
IEEE International Test Conference, Washington, DC, October 1996

1

MIXED-MODE BIST USING EMBEDDED PROCESSORS

Sybille Hellebrand, Hans-Joachim Wunderlich, Andre Hertwig
Institute of Computer Structures
University of Siegen, Germany

Abstract

In complex systems, embedded processors may be used
to run software routines for test pattern generation and re-
sponse evaluation. For system components which are not
completely random pattern testable, the test programs have
to generate deterministic patterns after random testing.
Usually the random test part of the program requires long
run times whereas the part for deterministic testing has
high memory requirements.

In this paper it is shown that an appropriate selection of
the random pattern test method can significantly reduce the
memory requirements of the deterministic part. A new,
highly efficient scheme for software-based random pattern
testing is proposed, and it is shown how to extend the
scheme for deterministic test pattern generation. The entire
test scheme may also be used for implementing a scan
based BIST in hardware.

1 Introduction

Integrating complex systems into single chips or im-
plementing them as multi-chip modules (MCMs) has be-
come a widespread approach. A variety of embedded pro-
cessors and other embedded coreware can be found on the
market, which allows to appropriately split the system
functionality into both hardware and software modules.
With this development, however, system testing has be-
come an enormous challenge: the complexity and the re-
stricted accessibility of hardware components require so-
phisticated test strategies. Built-in self-test combined with
the IEEE 1149 standards can help to tackle the problem at
low costs [10].

For conventional ASIC testing, a number of powerful
BIST techniques have been developed in the past [1 - 3, 5,
7 - 8, 19, 26, 29 - 31]. For example, it has been shown
that combining random and efficiently encoded determinis-
tic patterns can provide complete fault coverage while

 This work has been supported by the DFG grant „Test und Synthese
schneller eingebetteter Systeme“ (Wu 245/1-2).

keeping the costs for extra BIST hardware and the storage
requirements low [13, 14, 32]. In the case of embedded
systems such a high quality test is possible without any
extra hardware by just using the embedded processor to
generate the tests for all other components.

Usually, this kind of functional testing requires large
test programs, and a memory space not always available
on the system. In this paper it will be shown how small
test programs can be synthesized such that a complete
coverage of all non-redundant stuck-at faults in the combi-
national parts of the system is obtained. The costs for ex-
tra BIST hardware in conventional systems testing are re-
duced to the costs for some hundred bytes of system mem-
ory to store the test routines. The proposed BIST approach
can efficiently exploit design-for-testability structures of
the subcomponents. As shown in Figure 1 during serial
BIST the embedded processor executes a program which
generates test patterns and shifts them into the scan regis-
ter(s) of the component(s) to be tested. Even more effi-
ciently, the presented approach may be used to generate
test data for input registers of pipelined or combinational
subsystems.

embedded
processor

scan-
input

scan-
output

scan-
input

scan-
outputtest data

(random &
deterministic

patterns)

Figure 1: Serial BIST approach.

The structure of the test program can be kept very sim-
ple, if only random patterns have to be generated, since
then some elementary processor instructions can be used
[12, 21, 25, 28].

Even a linear feedback shift register (LFSR) can be em-
ulated very efficiently: Figure 2 shows as an example a

2

modular LFSR and the corresponding program (for sim-
plicity the C-code is shown) to generate a fixed number of
state transitions.

sn-1 s0

…

…

hn-1 h1

void transition (int m, int n,
 unsigned int polynomial,
 unsigned int *state)

/* m transitions of modular LFSR of degree n */

{
 int i;
 for (i=0; i<m; i++)
 {
 if (*state >> n-1)
 {
 *state <<= 1;
 *state ^= polynomial;
 }
 else
 *state <<= 1;
 }
}

Figure 2: Modular LFSR and corresponding program for
generating state transitions.

But usually not all the subcomponents of a system will
be random pattern testable, and for the remaining faults de-
terministic test patterns have to be applied. For this pur-
pose, compact test sets may be generated as described in
[16, 18, 22, 27] and reproduced by the test program, or a
hardware-based deterministic BIST scheme is emulated by
the test software [13 - 15, 32]. This kind of mixed-mode
testing may interleave deterministic and random testing or
perform it successively. In each case, the storage require-
ments for the deterministic part of the test program are di-
rectly related to the number of undetected faults after ran-
dom pattern generation. There is a great trade-off between
the run-time for random test and the memory requirements
of the mixed-mode program. Assume a small improve-
ment of the random test method which leads to an increase
of the fault coverage from 99.2% to 99.6%. This reduces
the number of undetected faults and the storage require-
ments by the factor 1/2. Overall, the efficiency of a mixed-
mode test scheme can be improved to a much higher de-
gree by modifying its random part rather than its determin-
istic part.

In this paper a highly efficient software-based random
BIST scheme is presented which is also used for generat-
ing deterministic patterns. The rest of the paper is orga-

nized as follows: In the next section, different random pat-
tern test schemes to be emulated by software are evaluated,
and in section 3 the extension to deterministic testing is
described. Subsequently, in section 4, a procedure for op-
timizing the overall BIST scheme is presented, and section
5 describes the procedure for generating the mixed-mode
test program. Finally, section 6 gives some experimental
results based on the INTEL 80960CA processor as an ex-
ample.

2 Emulated Random Pattern Test

Test routines exploiting the arithmetic functions of a
processor can produce patterns with properties which are
sufficient for testing random pattern testable circuits [12,
25], even if they do not completely satisfy all the condi-
tions for randomness as stated in [11], e.g.. However, for
other circuits, in particular for circuits considered as ran-
dom pattern resistant, arithmetic patterns may not perform
as well. Linear feedback shift registers (LFSRs) corre-
sponding to primitive feedback polynomials and cellular
automata are generally considered as stimuli generators
with good properties for random testing [9, 17, 20]. But
the generated sequences still show some linear dependen-
cies, such that different primitive polynomials perform dif-
ferently on the same circuit. In some cases, the linear de-
pendencies may support fault detection, for other circuits
they perform poorly. In the following, the fault coverage
obtained by several LFSR-based pattern generation
schemes will be discussed with some experimental data.

2.1 Feedback Polynomial

In contrast to hardware-based BIST, in a software-based
approach the number and the positions of the feedback taps
of the LFSR have no impact on the costs of the BIST im-
plementation. Thus, for a given length the achievable fault
coverage can be optimized without cost constraints.

Assuming a test per scan scheme as shown in Figure 3
the sensitivity of the fault coverage to the selected feed-
back polynomial has been studied by a series of experi-
ments for the combinational parts of the ISCAS85 and
ISCAS89 benchmark circuits [4, 6].

LFSR

feedback

scan path

…

CUT

Figure 3: Scan-based BIST.

3

Circuit PI F Degree LFSR1 LFSR2 LFSR3 LFSR4 LFSR5 LFSR6 Average

c2670 157 2478 52 12.55
99.68

11.99
95.23

12.59
100

11.74
93.25

12.23
97.14

12.47
99.05

12.26
97.39

c3540 50 3291 17 0.03
20

0.12
80

0.06
40

0.15
100

0.09
60

0.09
60

0.09
60

s420.1 34 455 20 18.90
100

12.97
68.62

8.79
46.51

16.70
88.36

15.82
83.70

10.11
53.49

13.88
73.45

s641 54 465 22 2.58
46.15

1.72
30.77

5.59
100

2.15
38.46

1.51
27.01

1.94
34.70

2.58
46.18

s838.1 66 931 37 33.73
89.21

37.49
99.15

34.91
92.33

37.81
100

33.08
87.49

37.59
99.42

35.77
94.6

s9234 247 6475 52 9.87
89.16

10.83
97.83

10.75
97.11

9.37
84.64

11.07
100

9.93
89.70

10.30
93.07

Table 1: Absolute and normalized (w. r. t. worst LFSR) percentage of undetected non-redundant faults after 10,000 patterns.

Fault simulation of 10,000 random patterns was per-
formed for each circuit using several different feedback
polynomials, all of the same degree. Some typical results
are shown in Table 1. The first four columns contain the
circuit name, the number of inputs, the number of non-re-
dundant faults, and the selected degree of the feedback
polynomial.1 The remaining columns show the character-
istics for six different LFSRs. The first entry reports the
percentage of undetected non-redundant faults, and the sec-
ond entry normalizes this number to the corresponding
number for the worst LFSR (in %). The worst and best
performing LFSR are printed in bold, respectively. The
last column gives the average over all of the LFSRs.

It can be observed that there is a big variance in the per-
formance of different LFSRs of the same degree. For s641,
e.g., the best LFSR reduces the number of undetected
faults down to 27% of the faults left undetected by the
worst polynomial.

2.2 Multiple-Polynomial LFSRs

One explanation for the considerable differences in fault
coverage observed in section 2.1 is given by the fact, that
linear dependencies of scan positions may prevent certain
necessary bit combinations in the scan patterns indepen-
dent of the initial state of the LFSR [2]. For different
LFSRs the distribution of linear dependencies in the scan
chain is different and, depending on the structure of the
circuit, may have a different impact on the fault coverage.

As shown in Figure 4 the impact of linear dependencies
can be reduced if several polynomials are used. In this
small example the LFSR can operate according to two dif-

1 The degrees of the polynomials have been selected, such that they
were compatible with the requirements for the deterministic test
described in section 3.

ferent primitive feedback polynomials P0(X) = X3 + X2 + 1
and P1(X) = X3 + X + 1, which are selected by the input of
the multiplexer. For any given initial state (x0, x1, x2) the
LFSR produces a scan pattern (a0, … , a7), such that,
depending on the selected polynomial, the shown equa-
tions for P0(X) or P1(X) hold for its components.

&
st-0

o2

&
st-0

o1

x0 + x1 + x2

x0
x1
x2

x0 + x1
x1 + x2

x0 + x2

x0

a0
a1
a2
a3
a4
a5
a6
a7

x1 + x2

x0
x1
x2

x0 + x1 + x2
x0 + x2

x0 + x1

x0

P0(X) P1(X)
x2 x1 x0

M
U
X0

1

Ι

Figure 4: Scan-based BIST with multiple-polynomial LFSR.

For polynomial P0 there is a linear relation a3 + a5 = x0
+ x2 + x0 + x1 = x1 + x2 = a7, which prevents the
combination (1, 1, 1) at the inputs of the AND-gate. This
implies that the polynomial P0(X) can never produce a test
for the stuck-at-0 fault at node o2. In contrast to that, for
polynomial P1(X) the same input positions are linearly
independent and produce all possible nonzero bit combina-
tions and thus a test for the considered fault. Similarly, the
stuck-at-0 fault at node o1 cannot be tested using poly-
nomial P1(X), but polynomial P0(X) can provide a test.
Using both polynomials, each for a certain number of
patterns, increases the chance of detecting both faults.

4

Such a multiple-polynomial LFSR can be implemented
efficiently in hardware by trying to share parts of the feed-
back for several polynomials. A software emulation is
also very simple, since the basic procedure to simulate an
LFSR has to be modified only slightly. To control the
selection of feedback polynomials several schemes are
possible. The first is shown in Figure 5 assuming N
random patterns to be generated by p different polynomials
Pi, i = 0, ..., p-1. LFSR(Pi) denotes the LFSR operation
corresponding to feedback polynomial Pi.

 initialize (LFSR);

 for (i = 0; i < p; i++)
 generate N/p patterns by LFSR(Pi);

Figure 5: Successive multiple-polynomial scheme (SUC).

The polynomials are applied successively to generate
contiguous subsequences of N/p random patterns, the
scheme will therefore be referred to as scheme SUC. For
one polynomial the scheme degenerates to the conven-
tional single polynomial scheme. The possibility to
switch between different distributions of linear dependen-
cies is paid by the disadvantage that some patterns may
occur repeatedly up to p times. Hence, an overall increase
of the fault coverage cannot be expected, but experiments
have shown that there is indeed an improvement for some
circuits. Table 2 lists the results for the same set of cir-
cuits as studied in the previous section.

Circuit Degree p = 2 p = 3 p = 4 p = 5

c2670 52 12.55
99.68
106.9

12.55
99.68
106.9

8.76
69.58
74.62

12.55
99.68
106.9

c3540 17 0.03
20
100

0.12
80
400

0.09
60
300

0.12
80
400

s420.1 20 14.95
79.10
170.08

14.51
76.77
165.07

13.41
70.95
152.56

12.97
68.62
147.55

s641 22 1.94
34.70
128.48

1.94
34.70
128.48

1.94
34.7

128.48

1.72
30.77
113.91

s838.1 37 30.72
81.25
92.87

31.26
82.68
94.5

31.26
82.68
94.5

30.18
79.82
91.23

s9234 52 10.61
95.84
113.23

10.67
96.39
113.87

10.13
91.51
108.11

9.22
83.29
98.40

Table 2: Absolute and normalized (w. r. t. worst and best
single LFSR) percentage of undetected non-redun-
dant faults for scheme SUC after 10,000 patterns.

For each circuit 10,000 patterns were simulated using p
= 2, …, 5 polynomials. For each experiment the percen-

tage of undetected non-redundant faults is reported (1st
line), as well as the corresponding normalized numbers for
the worst (2nd line) and for the best single polynomial
(3rd line) of the same degree (in %).

Applying the successive scheme for example to the cir-
cuit c2670 with p = 4 reduces the number of undetected
faults down to 69.58% compared with the worst single
polynomial. Even more important is that the scheme also
outperforms the best single polynomial and the number of
remaining target faults for ATPG is less than 75%, i.e.
25% percent of the faults left by the best single polyno-
mial are additionally covered by this scheme.

The randomness of the sequence can be further in-
creased, if the polynomials are not used successively, but
selected randomly for each test pattern. This random selec-
tion can be implemented by a second LFSR as shown in
Figure 6 and will be referred to as scheme RND.

…

LFSR 1

…

p-1

M
U
X

0

Pi(X)0≤i<p

LFSR 2

feedback

CUT

scan chain

Figure 6: Hardware scheme for the random selection of feed-
back polynomials (RND).

The selection between p different feedback polynomials
for LFSR1 is controlled by log2p bits of the state regis-
ter of LFSR2. For a software implementation of the struc-
ture of Figure 6, two additional registers are required for
storing the feedback polynomial and the state of LFSR2.
LFSR1 and LFSR2 can be emulated by the same proce-
dure, and the complete routine to generate a sequence of N
random patterns is shown in Figure 7.

 initialize (LFSR1);
 initialize (LFSR2);

 for (i = 0; i < N; i++)
 {
 select P based on state of LFSR2;
 generate 1 pattern by LFSR1(P);
 perform 1 state transition of LFSR2;
 }

Figure 7: Software routine for the random pattern
generation scheme of Figure 6 (RND).

Table 3 shows the percentage of undetected non-redun-
dant faults and the corresponding normalized numbers ob-
tained by the scheme RND for p = 2, ..., 5 feedback poly-
nomials.

5

Circuit Degree p = 2 p = 3 p = 4 p = 5

c2670 52 12.63
100.32
107.58

12.35
98.09
105.2

11.99
95.23
102.13

12.55
99.68
106.9

c3540 17 0.06
40
200

0.09
60
300

0.09
60
300

0.12
80
400

s420.1 20 12.75
67.46
145.05

14.51
76.77
165.07

14.29
75.61
162.57

17.14
90.69
194.99

s641 22 1.72
30.77
113.91

1.94
34.7

128.48

1.94
34.7

128.48

1.51
27.01
100

s838.1 37 38.56
101.98
116.57

33.40
88.34
100.97

36.95
97.73
111.7

36.84
97.43
111.37

s9234 52 9.61
86.81
102.56

11.24
101.54
119.96

10.16
91.78
108.43

10.75
97.11
114.73

Table 3: Absolute and normalized (w. r. t. worst and best
single LFSR) percentage of undetected non-redun-
dant faults for scheme RND after 10,000 patterns.

For the randomly selected polynomials, there is a
higher chance of pattern repetitions, but randomly switch-
ing between different distributions of linear dependencies
may improve the quality of the patterns. For some cir-
cuits, this results in an improvement of fault coverage, so
that the set of faults which remain for deterministic testing
is further reduced.

2 . 3 Multiple-Polynomial, Multiple-Seed
L F S R s

Another way of improving the efficiency of a random
test is repeatedly storing a new seed during pattern genera-
tion as investigated for instance in [23]. This technique
can be combined with the use of multiple polynomials as
shown in Figure 8.

…

…

p-1

M
U
X

0

Pi(X)0≤i<p

LFSR 2

feedback

CUT

scan chainLFSR 1

Figure 8: Multiple-polynomial, multiple-seed LFSR.

As for the scheme RND, log2p bits of the state regis-
ter of LFSR2 are used to drive the selection between p dif-

ferent feedback polynomials of degree k for LFSR1. The
remaining k bits provide the seed for LFSR1. In the sequel
this scheme will be referred to as the scheme RND2. The
structure of the corresponding test program is shown in
Figure 9.

 initialize (LFSR2);

 for (i = 0; i < N; i++)
 {
 select seed S and polynomial P
 based on state of LFSR2;
 initialize LFSR1 with S;
 generate 1 pattern by LFSR1(P);
 perform 1 state transition of LFSR2;
 }

Figure 9: Test program for the multiple-polynomial, multi-
ple-seed LFSR (RND2).

Again, in this scheme patterns may occur repeatedly,
but in addition to the advantage of randomly changing the
distribution of linear dependencies this scheme is also able
to generate the all zero-vector which is often needed for
complete fault coverage.

Table 4 gives the results for p = 2, ..., 5 polynomials
(percentage of undetected non-redundant faults and the cor-
responding normalized numbers as in Tables 2 and 3).

Circuit Degree p = 2 p = 3 p = 4 p = 5

c2670 52 12.31
97.78
104.86

12.15
96.51
103.49

12.15
96.51
103.49

12.55
99.68
106.9

c3540 17 0.12
80
400

0.18
120
600

0.18
120
600

0.18
120
600

s420.1 20 12.31
65.13
140.05

13.19
69.79
150.06

12.75
67.46
145.05

10.99
58.15
125.03

s641 22 1.94
34.7

128.48

1.94
34.7

128.48

1.94
34.7

128.48

2.15
38.46
142.38

s838.1 37 27.71
73.29
83.77

23.52
62.21
71.1

23.52
62.21
71.1

26.53
70.17
80.2

s9234 52 9.14
82.57
97.55

9.85
88.98
105.12

9.58
86.54
102.24

9.58
86.54
102.24

Table 4: Absolute and normalized (w. r. t. worst and best
single LFSR) percentage of undetected non-redun-
dant faults for scheme RND2 after 10,000 patterns.

As expected, not for all circuits the fault coverage
increases, but there are circuits where this technique leads
to significant improvements. For circuits s838.1 and
s9234 the best results are obtained compared with all the
experiments before.

6

3 Software-Based Deterministic BIST

The structure of the multiple-polynomial, multiple-seed
random BIST scheme of Figure 8 is very similar to the de-
terministic BIST scheme based on reseeding of multiple-
polynomial LFSRs proposed in [13, 14], see Figure 10.

…

…

p-1

M
U
X

0

Pi(X)0≤i<p

CUT

scan chain (m bits)LFSR 1

id seed

… …

Figure 10: Deterministic BIST scheme based on a multiple-
polynomial LFSR by [14].

A deterministic pattern is encoded as a polynomial iden-
tifier and a seed for the respective polynomial. During test
mode the pattern can be reproduced by emulating the
LFSR corresponding to the polynomial identifier, loading
the seed into the LFSR and performing m autonomous
transitions of the LFSR. After the m-th transition the scan
chain contains the desired pattern which is then applied to
the CUT.

To calculate the encoding systems of linear equations
have to be solved. For a fixed feedback polynomial h(X) =
Xk + hk-1Xk-1 + … + h1X + h0 of degree k the LFSR pro-
duces an output sequence (ai)i≥0 satisfying the feedback
equation ai = ai-1·hk-1 + … + ai-k·h0 for all i ≥ k. The
LFSR-sequence is compatible with a desired test pattern t
= (t1, ..., tm), if for all specified bits ai = ti holds. Recur-
sively applying the feedback equation provides a system of
linear equations in the seed variables a0, ..., ak-1. If no so-
lution can be found for the given polynomial, the next
available polynomial is tried, and in [14] it has been
shown that already for 16 polynomials there is a very high
probability of success that a deterministic pattern with s
specified bits can be encoded into an s-bit seed.

Hence, if p different polynomials are available and the
polynomial identifier is implemented as a „next bit“, the
seed and the next bits for a deterministic test set T =
{t1,...,tN} with maximum number of specified bits smax re-
quire S(T) := (smax + 1)⋅N bits of storage. Minimizing
S(T) requires both minimizing the maximum number of
care bits smax and the number of patterns N. In [15] an
ATPG-algorithm was presented which generates test pat-
terns where the number of specified bits smax is mini-
mized. In a mixed-mode BIST approach the number N of
patterns is highly correlated to the number of faults left
undetected after random testing.

4 Synthesizing the BIST Scheme

Since the efficiency of a mixed-mode BIST scheme
strongly depends on the number of hard faults to be cov-
ered by deterministic patterns, a major concern in synthe-
sizing the BIST scheme is optimizing the random test.
The experimental data of section 2 show that significant
variances in the fault efficiency achieved by different
LFSR schemes exist, and that there is no universal
scheme or polynomial working for all of the circuits. In
the sequel, a procedure is presented for determining an op-
timized LFSR scheme. The selection of the LFSRs is
guided, such that the fault efficiency is maximized while
satisfying the requirements for an efficient encoding of de-
terministic patterns for the random pattern resistant faults.
Assuming a table of primitive polynomials available the
proposed procedure consists of 4 steps:
1) Perform ATPG to eliminate the redundant faults and to

estimate the maximum number of specified bits, smax,
to be expected in the test cubes for the hard faults.

2) Select M polynomials of degree smax randomly, and
perform fault simulation with the corresponding shift
register sequences. Rank the polynomials according to
the fault coverage achieved.

3) Select the P best polynomials and store the highest
fault coverage and the corresponding LFSR as
BEST_SCHEME.

4) Using 2 ≤ p ≤ P polynomials, simulate the schemes
SUC, RND, and RND2. Update BEST_SCHEME to
the best solution obtained so far.

The number M is mainly determined by a limit of the
computing time to be spent. The number P is also re-
stricted by the computing time available, but in addition
to that each LFSR requires two registers of the processor
for pattern generation. So, the register file of the target
processor puts a limit on P, too.

Table 5 shows the results achieved by this procedure for
the same set of circuits as studied in section 2. For the
same degrees as used in section 2 sequences of 10,000
random patterns were applied.

Circuit Best
Scheme

p FE UF UFbest UFworst

c2670 SUC 4 91.24 8.76 74.62 69.58

c3540 SUC 2 99.97 0.03 100 20

s420.1 SUC 1 91.21 8.79 100 63.33

s641 RND 5 98.49 1.51 100 27.01

s838.1 RND2 3 76.48 23.52 71.10 62.21

s9234 RND2 2 90.86 9.14 97.55 82.57

Table 5: Best schemes and relation to best and worst single
polynomial solution.

7

The second and third column show the best scheme and
the corresponding number of polynomials p, column 4
provides the fault efficiency FE (percentage of detected
non-redundant faults). The percentage of faults left unde-
tected by the best scheme is reported in column UF.
UFbest normalizes this solution to the number obtained by
the best single polynomial, UFworst refers to the worst
single polynomial.

Table 5 indicates that the search for an appropriate ran-
dom test scheme can reduce the number of remaining
faults significantly. The procedure needs M + 3·(P - 1)
runs of fault simulations, but may decrease the storage
amount needed for deterministic patterns considerably.
These savings in memory for the mixed-mode test pro-
gram are particularly important, if the test program has to
be stored in a ROM for start-up and maintenance test.

5 Generating Mixed-Mode Test Programs

Test programs implementing the random test schemes
and the reseeding scheme for deterministic patterns were
generated for the INTEL 80960CA as a target processor.
Its large register set made a very compact coding possible.
Since the part of the test program which generates the
deterministic patterns is a superset of instructions required
for implementing any of the random schemes, only the
example for the most complex random scheme is shown.
The mixed-mode test program of Figure 11 generates
random test patterns by multiple-polynomial, multiple-
seed LFSR emulation, and switches to the reseeding
scheme afterwards.

The program of Figure 11 requires 27 words in memory
but assumes that all LFSRs fit into 32 bit registers. This

steps1 equ ... ; number of steps for lfsr1
steps2 equ ... ; number of steps for lfsr2
steps_det equ ... ; number of steps for deterministic test
len1 equ ... ; position of msb of lfsr1
len2 equ ... ; position of msb of lfsr2
testport equ ... ; address of testport
no_poly_bits equ ... ; number of bits for polynomial choice
mask equ ... , define mask
start dq startvector ; define startvector for lfsr2
poly dq polynomials ; define polynomials for lfsr1

; and lfsr2 (poly[0])
seeds dq seedvectors ; define seeds for det. test
seed_offset equ seeds - start ; define offset for seed table

begin: lda testport, r10 ; load address of testport
lda steps_det, r11 ; load loopcounter for lfsr1 in det. mode
lda steps1, r12 ; load loop counter for lfsr1
lda start, r14 ; load startvector address for lfsr1
ld (r14), r6 ; load startvector for lfsr2
ld 4(r14), r7 ; load polynomial for lfsr2

l0: mov r6, r4 ; initialize lfsr1 with contents of lfsr2
and mask, r4, r15 ; compute poly-id
ld 8(r14)[r15*4], r5 ; polynomial for lfsr1
lda no_poly_bits, r15 ; load number of bits for poly-id

l1: shro no_poly_bits, r4, r4 ; shift poly-bits
lda steps2, r13 ; load loop counter for lfsr1

l2: st r4, (r10) ; write testpattern to testport
mov r4, r8
shlo 1, r8, r4 ; shift left
bbc len2, r8, l3 ; branch if msb of lfsr2 equal zero
xor r4, r5, r4 ; xor

l3: subi r13, 1, r13 ; decrement loop counter
cmpibne r13, 0, l2 ; branch not equal zero
mov r6, r8
shlo 1, r8, r6 ; shift left
bbc len1, r8, l4 ; branch if msb of lfsr1 equal zero
xor r6, r7, r6 ; xor

l4: subi r12, 1, r12 ; decrement loop counter
cmpibg r12, r11, l0 ; branch if r12 > steps_det
ld seed_offset(r14)[r12*4],r6 ; load seed
cmpibne r12,0,l0

Figure 11: Mixed-mode BIST program.

8

is always possible for random pattern generation, but en-
coding deterministic patterns may lead to LFSR lengths
exceeding 32 bits. In this case, the program of Figure 11
has to be modified in a straightforward way, and requires
more memory. Table 6 gives the relation between memory
requirements and LFSR lengths.

LFSR length 32 64 96 128

Memory requirements
(words)

27 41 52 63

Table 6: LFSR length and memory requirements for the
mixed-mode test program.

In addition to the program size, memory has to be re-
served for storing the polynomials and the seeds in order to
decode the deterministic patterns. The experimental results
of the next section show that these data form by far the
major part of the memory requirements.

6 Experimental Results

The described strategy for generating mixed-mode test
programs was applied to all the benchmark circuits for M
= 16 and P = 5, i. e. for each circuit M + 3·(P - 1) = 28
runs of fault simulation were performed to determine the
best random scheme. Tables 7 and 8 show the results.

Circuit PI Degree Best Scheme p

c2670 157 52 SUC 4

c3540 50 19 SUC 2

c7552 206 106 RND2 3

s420.1 34 20 SUC 1

s641 54 22 SUC 1

s713 54 22 SUC 1

s820 23 15 SUC 5

s832 23 15 RND2 5

s838.1 66 37 RND2 3

s953 45 15 SUC 1

s1196 32 17 RND2 2

s1238 32 17 RND2 2

s1423 91 25 RND2 5

s5378 214 25 RND 5

s9234 247 52 RND2 2

s13207 700 60 SUC 5

s15850 611 48 SUC 2

s38417 1664 106 RND2 4

s38584 1464 60 SUC 2

Table 7: Circuit characteristics and best random scheme.

The selected random schemes and their characteristic
data are reported in Table 7. Columns 2 and 3 list the
number of primary inputs PI and the degree of the poly-
nomials. The best random scheme and the number of poly-
nomials p are reported in the subsequent columns.

Table 8 shows the detailed results. The number of non-
redundant faults for each circuit is given in column 2. The
efficiency of the random scheme is characterized again by
the fault efficiency FE, the percentage of undetected non-
redundant faults UF and the normalized numbers for UF
with respect to the best (UFbest) and the average (UFaverage)
single polynomial solution in columns 3 through 6.

Circuit F FE UF UFbest UFaverage

c2670 2478 91.24 8.76 74.62 71.45

c3540 3291 99.97 0.03 100 33.33

c7552 7419 98.87 1.13 30.46 26.84

s420.1 455 91.21 8.79 100 63.33

s641 465 98.49 1.51 100 27.01

s713 543 98.71 1.29 100 70.11

s820 850 100 - - -

s832 856 99.77 0.23 24.73 4.21

s838.1 931 76.48 23.52 71.1 65.75

s953 1079 99.26 0.74 100 18.5

s1196 1242 99.28 0.72 68.57 40.91

s1238 1286 99.38 0.62 66.67 35.43

s1423 1501 100 - - -

s5378 4563 99.45 0.55 85.94 61.8

s9234 6475 90.86 9.14 97.55 88.74

s13207 9664 94.45 5.55 89.95 80.79

s15850 11336 94.89 5.11 94.28 89.96

s38417 31015 93.92 6.08 92.26 85.75

s38584 34797 98.77 1.23 95.35 82.55

Table 8: Fault efficiency and percentage of undetected non-
redundant faults for the best random schemes after
10,000 patterns.

The reduction of the remaining faults obtained by the
best random test scheme is significant. For instance, the
circuit c7552 is known to be very random pattern resis-
tant, and a single polynomial solution in the average leads
to a fault efficiency of 95.79% leaving 4.21% of the faults
for deterministic encoding. For the same circuit, the RND2

scheme achieves a fault efficiency of 98.87%, and only
1.13% or, absolutely, 84 faults are left. This corresponds
to a reduction of the remaining faults down to 27%.

For circuits s820 and s1423 a careful selection of the
random scheme even makes the deterministic test super-
fluous. Finally, it should be noted that for the larger cir

9

cuits already a small relative reduction means a consider-
able number of faults which are additionally covered by the
random test and need not be considered during the deter-
ministic test. For example for circuit s38417 a reduction
down to 85.75% and 92.26%, respectively, means that ad-
ditional 313 and 158, respectively, faults are eliminated
during random test.

Table 9 shows the resulting number of test patterns re-
quired for the random pattern resistant faults and the
amount of test date storage (in bits) for the best random
scheme compared to a random test using an average single
polynomial. This includes the storage needed for the poly-
nomials, the initial LFSR states for the random test and
the encoded deterministic test set. Since the goal of this
work was to determine the impact of the random test on
the test data storage, a standard ATPG tool was selected to
perform the experiments [24]. For all circuits the fault ef-
ficiency is 100% after the deterministic test.

Circuit
Deterministic

patterns
Test data storage

(bits)

Best
scheme

Average
polynomial

Best
scheme

Average
polynomial

c2670 73 77 4186 4239

c3540 1 1 59 59

c7552 51 92 6889 11644

s420.1 22 34 503 776

s641 7 11 261 321

s713 7 11 284 321

s820 0 32 95 559

s832 2 33 146 575

s838.1 78 120 3246 4749

s953 5 50 159 847

s1196 7 20 198 413

s1238 7 21 198 431

s1423 0 5 184 207

s5378 22 31 759 883

s9234 216 237 11766 12772

s13207 171 179 10796 11101

s15850 237 246 11826 12267

s38417 658 795 71491 85813

s38584 187 195 11529 12077

Table 9: Number of deterministic patterns and storage re-
quirements for the complete test data (in bits).

The results show that an optimized random test in fact
considerably reduces the number of deterministic patterns
and the overall test data storage. This is particularly true
for the circuits known as random pattern resistant. E.g. for
circuit c7552 the number of deterministic patterns is re-

duced from 92 to 51 and the reduction in test data storage
is about 5K. For circuit s38417 the best scheme elimi-
nates 137 deterministic patterns, which leads to a reduction
in test data storage of more than 14K. As shown in Table
10 already with standard ATPG the proposed technique
requires less test data storage than an approach based on
storing a compact test set (cf. [16, 18, 22, 27]).

Circuit
Deterministic

patterns
Test data storage

(bits)

Best
scheme

Compact
Test Set

Best
scheme

Compact
Test Set

c2670 73 51 4186 8007

c3540 1 97 59 4850

c7552 51 84 6889 17304

s420.1 22 43 503 1505

s641 7 24 261 1296

s713 7 23 284 1242

s820 0 95 95 2185

s832 2 96 146 2208

s838.1 78 75 3246 5025

s953 5 77 159 3465

s1196 7 117 198 3744

s1238 7 129 198 4128

s1423 0 29 184 2639

s5378 22 104 759 22256

s9234 216 116 11766 28652

s13207 171 235 10796 164500

s15850 237 113 11826 69043

s38417 658 91 71491 151424

s38584 187 141 11529 206424

Table 10: Amount of test data storage for the proposed
approach and for storing a compact test set.

It can be expected, that the test data storage for the
presented approach could be reduced even further, if an
ATPG tool specially tailored for the encoding scheme were
used as described in [15].

7 Conclusion

A scheme for generating mixed-mode test programs for
embedded processors has been presented. The test program
uses both new, highly efficient random test schemes and a
new software-based encoding of deterministic patterns.

It has been shown that the careful selection of primitive
polynomials for LFSR-based random pattern generation
has a strong impact on the number of undetected faults,
and a multiple-polynomial random pattern scheme pro-
vides significantly better results in many cases. The qual-

10

ity of the random scheme has the main impact on the
overall size of a mixed-mode test program. As an example,
for the processor INTEL 80960CA test programs were
generated, and for all the benchmark circuits a complete
coverage of all non-redundant faults was obtained.

8 References

1 S. B. Akers, W. Jansz: Test Set Embedding in a Built-in
Self-Test Environment; Proc. IEEE Int. Test Conf.,
Washington D.C., 1989, pp. 257-263

2 P. Bardell, W. H. McAnney, J. Savir: Built-in Test for
VLSI; Wiley-Interscience, New York, 1987

3 Z. Barzilai, D. Coppersmith, A. L. Rosenberg: Exhaustive
Generation of Bit Patterns with Applications to VLSI
Self-Testing; IEEE Trans. on Comp., Vol. C-32, No. 2,
February 1983, pp. 190-194

4 F. Brglez and H. Fujiwara: A Neutral Netlist of 10 Combi-
national Benchmark Designs and a Special Translator in
Fortran; IEEE Int. Symp. on Circuits and Systems, Kyoto,
1985

5 F. Brglez et al.: Hardware-Based Weighted Random Pattern
Generation for Boundary-Scan; Proc. IEEE Int. Test Conf.,
Washington D.C., 1989, pp. 264 - 274

6 F. Brglez, D. Bryan and K. Kozminski: Combinational
Profiles of Sequential Benchmark Circuits; Proc. IEEE Int.
Symp. on Circuits and Systems, 1989, pp. 1929-1934

7 M. Chatterjee and D. K. Pradhan: A New Pattern Biasing
Technique for BIST; Proc. of VLSI Test Symp., 1995, pp.
417-425

8 C. Dufaza, H. Viallon, C. Chevalier: BIST Hardware
Generator for Mixed Test Scheme; Proc. Europ. Design
and Test Conf., Paris, 1995

9 E.B. Eichelberger and E. Lindbloom: Random-Pattern
Coverage Enhancement and Diagnosis for LSSD Logic
Self-Test, IBM Journal of Research and Development,
Vol. 27, No. 3, May 1983

10 A. Flint: Multichip Module Self-Test Provides Means to
Test at Speed; EE-Evaluation Engineering, pp. 46-55,
September 1995

11 S. W. Golomb: Shift Register Sequences; Holden-Day,
San Francisco, 1967

12 S. Gupta, J. Rajski, J. Tyszer: Test Pattern Generation
Based On Arithmetic Operations; Proc. Int. Conf. on
Computer-Aided Design, San Jose, Ca., 1994, pp. 117-
124

13 S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois:
Generation of Vector Patterns Through Reseeding of
Multiple-Polynomial Linear Feedback Shift Registers;
Proc. IEEE Int. Test Conf., Baltimore 1992, pp. 120-129

14 S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman and
B. Courtois: Built-In Test for Circuits with Scan Based on
Reseeding of Multiple-Polynomial Linear Feedback Shift
Registers; IEEE Trans. on Comp., Vol. 44, No. 2, Feb.
1995, pp. 223-233

15 S. Hellebrand, B. Reeb, S. Tarnick, H.-J. Wunderlich:
Pattern Generation for a Deterministic BIST Scheme;

Proc. IEEE/ACM Int. Conf. on CAD-95, San Jose, Ca.,
Nov. 1995

16 H. Higuchi, N. Ishiura, and S. Yajima: “Compaction of
Test Sets Based on Symbolic Fault Simulation”,
Synthesis and Simulation Meeting and Int. Interchange,
pp. 253-262, 1992

17 P. D. Hortensius, R. D. McLeod, W. Pries, D. M. Miller,
H. C. Card: Cellular Automata-Based Pseudorandom
Number Generators for Built-In Self-Test; IEEE Trans. on
CAD, pp. 842-859, Aug. 1989

18 S. Kajihara, I. Pomeranz, K. Kinoshita, S. M. Reddy:
“Cost-Effective Generation of Minimal Test Sets for
Stuck-at Faults in Combinational Logic Circuits”, Proc.
30th ACM/IEEE Design Automation Conf., 1993, pp.
102-106

19 B. Koenemann: LFSR-Coded Test Patterns for Scan De-
signs; Proc. Europ. Test Conf., Munich, 1991, pp. 237-
242

20 B. Koenemann, J. Mucha, G. Zwiehoff, Built-In Logic
Block Observation Techniques, Proc. Test Conf., Cherry
Hill, NJ, 1979, pp. 37-41

21 N. Mukherjee, M. Kassab, J. Rajski, J. Tyszer: Accumula-
tor Built-In Self Test for High-Level Synthesis; VLSI Test
Symp., 1995, pp. 132-139

22 L.N. Reddy, I. Pomeranz, and S.M. Reddy: “ROTCO: A Re-
verse Order Test Compaction Technique”, Proc. IEEE
EURO-ASIC Conf., September 1992, pp. 189-194

23 J. Savir, W.H. McAnney: A Multiple Seed Linear Feed-
back Shift Register; IEEE Trans. on Comp., pp. 250-252,
Feb. 1992

24 M. Schulz and E. Auth: Advanced Automatic Test Genera-
tion and Redundancy Identification Techniques; Proc.
18th Int. Symp. on Fault-Tolerant Computing, Tokyo
1988, pp. 30-35

25 A. P. Stroele: A Self-Test Approach Using Accumulators
as Test Pattern Generators; Proc. Int. Symp. on Circuits
and Systems, 1995, pp. 2120-2123

26 N. A. Touba and E. J. McCluskey: Synthesis of Mapping
Logic for Generating Transformed Pseudo-Random Pat-
terns for BIST; Proc. IEEE Int. Test Conf., Washington,
D.C., pp. 674-682, 1995.

27 G. Tromp: Minimal Test Sets for Combinational Circuits;
Proc. IEEE Int. Test Conf., 1991, pp. 204-209

28 I. Voyiatzis, A. Paschalis, D. Nikolos, C. Halatsis:
Accumulator-Based BIST Approach for Stuck-Open and
Delay Fault Testing; Proc. Europ. Design & Test Conf.,
1995, pp. 431-435

29 E. J. McCluskey, L. T. Wang: Circuits for Pseudo-Exhaus-
tive Test Pattern Generation; Proc. IEEE Int. Test Conf.;
1986, pp. 25-37

30 H.-J. Wunderlich: Self Test Using Unequiprobable Ran-
dom Patterns; Proc. IEEE 17th Int. Symp. on Fault-Toler-
ant Computing, FTCS-17, Pittsburgh 1987, pp. 258-263

31 H.-J. Wunderlich: Multiple Distributions for Biased
Random Test Patterns; Proc. IEEE Int. Test Conf.,
Washington D.C., 1988, pp. 236-244

32 N. Zacharia, J. Rajski, J. Tyszer: Decompression of Test
Data Using Variable-Length Seed LFSRs; Proc. 13th VLSI
Test Symp., pp. 426-433, 1995

