIST scheme needs a BIST control
unit for indicating the completion of the self-test at
least.

Hence, pattern counters and bit counters are al-
ways available, and they provide information to be
used for deterministic pattern generation by some
additional circuitry. This paper presents a systematic
way for synthesizing a pattern generator which needs
less area than a 32-bit LFSR for random pattern gen-
eration for all the benchmark circuits.

Keywords: deterministic BIST, scan-based BIST

1. Introduction

Modern design and package technologies make
external testing more and more difficult, and built-in
self-test (BIST) is becoming an attractive alternative.
Chips integrated into MCMs are hard to access even if
the design is IEEE 1149.1 boundary scan compatible,
and self-testable modules are mandatory in many cases.
The emerging technique of embedded coreware raises
an even stronger need for BIST as the internal structure
of the cores may be hidden to the designer, and
accessible interfaces between cores may not exist at all.
In addition to these technology-driven reasons for
BIST, there are classical advantages reported in
textbooks as high fault coverage, no need for automatic
test equipment and support during system maintenance
[ABF90, WuZo97].

If the BIST capability has to be exploited in a
hierarchical system design as defined by IEEE 1149.5,
for instance, the self-test must be performed in an
autonomous mode which is initiated by a START

signal, and whose completion is indicated by a
TESTEND signal [HaWu89, HaKr95]. This leads to
the basic architecture of a self-testable module as
shown in figure 1.

module under test
(MUT)

response compactor (RC)

pattern generator (PG)

pattern counter

test control

START

TESTEND

TESTOUT

control
lines

control
lines

...

...

Figure 1: Basic BIST structure

If a test-per-clock scheme is applied both pattern
generator and response compactor are implemented by
multifunctional test registers based on linear feedback
shift registers (LFSRs) like the so-called BILBO
[KMZ79]. As this type of registers cannot perform
response compression and pattern generation concur-
rently, the entire test must be scheduled and divided
into sessions, and rather a complex test control unit has
to be synthesized [CKS88, StWu90, StWu94].

BIST control is simplified if a test-per-scan tech-
nique is applied as first proposed in [EiLi83] and
further developed under the names STUMPS and
LOCST, e.g. [BaMc84, LeBl84]. In this case, the MUT
is equipped with a (partial) scan path, the scan-in input
is fed by an LFSR which generates a pseudo-random
bit stream, and the scan-out output is observed by
another LFSR for signature analysis. Testing is
performed by shifting one pattern into the scan path,
capturing the MUT response by one system clock, and
shifting out the new scan path content, whereby a new
pattern is shifted in simultaneously. The BIST control

Proc. International Test Conference 1997 2

unit does not need to distinguish between different test
sessions but it must count the patterns until the test is
completed. The entire structure is shown in figure 2.

module under test
(MUT)

scan path

pattern counter

bit counter

test control

START

TESTEND

TESTOUT

RCPG

shift /
capture

...

Figure 2: BIST control of a test-per-scan structure

If the pattern generator PG is implemented by an
LFSR, its minimum length L depends on both the
length n of the scan path and the number m of pseudo-
random patterns (see fig. 3).

t0 t1 ... tL-1 s0 s1 ... sn-1

LFSR scan path

Figure 3: LFSR length L and scan length n
An LFSR with a primitive feedback polynomial

cycles through 2L-1 different states (for details see
[PeWe72, LiNi97]), and each state corresponds to a
certain bit sj in the scan chain. If for all m patterns the
first bit s0 corresponds to a different state, the minimum
LFSR length is determined by 2L - 1 ≥ m. A necessary
and sufficient condition for reaching the lower limit is
that the scan path length n and the cycle length 2L-1 do
not have a common divisor, gcd (2L - 1, n) = 1. But in
this case we have strong linear dependencies between
the generated patterns since some of them differ only
by a certain number of shifts. Linear dependencies are
reduced if all bits generated correspond to a different
LFSR state, whereby the minimum length is bounded
by 2L - 1 ≥ m⋅n.

For this LFSR length, linear dependencies within
the scan chain may also reduce fault coverage, for
details see [AvMc93, BMS87], e.g. . As an example,
assume, we have to generate all 8 possible assignments

to the three scan elements si, sj, sk. If k - i > L this may
be impossible for an LFSR of length L even if a
primitive polynomial is used [BCR83]. In conse-
quence, L should be sufficiently large to cover all the
necessary bit distances. If, for instance, the scan chain
consists of several 32-bit data registers, the LFSR
should be of length L = 32 bits, too. This prevents
linear dependencies even if far less than 232 patterns are
applied.

The pattern generator PG of figure 2 can also be
implemented to produce weighted random patterns
[BRGL89b, Wu87, StWu91], pseudo-exhaustive
patterns [Akers85, HWH90], or deterministic patterns
[HELL92, ToMc96, WuKi96]. All these different types
of pattern generators are able to obtain complete
coverage of all detectable faults, and the whole struc-
ture is easily implemented by some CAD tool which
supports scan design. There is no need for reordering
or modifying the scan chain, and test points in the
mission logic are superfluous, otherwise they would
have an impact on the system behavior and may require
a redesign. The main drawback of these types of
pattern generators is the hardware overhead which may
be larger than the LFSR area by several orders of
magnitude.

In this paper it is shown that the area of a deter-
ministic pattern generator PG can be reduced signifi-
cantly if PG is not working in an autonomous mode
like an LFSR but exploits information from the pattern
counter and bit counter of the BIST control unit as
shown in figure 4.

The rest of this paper is organized as follows: in
the next section we introduce the structure of PG in
detail, in section 3 a procedure is presented which
synthesizes PG for a given module under test (MUT).
The procedure is illustrated by a small example in
section 4, and results of this procedure are reported in
section 5, they confirm that the hardware overhead of
this BIST scheme is less than the area required for the
usual LFSR-based pseudo-random BIST.

2. The target structure

The pattern generator to be developed will be an
extension of the bit-flipping BIST scheme presented in
[WuKi96]. This scheme is summarized next, the
extension exploits the autocorrelation of test patterns
which is explained in the second part of this section.

2.1. Bit-flipping BIST
The bit-flipping BIST scheme is based on the

observation that many patterns of an LFSR sequence
do not increase the fault coverage and can be mapped

Proc. International Test Conference 1997 3

to some precomputed deterministic test patterns by
changing some bits. Since one can choose from a large
space of random patterns, there is a high chance to find
a pair of a deterministic and a random pattern, so that
only very few bits have to be changed. As a bit
corresponds to a state of the LFSR, bit-flipping is
implemented by a combinational function as shown in
figure 5.

t0 t1 ... tL-1 s0 s1 ... sn-1

Bit-Flipping

function (BFF)

...

Figure 5: Bit-flipping BIST

The bit-flipping BIST scheme is the most area-
efficient mixed-mode scan-based BIST technique pub-
lished so far due to the following reasons:

1. BFF has a very small on-set and off-set, but a
very large don’t-care-set. In general this leads to
low area requirements even for a two-level
implementation.

2. BFF is also used to overcome linear dependen-
cies so that the LFSR can be shortened.

In many cases, it is possible to cut the LFSR down
to a length L with 2L - 1 ≥ m.

The length may be further reduced if the autocorre-
lation of deterministic test patterns is exploited so that
the size of the combinational logic is reduced, too. This
will be described in the next paragraphs.

2.2. Autocorrelated test patterns
Very often, deterministic test patterns can be clus-

tered into a few sets in such a way that all the patterns
of a set look very similar. This effect was studied and
used for a BIST scheme in [PaRa91], e. g. .

An example is given in figure 6, where the combi-
nation of an AND/OR-gate is tested by clusters. Each
cluster contains test patterns which are variations of a
master pattern at a few bit positions.

&

≥ 1

x0
x1
x2
x3

 Test set: 1111 0000
0111 1000
1011 0100
1101 0010
1110 0001

Master patterns: 1111 0000

Figure 6: Autocorrelated test patterns

This test set can be generated if the master patterns
are repeated several times with different modifications.
Obviously, the bit-flipping scheme of figure 5 cannot
be used as patterns are not repeated.

2.3. Sequence modifying function
Repeated patterns can be generated if the LFSR is

shortened, so that 2L - 1 < m. This leads to a scheme
where rather a small LFSR generates pseudo-random
patterns, some of these patterns are chosen as master
and the modification of the master is controlled by the
bits b0, ..., blog n - 1 of the bit counter and by the bits
p 0, ..., p log m - 1 of the pattern counter. The entire
structure is shown in figure 7.

MUT

scan path

pattern
counter

TESTEND

START

...

bit
counter

PG

shift/capture

b0 ... b log n -1

p0 ... p log m -1

TESTOUT
RC

Test control

Figure 4: Exploiting BIST control information during pattern generation

Proc. International Test Conference 1997 4

t0 t1 ... tL-1 scan pathp0 ...
pattern counter

b0 ...

bit counter

SMF

Figure 7: Target Structure

The sequence modifying function SMF is com-
pletely combinational. The advantages of the target
structure in comparison with bit-flipping are twofold:

1. The LFSR is smaller.
2. In general, the sequence modifying function

SMF is smaller than the bit-flipping function
BFF as autocorrelation and repetition are
exploited.

For the synthesis of SMF many degrees of freedom
may be used:

1. Selection of the length L of the LFSR.
2. Selection of the feedback polynomial.
3. Selection of LFSR bits ti, bit counter bits bi and

pattern counter bits pi as inputs for SMF.

In the next section a synthesis procedure is pre-
sented, which minimizes the total area of the pattern
generator by selecting a short LFSR and a small
number of inputs for the SMF so that complete fault
coverage is still guaranteed.

3. Synthesis of the pattern generator

The entire synthesis procedure consists of several
nested loops. The outermost loop has the LFSR length
L as an iteration variable. With increasing L some
polynomials are selected, and for each LFSR an SMF
is generated by the inner loop.

The sequence modifying function has to map some
pseudo-random patterns to the deterministic test set.
The function is implemented in two level logic which
is represented by a set of cubes. In each step of the
inner loop shown in figure 8 the SMF is enhanced so
that new deterministic patterns are produced while
certain old patterns remain unchanged. The synthesis
procedure differs from the synthesis of the bit-flipping
logic described in [WuKi96] since the SMF is not
generated on the basis of the LFSR states but on a
selection of state variables of the LFSR and the test
control hardware. For a brief overview of the algo-

SMF := ∅

Reduce

Compute FIX

Mapping

Fault Simulation

Sufficient fault
coverage?

End

no
yes

Compute the set of states where the value of SMF must not
be changed

Introduce new literals so that FIX is still retained

Select a pair of a random and a deterministic pattern, and
introduce the new minterms into SMF

Compute currently undetected faults

ATPG Generate deterministic patterns for currently undetected faults

Expand Remove literals so that FIX is still retained

Figure 8: Synthesis of an SMF

Proc. International Test Conference 1997 5

rithm, let l denote the number of LFSR bits involved, b
the number of bit counter bits, and p the number of
pattern counter bits.

In order to improve the SMF, it is necessary to
protect patterns which detected some hard faults in
former iteration steps. These patterns are called essen-
tial, and their number is minimized by fault simulation
in several permuted orders. Using three-valued fault-
simulation, it is possible to decide which bits of the
essential patterns have to be specified. For each output
bit of the pattern generator there is a corresponding
state in the set {0,1}l × {0,1}b × {0,1}p. The set of
states corresponding to the essential bits is called the
fix-set FIX and represents the set of inputs for which
the output of the SMF must not be changed.

After determining the fix-set, deterministic pat-
terns for the undetected faults are computed so that the
number of specified bits is minimized [HRTW95]. In
each iteration of the inner loop one ore more of these
deterministic patterns are mapped to pseudo-random
patterns.

A mapping of a deterministic pattern d to a
pseudo-random pattern r is characterized by two state
sets. The set on (d, r) corresponds to bits that have to
be modified, and the set off (d, r) corresponds to bits
that must not be modified in order to make r
compatible with d.

A mapping (d,r) is allowed only if
on (d, r) ∩ FIX = ∅ holds. Otherwise, a bit that has to
remain unchanged would be modified. Among all
possible mappings, d is selected so that the number of
specified bits is maximum, and r is selected so that the
Hamming distance between d and r is minimum.

The fix-set contains the states where the SMF,

which has been constructed so far, must not be
changed, and its complement is a large don’t-care set.
The don’t-cares are exploited by the ESPRESSO-like
procedures "Expand" and "Reduce" [BRAY84] which
are executed in each iteration. Furthermore, many
random patterns which were neither fixed nor subject
of a mapping, may change in a random way. This can
cause more previously undetected faults to be detected
without requiring any extra hardware.

But sometimes these incidental changes have to be
reverted. The best way is to inserting another XOR
gate, and the general form of the SMF is shown in
figure 9.

t0 t1 . .. tL-1 scan pathp0 . . .
pattern counter

b0 . . .

bit counter

SMF

Figure 9: General form of the target structure

4. Example

The synthesis procedure will be illustrated by a
small example. Assume that the outermost loop defines
the LFSR length L = 2 and selects the feedback
polynomial x2 + x +1 with the highest fault coverage
for a scan design with scan path length n = 5. Let the
test length be m = 6 patterns. Figure 10 shows the
LFSR, the resulting patterns and the corresponding
states in the format b2b1b0.p2p1p0.t1t0.

p1 p0p2b1 b0b2

bit counter pattern counter

scan pa th

test control

t0t1

pattern state sequence
1 1 0 1 1 0 000.000.01 001.000.10 010.000.11 011.000.01 100.000.10
2 1 1 0 1 1 000.001.11 001.001.01 010.001.10 011.001.11 100.001.01
3 0 1 1 0 1 000.010.10 001.010.11 010.010.01 011.010.10 100.010.11
4 1 0 1 1 0 000.011.01 001.011.10 010.011.11 011.011.01 100.011.10
5 1 1 0 1 1 000.100.11 001.100.01 010.100.10 011.100.11 100.100.01
6 0 1 1 0 1 000.101.10 001.101.11 010.101.01 011.101.10 100.101.11

Figure 10: Example of an LFSR, resulting patterns and state sequences

Proc. International Test Conference 1997 6

The LFSR periodically goes through three states
(01, 10, 11), and as n = 5 and gcd (3,5) = 1, three
different patterns are generated. At a test length of
m = 6, each pattern is repeated twice.

Initially, let the fix-set be empty (FIX = ∅), and
assume that the deterministic patterns d1 = 00010 and
d2 = 00011 have to be generated. Considering the
initial pseudo-random pattern sequence, for both d1 and
d2 at least 2 bits have to be modified. However, as d1

and d2 look very similar, there is a solution with only
two product terms which is constructed now.

First, d1 is mapped to pattern #1 which requires the
lowest number of bits to be modified. The on- and off-
set can be derived from figure 10:

on1 = { 000.000.01, 010.000.11 }

off1 = { 001.000.10, 011.000.01, 100.000.10 }

After logic minimization the sequence modifying
function SMF1 = { --0.---.-1} covers all minterms of
on1 but none of off1. The resulting pattern set is shown
in table 1. The states for which SMF1 is active are
printed in bold type.

As SMF1 does not depend on the pattern counter,
only three different patterns are generated again, and d1

occurs twice (#1 and #4). For the next iteration pattern
#1 is fixed:

FIX1 = on1 ∪ off1

= {000.000.01, 010.000.11,
001.000.10, 011.000.01, 100.000.10 }

Now d2 = 00011 is mapped. Pattern #1 cannot be
mapped to d2 without being in conflict with FIX1, so
that pattern #4 is selected as only one bit has to be
modified. The on- and off-sets can be derived from
table 1.

 on2 = {100.011.10 }

 off2 = {000.011.01, 001.011.10,
010.011.11, 011.011.01 }

With respect to FIX1 and off2, the function repre-
sented by on2 can be minimized to { --0.--1.-- } and the
final sequence-modifying function is given by

SMF2 = { --0.---.-1, --0.--1.-- } = b0 ⋅ (p0 + t0)

The pattern generator including the modifying
logic and the corresponding pattern set, which now
contains more than three different patterns, is shown in
figure 11.

pattern state sequence
1 0 0 0 1 0 000.000.01 001.000.10 010.000.11 011.000.01 100.000.10
2 0 1 0 1 0 000.001.11 001.001.01 010.001.10 011.001.11 100.001.01
3 0 1 0 0 0 000.010.10 001.010.11 010.010.01 011.010.10 100.010.11
4 0 0 0 1 0 000.011.01 001.011.10 010.011.11 011.011.01 100.011.10
5 0 1 0 1 0 000.100.11 001.100.01 010.100.10 011.100.11 100.100.01
6 0 1 0 0 0 000.101.10 001.101.11 010.101.01 011.101.10 100.101.11

Table 1: Patterns generated by SMF1

t0t1
p1 p0p2b1 b0b2

bi t counter pattern counter

scan path

test control

≥1
&

pattern state sequence
1 0 0 0 1 0 000.000.01 001.000.10 010.000.11 011.000.01 100.000.10
2 0 1 1 1 0 000.001.11 001.001.01 010.001.10 011.001.11 100.001.01
3 0 1 0 0 0 000.010.10 001.010.11 010.010.01 011.010.10 100.010.11
4 0 0 0 1 1 000.011.01 001.011.10 010.011.11 011.011.01 100.011.10
5 0 1 0 1 0 000.100.11 001.100.01 010.100.10 011.100.11 100.100.01
6 1 1 0 0 0 000.101.10 001.101.11 010.101.01 011.101.10 100.101.11

Figure 11: Pattern generation with SMF2

Proc. International Test Conference 1997 7

5. Experiments

A series of experiments has been performed with
benchmark circuits from ISCAS-85 and the combina-
tional versions from ISCAS-89 [BRGL85, BRGL89a].
Only those circuits which still have undetected non-
redundant stuck-at faults after applying 10,000 random
patterns were analyzed. The area of the LFSR and the
PLA implementation of the SMF was determined by
using a 1 micron standard cell library and a PLA
generator.

The first experiments investigated how the synthe-
sis procedure takes advantage of the autocorrelation of
test patterns and shortens the LFSR. Figure 12 draws
the entire area of the PG in mm2 versus the LFSR
length if 100% fault coverage is required. Fault cover-
age is always computed with respect to all non-
redundant faults.

The best results are always obtained for LFSR
lengths which are much smaller than those required for
pseudo-random testing, and obviously, the algorithm
takes advantage of pattern repetition.

The second experiments investigated the area
required for complete fault detection. The first two
columns of table 2 are the circuit name and the length n
of the scan path. As comparisons we include the area
for the reseeding approach [HRTW95] and for bit-
flipping [WuKi96] in the next two columns.

Then the results for the new approach are listed,
first the LFSR length L, followed by the number of
XORs for sequence reverting, the number of product
terms and the total area for these devices. This area is
compared to the area of a 32-bit LFSR. For nearly half

Circuit n Reseeding
[mm2]

Bit-Flipping
[mm2]

LFSR
length

XORs Product
terms

Area
[mm2]

% of
LFSR-32

% of
scan path

s420 34 0.344 0.063 13 2 10 0.057 64.8% 43.5%
s641 54 0.344 0.063 9 2 10 0.052 59.7% 25.2%
s713 54 0.344 0.063 11 1 9 0.051 58.2% 24.6%
s838 66 0.533 0.100 11 2 35 0.090 102.0% 35.3%
s953 45 0.308 0.063 13 1 4 0.050 57.5% 29.2%
s1196 32 0.335 0.067 14 2 6 0.057 64.8% 46.2%
s1238 32 0.332 0.063 13 2 8 0.057 64.6% 46.1%
s5378 214 0.423 0.081 14 2 17 0.078 88.6% 9.5%
s9234 247 0.944 0.544 14 3 193 0.448 510.0% 47.2%

s13207 700 0.730 0.193 14 3 60 0.158 179.7% 5.9%
s15850 611 0.918 0.331 14 3 237 0.327 371.8% 13.9%
s38417 1664 1.896 1.733 14 3 829 1.492 1698.2% 23.3%
s38584 1464 0.770 0.577 14 3 102 0.294 334.1% 5.2%
c2670 157 0.734 0.279 5 3 141 0.220 250.3% 24.5%
c7552 206 0.987 0.517 11 3 295 0.384 437.0% 48.2%

Table 2: Area required for complete fault coverage

s838

0.08

0.09

0.10

0.11

0.12

14 13 12 11 10 9 8 L

mm2

c2670

0.00

0.10

0.20

0.30

0.40

14 13 12 11 10 9 8 7 6 5 4
L

mm2

c7552

0.00

0.10

0.20

0.30

0.40

0.50

0.60

14 13 12 11 10 9 8 7 6 5 4
L

mm2

Figure 12: Efficiency of the scheme depending
on the LFSR size L

Proc. International Test Conference 1997 8

of the circuits it is possible to obtain complete fault
coverage at less costs than required for a pseudo-
random BIST by a 32-bit LFSR which still leaves
faults undetected. The total area is also compared with
the area of the scan path. In any case only a fraction of
the scan path area has to be used for implementing the
PG. Especially for large circuits, the additional
overhead to the scan design is very low. It should be
noted that this design method does not require
reordering of the scan chain or additional test points.

The next two experiments compare the efficiency
of a pseudo-random BIST [HWH96] and the presented
approach. The first two columns of table 3 show the
pseudo-random fault-coverage and the fault coverage
of the new approach if the size of the SMF is limited
by the area of a 32-Bit LFSR and the synthesis proce-
dure for the SMF is stopped before complete fault
coverage is reached. The last column "Area" gives the
area of the PG as a percentage of a 32-Bit LFSR area if
the synthesis is stopped after reaching the fault
coverage of the pseudo-random BIST.

Circuit random FC SMF FC Area
[% of LFSR-32]

s838 66.92% 95.92% 41.6%
s9234 90.63% 91.51% 66.4%

s13207 93.83% 96.38% 43.8%
s15850 94.58% 97.25% 43.8%
s38417 93.41% 93.62% 46.9%
s38584 98.71% 98.93% 43.8%
c2670 88.26% 89.19% 76.0%
c7552 96.29% 97.05% 78.2%

Table 3: Efficiency of the LFSR BIST and the
SMF BIST

In any case the PG including an SMF needs less
hardware than a 32-bit LFSR and obtains better or even
complete fault coverage. Hence, we have the surprising
result that a deterministic BIST scheme requires less
hardware than an LFSR but reaches higher fault
coverage for all the benchmark circuits.

6. Conclusions

A deterministic scan-based BIST scheme may use
the information from BIST control so that the overall
hardware required for BIST implementation is less than
the area of a 32-bit LFSR.

The presented BIST scheme does not touch the
mission logic, does not need test point insertion, and
does not require reordering the scan chain.

For all benchmark circuits complete fault coverage
can be obtained at a cost which is only a fraction of the
cost of the scan path.

References
[ABF90] M. Abramovici, M. A. Breuer, A. D. Friedman:

"Digital Systems Testing and Testable Design",
Computer Science Press, 1990

[Akers85] S. B. Akers: "On the use of Linear Sums in
Exhaustive Testing", Proc. Of the 15th Int. Symp. On
Fault-Tolerant Computing, 1985, pp. 148-153

[AvMc93] L. Avra, E. J. McCluskey: "Synthesizing for scan
dependence in Built-in Self-Testable Designs", Proc. Int.
Test Conf., 1993, pp. 734-743

[BCR83] Z. Barzilai, D. Coppersmith, A. L. Rosenberg:
"Exhaustive Generation of Bit Patterns with Applications
to VLSI Self-Testing", IEEE Transactions on Computers,
Vol. C-32, No. 2, Feb. 1983, pp. 190-194

[BaMc84] P. H. Bardell, W. H. McAnney: "Parallel Pseudo-
random Sequences for Built-In Test", Proc. Int. Test
Conf., 1984, pp. 302-308

[BMS87] P. Bardell, W. H. McAnney, J. Savir: "Built-in Test
for VLSI", Wiley-Interscience, New York, 1987

[BRAY84] R. K. Brayton, G. D. Hachtel, C. McMullen, A.
Sangiovanni-Vincentelli: “Logic Minimization
Algorithms for VLSI Synthesis”, Boston: Kluwer
Academic Publishers, 1984

[BRGL85] F. Brglez, H. Fujiwara: "A Neutral Netlist of 10
Combinational Benchmark Circuits and a Target
Translator in Fortran", Proc. Int. Symp. On Circuits and
Systems, 1985, pp. 663-698

[BRGL89a] F. Brglez, D. Bryan, K. Komzminski:
"Combinational Profiles of Sequential Benchmark
Circuits", Proc. Int. Symp. On Circuits and Systems,
1989, pp. 1929-1934

[BRGL89b] F. Brglez et al.: "Hardware-Based Weighted
Random Pattern Generation for Boundary-Scan", Proc.
Int. Test Conf., 1989, pp. 264-274

[CKS88] G. L. Craig, C. R. Kime, K. K. Saluja: "Test
Scheduling and Control for VLSI Built-In Self-Test",
IEEE Transactions on Computers, Sep. 88, pp. 1099-
1109

[EiLi83] E. B. Eichelberger, E. Lindbloom: "Random Pattern
Coverage Enhancement and Diagnosis for LSSD Logic
Self-Tet", IBM Journal of Research and Development,
Vol. 27, No. 3, May 1983, pp. 265-272

[HaKr95] O. F. Haberl, T. Kropf: "HIST: A Hierarchical Self
Test Methodology for Chips, Boards and Systems",
Journal of Electronic Testing: Theory and Applications,
6/1995, pp. 85-106

[HaWu89] O. Haberl, H.-J. Wunderlich: "The Synthesis of
Self-Test Control logic", Proc. COMPEURO, May 8-12,
1989, Hamburg

[HELL92] S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois:
"Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers",
Proc. Int. Test Conf., 1992, pp. 120-129

[HRTW95] S. Hellebrand, B. Reeb, S. Tarnick, H.-J.
Wunderlich: "Pattern Generation for a Deterministic
BIST Scheme", Proc. Int. Conf. on Computer-Aided
Design, 1995, pp. 88-94

Proc. International Test Conference 1997 9

[HWH90] S. Hellebrand, H.-J. Wunderlich, O. F. Haberl:
"Generating Pseudo-Exhaustive Vectors for External
Testing", Proc. IEEE Int. Test Conf., 1990, pp. 670-679

[HWH96] S. Hellebrand, H.-J. Wunderlich, A. Hertwig:
"Mixed-Mode BIST Using Embedded Processors", Proc.
IEEE Int. Test Conf., 1996, pp. 195-204

[KMZ79] B. Koenemann, J. Mucha, G. Zwiehoff: “Built-In
Logic Block Observation Techniques”, Proc. of
International Test Conference, 1979

[LeBl84] J. LeBlanc: "LOCST: A Built-In Self-Test
Technique", IEEE Design & Test of Computers, Vol. 1,
No. 4, 1984, pp. 42-52

[LiNi97] R. Lidl, H. Niederreiter: "Finite fields", 2nd ed. ,
New York: Cambridge University Press, 1997

[PaRa91] S. Pateras, J. Rajski: "Generation of Correlated
Random Patterns for the Complete Testing of
Synthesized Multi-level Circuits", Proc. 28th ACM/IEEE
Design Autom. Conf., 1991, pp. 347-352

[PeWe72] W. W. Peterson, E. J. Weldon: "Error-Correcting
Codes", MIT Press, Cambridge 1972

[StWu90] A. Ströle, H.-J. Wunderlich: "Error Masking in
Self-Testable Circuits", Proc. Int. Test Conf., 1990, pp.
544-552

[StWu91] A. Ströle, H.-J. Wunderlich: "TESTCHIP: A chip
for weighted random pattern generation, evaluation, and
test control", IEEE Journal of Solid State Circuits, July
1991, Vol. 26, No. 7, pp. 1056-1063

[StWu94] A. Ströle, H.-J. Wunderlich: "Configuring
Flipflops to BIST Registers", Proc. Int. Test Conf., 1994,
pp. 939-948

[ToMc96] N. A. Touba, E. J. McCluskey: "Altering a
pseudo-random bit sequence for scan-based BIST", Proc.
Int. Test Conf., 1996, pp.167-175

[Wu87] H.-J. Wunderlich: “Self Test Using Unequiprobable
Random Patterns”, Proc. 17th In. Symp. Fault-Tolerant
Comput., Pittsburgh 1987, pp. 258-263

[WuKi96] H.-J. Wunderlich, G. Kiefer: "Bit-Flipping BIST",
Proc. Int. Conf. On Computer-Aided Design, 1996, pp.
337-343

[WuZo97] H.-J. Wunderlich, Y. Zorian: "Built-In Self Test
(BIST): Synthesis of Self-Testable Systems", Kluwer
Academic Publishers, 1997

