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Abstract-In this paper, we propose a new scheme for Built- 
In Test (BIT) that uses Multiple-polynomial Linear Feedback 
Shift Registers (MP-LFSR’s). The same MP-LFSR that generates 
random patterns to cover easy to test faults is loaded with seeds to 
generate deterministic vectors for difficult to test faults. The seeds 
are obtained by solving systems of linear equations involving the 
seed variables for the positions where the test cubes have specified 
values. We demonstrate that MP-LFSR’s produce sequences with 
significantly reduced probability of linear dependence compared 
to single polynomial LFSR’s. We present a general‘ method to 
determine the probability of encoding as a function of the number 
of specified bits in the test cube, the length of the LFSR and 
the number of polynomials. Theoretical analysis and experiments 
show that the probability of encoding a test cube with s specified 
bits in an s-stage LFSR with 16 polynomials is 1-10K6. We then 
present the new BIT scheme that allows for an efficient encoding 
of the entire test set. Here the seeds are grouped,according to 
the polynomial they use and an implicit polynomial identification 
reduces the number of extra bits per seed to one bit. The paper 
also shows methods of processing the entire test set consisting of 
test cubes with varied number of specified bits. Experimental 
results show the tradeoffs between test data storage and test 
application time while maintaining complete fault coverage. 

Index Terms- Built-In Test, hardware test pattern genera- 
tors, input test data compression and decompression, multiple- 
polynomial LFSR, reseeding, scan design. 

1. INTRODUCTION 
NE of the necessary properties that a Built-In Test 0 (BIT) scheme must satisfy in order to guarantee a 

high quality of testing is high fault coverage. Complete, or 
very high fault coverage is expected to be produced by a 
simple vector generator in an acceptable number of patterns. 
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Enormous practical importance of this problem prompted a lot 
of research that resulted in a number of techniques developed 
to address the problem assuming varying amount of structural 
information about the circuit, different fault models, different 
techniques to characterize compact test sets, and various 
Design For Testability (DFT) methodologies. 

The techniques for hardware test pattern generation can be 
classified in the following major groups: exhaustive testing 
[ I]-[3], pseudorandom testing [4J, weighted random testing 
[5]-[7 J ,  hardware pattern generators of deterministic tests 
[8]-[ 101 and mixed-mode test pattern generation [11]-[ 141. 
These techniques offer different tradeoffs between the test 
data storage, test application time, hardware overhead, fault 
coverage and programmability. Their properties have been 
studied extensively in the literature and an extensive review 
of the techniques and tradeoffs they offer can be found in [4J. 

Koenemann [12] proposed a very attractive technique for 
encoding test data based on intelligent reseeding of single- 
polynomial LFSR’s. This technique is compatible with scan 
and offers reduced storage requirements, shorter test applica- 
tion time, and smaller area overhead compared to weighted 
random patterns [12]. The same LFSR is used to generate 
pseudorandom and deterministic patterns which are encoded 
as seeds obtained from the test cubes of difficult to test faults. 
Although the number of bits required to encode a test cube in 
this way is much smaller than the length of the scan chain, 
it was estimated, based on the analysis of linear dependencies 
in LFSR sequences, that the LFSR should have the length of 
s + 20 bits in order to reduce the probability of not finding 
a seed for a test cube with s specified bits to less than lop6 
[151, 1121. 

In this paper we introduce a new encoding scheme based 
on reseeding of Multiple-polynomial LFSR’s. Since an MP- 
LFSR can operate according to one out of many primitive 
polynomials a linear dependency existing between test cube 
positions for one polynomial may be overcome by another 
polynomial. A test cube is encoded as the polynomial identifier 
and the initial seed. We demonstrate that with 16 polynomials, 
which require only 4 + s bits to encode the choice and the 
seed, this scheme achieves the same probability of finding the 
encoding as an s + 19 bit single-polynomial LFSR . Encoding 
a given test cube in an MP-LFSR involves solving systems 
of linear equations for the polynomials. Although there are 
16 polynomials the process stops when the first encoding is 
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qg-L -------- * 
Fig. 1. Linear feedback shift register (LFSR). 

found. As a result the average number of polynomials that are 
analyzed is less than 2. 

Finally we introduce a new BIT scheme that efficiently 
encodes complete test sets. In this scheme all the seeds that use 
the same polynomial are applied in one contiguous sequence. 
The generator has a counter that determines the current poly- 
nomial. Every seed is presented with one additional bit which 
indicates when to change the polynomial. This way if all the 
test cubes had the same number of specified bits equal s, every 
test cube could be encoded with s + 1 bits. In reality, however, 
the number of specified bits in test cubes differs significantly 
from one test cube to another. We discuss various techniques, 
like cube merging and concatenation, to reduce that variation. 
The paper also contains the results of experiments performed 
on benchmark circuits demonstrating the effectiveness of the 
BIT scheme. 

11. ENCODING OF TEST CUBES-BASIC CONCEPTS 
The problem of generating a given test cube by a k- 

stage LFSR is characterized by solving a system of equations 
derived as follows: A linear feedback shift register as shown 
in Fig. 1 is represented by its feedback polynomial h ( X )  = 
Xk = Efct h;Xi.  The output sequence denoted by a = 
(ai)i>o is completely determined by the feedback polynomial 
h ( X )  and the seed vector (ao,.  . . , ak-1) .  Obviously a given 
test cube C = (CO,...,C~-~) E { 0 , 1 , ~ } ~  with specified 
bit positions S(C):= {i = O,... ,m - llc; # x} can be 
generated by the LFSR if the output sequence is covered by 
the test cube, Le., a; = c; holds for all i E S(C). Applying 
the feedback equations ai = C::: h j ~ ; _ k + ~  recursively to 
the equations a; = ci finally provides a system of nonlinear 
equations depending only on the seed variables ao, . . . , ak-1 
and the feedback coefficients ho, . . . , hk-1 .  

Basically there are two approaches possible to reduce the 
number of variables involved in this system of equations. The 
first approach is to assume a fixed seed and to determine 
the feedback polynomial. The second approach is to calculate 
suitable seeds for a fixed feedback polynomial (“reseeding”) 
[12]. Both approaches can be realized in the general structure 
of the encoding scheme introduced in the paper. There are, 
however, considerable differences between these approaches 
with respect to the computational effort required. For a fixed 
seed, the resulting equations in the variables ho, . . . , hk-1  
are still nonlinear, whereas for a fixed feedback polynomial 
a system of linear equations in the variables ao, . . . , a k - 1  is 
obtained. The problem is that for both approaches the existence 
of a solution is not guaranteed. Linear dependencies in the 
LFSR sequence may for example lead to an unsolvable system 
of linear equations for the reseeding approach. 

In the sequel we will present a method to determine how 
the probability of finding an encoding depends on the number 
of specified bits in a test cube, the length of the LFSR and the 
number of polynomials. The understanding of this relation is 
crucial in the design of effective BIT schemes. A generalized 
encoding scheme based on reseeding of multiple polynomials 
is shown in Fig. 2. In this scheme every m-bit test cube is 
encoded into n bits of information, where q bits are used 
to select one out of 29 (primitive) polynomials of degree 
k 2 max (n - q, q),  and n - q bits to store the programmable 
part of the seed. 

In order to generate an m-bit test vector corresponding to 
the encoded test cube the seed is loaded into the LFSR, and 
the feedback links determined by the polynomial identifier 
are established. Subsequently, in m clock cycles the LFSR 
produces serially the bits of the test vector which are shifted 
into the scan chain. The test vector is then applied to the circuit 
under test, the responses are loaded back into the scan register 
and shifted out for compaction. 

For q = k = n the scheme of Fig. 2 becomes fully 
programmable and for k = n and q = 0 we obtain single 
reseeding. Between these two extremes there is a range of 
schemes determined by the choice of the parameter q. The 
evaluation of the efficiency of encoding for various parameters 
will be based on the probability of finding a solution. A 
probabilistic model will be developed to solve the following 
problem. 

Problem Statement: Given a test cube C with s specified 
bits and an LFSR that can implement 29 (primitive) poly- 
nomials of degree k with an (n  - q )  bit seed. Determine 
the probability Psucc(k, n, q, s) that for at least one of the 
polynomials there is a seed (n - q programmable bits), such 
that the output sequence of the LFSR is covered by C, and 
the probability Pf,;l(k, n, q, s) := 1 - Psucc(k, n, q,  s). 

These probabilities will also characterize the classical ap- 
proaches described above, since Psucc(k, k ,  0, s) := P s e e d ( k ,  s) 
is the probability that for a test cube C and a fixed 
polynomial of degree k there is a suitable seed. And 
P s e e d ( k ,  k ,  k ,  20) := Ppol(k, s) is the probability that for a 
test cube C and a fixed seed there is a suitable feedback 
polynomial of degree k, such that the output sequence of the 
LFSR is covered by C. The corresponding probabilities of 
failure will be denoted by Pnoseed ( k ,  S) : = 1 - Pseed ( k  , s) and 

As linear independence of the equations a; = c; is a 
sufficient (but not a necessary condition) for the existence 
of a seed in the classical reseeding scheme another objective 
of our probabilistic analysis is to determine the probabilities 
&dep(k ,  s) that for a test cube C and a fixed feedback polyno- 
mial of degree k the resulting equations for the seed variables 
are linearly independent, and P d e p ( k ,  s) := 1 - &dep(k ,  s). 

Pnopol (k ,  3) : = f ‘ p o ~ ( k ,  3). 

111. LFSR’s WITH PROGRAMMABLE FEEDBACK POLYNOMIALS 
In this section the analysis of the encoding scheme based 

on calculating polynomials is given. Since in this case a 
fixed seed is assumed the properties of the encoding scheme 
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Fig. 2. Generalized encoding 
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scheme based on reseeding of multiple polynomials. 

are characterized by the probability PpOl(k, s), Pnopol(k, s) 
respectively. 

Let C E { 0 , 1 , ~ } ~  be a test cube with s 
specified bits, and let 2k 5 m. If a fixed seed (a ( ) , .  . . , U k - 1 )  

is assumed, then the probability Pnopol(k, s) is given by 

Theorem I :  

Pro08 There are 2'" different feedback polynomials of 
degree k. For the fixed seed (0, . ., 0, 1) the corresponding 
LFSR's produce 2'" different output sequences. Since 2k  5 m 
the projection onto the first m bits provides 2k different 
sequences of length m. Thus there are 2m - 2k sequences 
of length m which cannot be output sequences of a k-stage 
LFSR. Therefore the probability that an arbitrary sequence of 
length m is not a desired LFSR sequence is (2m - 2 k ) ) / 2 m .  On 
the other hand, there are 2m-S sequences of length m which 
are covered by the test cube C. C cannot be generated by a 
k-stage LFSR, if none of these sequences is a desired LFSR 
sequence. Assuming statistical independence this completes 

Corollary I :  For large m the probability Pnopol(k, s) is 
given by Pnopol(k,s) M (e-1)2k-s .  

Since 2m grows quickly with m, the formula derived in 
Corollary 1 gives a very precise approximation even for 
relatively small values of m. For practical applications, the 
encoding scheme is therefore fully characterized by the ap- 
proximation formula. As a consequence we can observe the 
following facts. 

Observation I :  The size of the test cube m has no impact 
on the probability Pnopol ( k , s) . 

Observation 2: The probability Pnopol(k, s) only depends 
on the difference k - s between the degree of the polynomial 
and the number of care bits. 

It is easily verified that increasing the 
degree of the polynomial by one results in squaring the 
probability of failure. Pnopol(k + 1, s) = (Pnopol(k, s))'. 

These tradeoffs for varying parameters s and k can be 
seen very clearly in Fig. 3, where for fixed k the values of 
Pnopol(k,s) are shown as a function of the number of care 
bits. Increasing the degree of the polynomial corresponds to 
simply shifting the curve to the right, which clearly reflects 
Observations 1 and 2. The steepness of the curves is a 
consequence of Observation 3. 

the proof. 0 

Observation 3: 

10 20 30 40 50 60 
number of specified bits 

Fig. 3. Theoretical values for Pnopo~(k,~). 

Summarizing the results of this section we can characterize 
the efficiency of encoding for this encoding scheme as follows: 
If we require that 10-6 2 ~ ~ ~ ~ ~ l ( k ,  s) = (e-1>2"-", then this 
can be obtained by an LFSR with feedback polynomial of 
degree k 2 s + loga (- In M s + 4. 

IV. 
The properties of the scheme relying on a single feedback 

polynomial are quantified by the probabilities Pseed(k ,  s) and 
Pnoseed (k, s) . Since the linear independence of the equations 
ai = ci is a sufficient condition for finding a seed we 
obviously have Pnoseed (k, 3) 5 Pdep (k, s) and Pseed (IC, s) 2 
pindep(k ,  s). Therefore we first concentrate on these bounds. 

Linear dependencies have been extensively studied for the 
purposes of exhaustive testing and of random testing [l], 
[2], 1151, 1161. With respect to our objectives especially the 
probabilistic analysis carried out by Chen is of major interest 
1151. 

To determine Pseed (k, s) and Pnoseed (k, s) we consider the 
process of generating the equations a; = c; as a Markov chain 
( X t ) l l t S s  over a set of states S = {0,1,. . . , k}. At step t the 
tth equation is generated and for 1 5 d 5 t 5 s the equality 
X t  = d is interpreted as follows: The system of t equations 
generated so far has rank d and there is a solution for this 
system. X t  = 0 means that the system has no solution. The 
Markov chain is described by its initial distribution and the 
transition probabilities P(Xt+l  = d'JXt  = d ) .  

Let C E { 0 , 1 , ~ } ~  be a test cube with s 
specified bits, h ( X )  a primitive polynomial of degree k and 

RESEEDING OF LFSR'S WITH SINGLE POLYNOMIALS 

Theorem 2: 
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Fig. 4. Structure of the Markov chain ( X t ) l < f < s  _ _  

let 2k -1 2 m. The Markov chain ( X t ) l l t l s  as defined above 
has the initial distribution P(X1 = 1) = 1, P (Xl  = d )  = 0 
for d # 1, and the transition probabilities are given by 

contained in Et. The generation of an additional equation at 
step t + 1 therefore has one of the following implications: 

1) For d < k a system Et+l of rank d + 1 is obtained with 
probability. P(Xt+l = d + 1lXt = d )  

2 k  - 2 d  
for l < d + l  5 k ,  
otherwise 

O2"-1-t 

1 2 d - 1 - t  for d > 0 and t + 1 5 Zd - 1 , 
otherwise 

P(Xt+l = OIXt = d )  = P(Xt+l = dlXt = d )  for d > O  and 
P(Xt+l = OIXt = 0) = 1. All other transition probabilities 
are zero. 

Prooj? Let Et denote the system o f t  equations generated 
up to step t. 

If Xt = 0, then the system Et has no solution. Therefore 
adding an additional equation at time t + 1 provides a system 
Et+l which also cannot have a solution. Therefore P(Xt+l = 

If Xt = d # 0, the system Et has rank d ,  and a solution 
exists. Since the rank is d, 2d - 1 different linear combinations 
can be obtained from the t equations in Et. 2d - 1 - t of 
them are not contained in Et and the total number of possible 
equations which are not contained in Et is 2'"-1-t. Assuming 
that the Zd - 1 - t linearly dependent equations are uniformly 
distributed within the Z k  - 1 - t possible equations, a fraction 
of them, i.e., 

OlXt = 0 )  = 1 holds. 

m - t  
2k-1- t  . ( 2 d  - 1 - t )  

m - t  
2 k - 1 - t  m - t -  . (2d - 1 - t )  21 - 2 d  

- - 
t '  m - t  2"l- 

For this system the existence of a solution is also guaran- 
teed. For d = k the rank can no longer be increased and 
therefore we have the formula for P(Xt+l = d+llXt = 

2) With probability 1 - (2k - 2d)/(2k - 1 - t )  = (2d  - 
1 - t)/(2'" - 1 - t) the rank of the new system Et+l 
remains d. The existence of a solution is no longer 
guaranteed. Since the LFSR produces a pseudorandom 
sequence, the probability that the additional equation 
does not introduce a contradiction can be assumed as 
112. 0 

The structure of the Markov chain ( X t ) l < t l s  is represented 
by the graph shown in Fig. 4. Transitions to the state d = 0 
are omitted. 

In terms of this Markov model the probability Pseed(k, s) 
is obtained as P ( X ,  # 0). Moreover, as the rightmost 
branch in Fig. 4 corresponds to generating linearly independent 
equations, the probability Pindep(IC, s )  is obtained as P ( X s  = 
s ) .  Obviously the following corollary to Theorem 2 holds. 

Let C E ( O , ~ , X } ~  be a test cube with s 
specified bits, h ( X )  a primitive polynomial of degree k and 
let ( X t ) l l t l s  be the Markov chain defined above. Then 

4. 

Corollary 2: 

corresponds to equations for the test cube. Therefore we have 
S min ( k , s )  

p seed (k ,  3) = P ( X ,  = d )  = P ( X ,  = d). 
d = l  d= [log, ( ,+I)]  

linearly independent equations out of m - t possible equations 
which correspond to equations for the test cube and are not The probabilities P ( X ,  = d )  can be determined recursively 
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Fig. 5. Theoretical values for Pnoseec, ( I ; ,  .s). 

using 
P ( X ,  = d )  =P(Xt-' = d )  . P ( X ,  = dlXt-1 = d )  

+ P(X,-1 = d - 1) 
' P ( X t  = dlXt-1 = d - 1). 

Theorem 2 relies on two assumptions. The first is that the 
period 2k - 1 of the LFSR sequence is bigger than the length 
m of the test cube, but for practical applications where we 
have for example k 2 16 and m = 1000 this is no restriction. 
Secondly it is assumed that the equations which are linearly 
dependent on the system Et are uniformly distributed within 
the set of all equations not contained in Et. If this second 
assumption is not made, the probabilities Pnoseed(k,  s )  may 
become dependent on the length of the test cube. Within the 
scope of this paper we cannot discuss this problem in more 
detail. 

Fig. 5 shows the values of Pnoseed(k,  s) as function of s for 
some representative values of k .  This graphical representation 
and the exact calculation of the values Pnoseed(k ,  s) provides 
two interesting observations. 

The probability Pnoseed ( k ,  s) mainly de- 
pends on the difference k - s between the degree of the 
polynomial and the number of care bits. 

Observation 5: For k = s the value of Pnoseed(k,  s )  is 
always close to 0.389678 M e-'. 

For a more general analysis the upper bound P d e p ( k ,  s) is 
used as a rough approximation for Pnoseed( k ,  s ) .  For large 
values of k >> s a simplified formula for P d e p ( k , s )  can be 
derived as a corollary to theorem on the probability of linear 
dependencies given by Chen [15]. 

CorolZary 3: Let h ( X )  be a primitive feedback polynomial 
of degree k and let s << k.  Then for large k the probability 
P d e p ( k , s )  is given by P d e p ( k , s )  M z'+'-~. 

Corollary 3 also provides the following observation, which 
can be regarded as analog to Observation 3 .  

Observation 6: Increasing the degree of the polynomial by 
one results in reducing the probability Pnoseed(k ,  s) by half. 
For k >> s we have Pnoseed(k + 1, s )  w Pnoseed(k,  s - 1) M 

Comparing these results to the results of the previous section 
we see that both for full polynomial programmability and for 
single reseeding the probabilities for not finding a solution 

Observation 4: 

2s-k = 1/2(2s-kf') M 1 / 2 P n o s e , d ( k ,  s ) .  

only depend on the difference k - s between the degree k of 
the polynomial and the number s of care bits. However, when 
considering both probabilities in logarithmic scale, increasing 
the degree of the polynomial leads to an exponential decrease 
of Pnopol(k, s ) ,  whereas for single reseeding only a linear 
decrease of Pnoseed(k l  s )  can be achieved. 

The value lop6 is used again as an upper bound for the 
probability of failure. It is known from the previous section, 
that 2 Pnopol(k, s) if k 2 s+4. Using the approximation 
formula of Corollary 2 we obtain lop6 2 Pnoseed(k3 s ) ,  
if 2s-'+l M P n o s e e d ( k , s )  5 i.e., if k 2 s -I- 1 - 
log, (lop6) M s + 21. In fact, calculating the exact values for 
P n o s e e d ( k , s ) ,  it can be observed that 10@ 2 P n o s e e d ( k , s ) ,  
if k 2 s + 19. 

V. MULTIPLE-POLYNOMIAL LFSR's 
In this section the generalized reseeding scheme introduced 

in Section I1 will be analyzed, and it will be shown that with 
this scheme the encoding efficiency of calculating polynomials 
can be achieved by the computational effort required for the 
classical reseeding technique. 

The properties of this general scheme are measured by 
the probabilities Psucc(k, n, q ,  s) and Pf,;l(k, n, q ,  s) = 1 - 
PsuCc(k, n, q ,  s) .  Since k - n + q bits of the seed are fixed, 
there are k - n + q additional equations determining the output 
sequence (a;) i2o of the LFSR. Therefore Psucc(k, n, q ,  s) can 
be determined as the probability Pseed(k ,  q ,  s + k - n + q ) ,  
where Pseed(k ,  q,  s )  denotes the probability that for a test cube 
C with s specified bits there is a seed for at least one of 
29 primitive polynomials of degree k ,  such that the resulting 
output sequence is covered by C. Assuming that calculating 
seeds for different primitive polynomials corresponds to sta- 
tistically independent events, the probability Pseed ( k ,  q,  s) can 
be determined using the results of the previous section. 

Let C E { O , ~ , Z } ~  be a test cube with s 
specified bits and q 5 log, ( ( ~ ( 2 ~  - l ) /k )  where cp denotes 
Euler's function. Then Pnoseed(k, q,  s )  := 1 - Pseed(k, q,  s )  = 

Proofi The number of primitive polynomials of degree Ic 
is cp(2'-l)/k. As q 5 log, ( ~ ( 2 ~ - 1 ) / k ) ,  it is guaranteed that 
there are 29 5 ~ ( 2 ~  - I ) / k  different primitive polynomials 
and thus 29 statistically independent events. 0 

Consequently the probability Pfail(n,  k ,  q,  s )  can be deter- 
mined as ~ f , i l ( n ,  IC,  q ,  s )  = Pnoseed(k,  s + k - n + q)," 
Similarly as in the previous two paragraphs an approxi- 
mation formula can be used to examine the tradeoffs for 
varying parameters k ,  q, and s. Using the approximation 
2~-k+1 Pnoseed(k ,  S )  derived in the previous section for 
large ~c >> s Theorem 3 yields Pnoseed(k ,  q, s )  M (2s-k+1)24 
and Pf,;l(n, k ,  q ,  s )  M (2s-n+9+' ) ,' for n >> s + q. 

This formula shows that increasing the parameter q results 
in a slightly increased probability of failure for reseeding with 
respect to the single polynomials, but this is overcompensated 
by the decrease due to the growing number of polynomials. 
In fact for increasing values of q and n = k the probability 
Pf,il(k, k ,  q,  s) converges very quickly to the asymptotic value 
of Pnopo~(kl s). The asymptotic value is practically reached 

Theorem 3: 

Pnoseed(k,  SI2'. 
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Fig. 6. pfai1(40, 4 0 ,  q, s) as a function of the number of specified bits for 
q = 0 , . ” , 4 .  

already for q = 4. Fig. 6 elucidates this effect showing 
the probability Pf,il(n,k,q,s) as a function of s for fixed 
parameters n = k and q. Clearly the largest gain is obtained by 
changing q from 0 to 1, and for q = 4 the asymptotic behavior 
is practically achieved. Consequently, to keep the probability 
of not finding an encoding for a test cube with s care bits 
below lop6 an MP-LFSR of degree s with 16 polynomials is 
sufficient, and only s + 4 bits are required to encode a test 
cube with s specified bits. 

Theorem 3 relates the number of specified bits in a test cube, 
the length of the MP-LFSR and the number of polynomials 
to the probability of finding encoding. It is fundamental in 
the design of MP-LFSR’s. Given the maximum number of 
specified bits in a set of test cubes, Theorem 3 determines the 
number of different polynomials and their degree to guarantee 
the required probability of finding encoding. 

The generalized reseeding scheme involves, in the worst 
case, solving 2 4  systems of linear equations. The average 
number of systems of linear equations that must be treated 
can be easily determined as a function of the Pnosee,j using 
geometric series [13]. For k = s (the length of the MP- 
LFSR is equal to the number of specified bits in the test 
cubes) using the approximation formula from Observation 5 
we obtain the average number of systems of equations as 
1/(1 - e-’) = 1.58. Thus the efficiency of encoding of 
full polynomial programmability is practically reached with 
a computational effort comparable to that required for single 
reseeding. 

VI. RIE BIT SCHEME AND TEST SET PROCESSING 

As shown in the previous section a single test cube with s 
specified bits can be encoded with s+4 bits using MP-LFSR’s. 
However, when considering an entire test set, the encoding of 
the required feedback polynomial can be done implicitly by 
grouping together the seeds for specific polynomials and using 
a “next-bit’’ to indicate whether the feedback polynomial has 
to be changed (Fig. 7). Thus the number of bits required to 
encode a test cube with s specified bits further reduces to s+l. 

In this scheme the feedback polynomials are encoded as 
the states of the q-bit counter CR. A single bit which is 
appended to each of the seeds instructs the counter when 

. .  . .  I 
Fig. 7. 
MP-LFSR. 

Conceptual diagram of BIT scheme based on reseeding of a 

to proceed to its next state, i.e., to change the polynomial. 
The diagram shown in Fig. 7 illustrates the essential idea 
which can be implemented in a number of ways depending 
on the system requirements. The memory may or may not 
reside on chip. It could be a ROM chip on board or even 
another board in the system. The seeds can be stored in a 
system memory and the data can be transferred to the MP- 
LFSR through boundary scan for decompression. The same 
scheme can essentially be used with the encoded test cubes 
being produced by an external tester. To reduce the hardware 
overhead in the actual implementation of the scheme the MP- 
LFSR can be broken into two parts. The first, short LFSR, 
e.g., 32-stage long, is used to generate random patterns. The 
second part, the extension, used only in reseeding, is built out 
of the regular scan chain filp-fops of latches. 

When encoding an entire set T = {Cl, . . . , Cy} of test 
cubes further optimization is possible if a preprocessing of the 
test set is performed before the encoding. The length of the 
MP-LFSR to encode a set T of test cubes depends on the 
maximum number s,,, of specified bits in any test cube in 
T. The number of specified bits s; in any other test cube Ci is 
in general much smaller than sma. Encoding these test cubes 
into a word of size s,,, + 1 results in inefficient encoding of 
these test cubes. The encoding efficiency E is defined as 

This overall efficiency E can be increased by “merging” and 
“concatenating” the cubes of the original test set T. Merging of 
test cubes is a widely used technique to compact deterministic 
test sets. A set of test cubes can be merged to a single test 
cube of the same length if the test cubes of this set have 
nonconflicting values in all bit positions where both cubes are 
specified. To optimize the encoding efficiency the test cubes 
have to be merged into a minimal number of cubes with the 
number of care bits not exceeding sma. 

This problem can be viewed as a graph theoretical problem 
by identifying each test cube with a vertex of a graph and 
connecting two vertices by an edge if the corresponding test 
cubes are consistent. The cliques in the graph then represent 
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maximal sets of test cubes which can be merged and known 
heuristics for partitioning the graph into cliques can be used 
to solve the problem [17]. We have to take into account the 
constraint that the number of specified bits in a test cube that 
is a result of the merging should not exceed s,,,. 

The second technique to increase the overall encoding 
efficiency E makes use of the fact that the length of an encoded 
test cube is independent of the length of the original test cube. 
Thus if a subset T, C T of test cubes is concatenated to 
one long test cube C(T,) whose number of care bits is not 
exceeding s,,,, then encoding the cube C(T,) requires the 
same number of bits as each of the original cubes. 

To implement the test set T the BIT scheme of Fig. 7 has 
to be slightly modified. If the subsets T, consist of at most 
3 m-bit test cubes each, then once the seed for a cube C(T,) 
is loaded, the LFSR works in autonomous mode for 3 .m clock 
cycles. After each m cycles a test cube is completely loaded 
into the scan chain and can be applied to the circuit under test. 
For subsets containing less than 3 cubes dummy cubes must be 
inserted to maintain the simplicity of this scheme. Naturally, 
if test cube concatenation is used the MP-LFSR should not 
use the scan registers or the seed has to be reloaded. 

The necessary size of memory using this approach can 
therefore be minimized by constructing a minimal number of 
concatenated cubes which cover the original test set. With 
s (C)  denoting the number of specified bits in a test cube C 
this problem can be formally stated as follows: 

Problem OCT (Optimal Concatenation of Test 
Cubes): Let T = {Cl,. . . , Cr} be a set of test cubes 
and s,,, := max {s(Cz)ll L: i 5 r }  and let 3 be a positive 
integer. Partition the set T in a minimal number z of subsets 
T,, such that IT,( 5 j and s(T,) = &ET, s(C) L: Smax 
holds for all a = 1,. .. , z .  

This problem is equivalent to the Bin Packing Problem [17] 
with an additional constraint on the number of objects that can 
be packed into a bin. Here the bin size is determined by the 
LFSR length and the object sizes by the numbers of specified 
bits in the test cubes. 

We use a simple greedy strategy to solve this problem. 
For each subset T, we search for a test cube C of T with 
the maximum number of specified bits such that the two 
constraints indicated above are still satisfied if we put C into 
T,. If there exists such a test cube we take it out of T ,  put it 
into T, and continue the search. If not, we start with a new 
subset T,+I and continue as described, until T is empty. The 
algorithm is summarized in Fig. 8. 

The process of concatenation attempts to reduce the memory 
storage size for the encoded test cubes over single cube 
encoding by increasing the encoding efficiency. An encoding 
efficiency of E = 1 implies storing a single bit in memory 
(as LFSR seed) per specified bit of test cube. The encoding 
efficiency may be further improved when an LFSR of size 
s* 2 s,,, is selected and the number of specified bits in a 
concatenated cube is bounded by s*. For a given set of test 
cubes T and a given maximum number j of cubes allowed 
to be concatenated together an optimal value of s* is one that 
gives the highest encoding efficiency. A method how to predict 
the optimal LFSR length is given in [ 181. 

Algorithm CONCATENATION 

j :=  1. T..= 0;; 
9 I '  

repeat 
s(4):=C,,  s(C); 

Q= { C €  TI s (T , )+s (C)  s s"); 
if Q # 0 and l'fil < j then 

choose C E Q  with s(C)=max{s(C,)I C,EQ); 

T i : = T i u { c ) ;  T : = T \ ( C ) ;  

else i := i+ l ;  Ti:=O; 

until T = 0 .  
Fig. 8. Algorithm for the concatenation of test cubes. 

A possible disadvantage of this scheme over single cube 
encoding is a possible increase in the testing time. Each 
dummy cube adds to the testing time. The overall number 
of such additional cubes is given by v = Et==, ( j  - IT;() = 
j . z - \TI. The overhead of testing time Ot is defined as 

O I O t I l .  

To limit this overhead we limit the number j of test cubes 
we are allowed to concatenate. Varying s* and j gives a 
space of solutions with varying encoding efficiencies and time 
overheads. Depending on the set T this may involve a tradeoff 
between the two. For our study we bound the time overhead 
by restricting j to two cubes. Experimental results confirm 
that this gives good encoding efficiency with a small time 
overhead. 

VII. EXPERIMENTAL RESULTS 
To validate our theoretical results and illustrate the de- 

sign methodology of the BIT scheme based on reseeding 
of MP-LFSR's we performed experiments with the ISCAS- 
89 benchmark circuits [19]. Each of the benchmark circuits 
was initially fault simulated for a varying number of random 
patterns generated by a 32-stage LFSR with a primitive 
polynomial. The faults not detected by the random test formed 
a set of "hard" to test faults. For each fault in this set we 
generated a test cube using ATPG (SOCRATES [20]). The 
test cubes of the resulting test set T were then merged as 
described in Section VI. At this point the length of the MP- 
LFSR was determined as s,,, and 16 polynomials of this 
length were generated. The analysis presented in Section V 
relates the encoding efficiency, the complexity of the MP- 
LFSR and the probability of finding an encoding. The designer 
using this scheme may however want to reduce the number of 
polynomials and simplify the MP-LFSR by compromising the 
probability of finding encoding. Theorem 3 and its graphical 
illustration on Fig. 6 show a variety of tradeoffs. The choice 
of 16 polynomials of length s,,, illustrated in this section on 
experimental results ensures high efficiency and probability of 
encoding. 

The test cubes obtained after merging were encoded as 
seeds of the MP-LFSR and a counter control bit for each 
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211.22 

TABLE I 
EFFICIENCY OF ENCODING IN A 16-POLYNOMIAL MP-LFSR 

Pnoseed 

037 
1 1 1 1 1 1 1 1 0  

1 1 1 1 1 1 0 1 1  
1 1 1 1 1 1 1 1 1  
1 0 1 1 1 1 1 1 1  
1 1 1 0 0 1 1 1 1  

1 1 1 1 1 1 1 0 1  
1 1 1 1 0 1 1 0 1  
1 1 0 1 1 1 0 1 1  

1 1 1 0 1 1 1 1 1  

1 0  1 1  1 0 :  1 1  1 
1 0 1 1 1 1 1 1 0  
1 1 0 1 1 1 1 1 1  

1 0 1 1 1 1 1 0 1  
1 0 1 1 1 1 0 1 1  
1 1 1 1 1 0 1 1 1  

0.37 

0.38 
0.38 
0.38 
0.39 
0.35 
0.37 
0.39 

0.41 
0.42 

0.39 
0.40 
0.36 
0.41 

~ 0.38 

Average 
rank 

211.21 

211.18 
211.18 
211.18 
211.17 
211.17 
211.15 

211.15 
211.15 

211.15 
211.14 
211.14 

211.14 
211.14 
211.13 

TABLE I1 
ENCODING EFFICIENCY AND REDUCTION OF STORAGE REQUREMENTS 
FOR VARYING NUMBERS OF RANDOM PAITERNS (AFTER MERGING) 

circuit length of #random #test cubes #specified encoding reduction 

s5378 214 Ik 85 128 0.49 1.66 
2k 70 IO1 0.54 2.10 
5k 44 97 0.51 2.18 
1Ok 32 97 0.48 2.18 

s9234 247 Ik 152 126 0.51 1.94 
2k 139 126 0.49 1.94 
5k 116 104 0.55 2.35 

test cubes patterns (merged) bits (max.) efficiency factor 

1Ok 107 95 0.54 2.57 
~13207 700 lk 196 263 0.33 2.65 

2k 171 263 0.30 2.65 
5k 135 261 0.30 2.67 
1Ok 105 261 0.26 2.67 

~35932 1763 32 49 253 0.48 6.94 
64 34 245 0.42 7.17 
128 9 I l l  0.78 15.74 

~38417 1664 l00k 91 212 0.80 7.81 
15Ok 91 176 0.77 9.40 
2oOk 78 176 0.79 9.40 
250k 88 138 0.76 11.97 

seed. The seeds are computed by solving systems of linear 
equations selected by the specified bits of the test cube where 
the variables are the values of the seed. The Gauss-Jordan 
elimination with maximum pivot strategy [2 11 was adopted 
to handle efficiently Boolean variables by using bit-wise 
operations [14], [ 181. Using this procedure a software package 
was developed that is capable to process lo00 test cubes with 
up to 300 specified bits and length of 2000 bits in less than a 
minute on SPARC 10 workstation. 

To keep the hardware requirements of the pattem generator 
low the feedback polynomials for an LFSR where chosen 
such that they need only a small number of feedback links 
each and share as many feedback links as possible. Table I 
contains 16 polynomials used to encode test cubes for circuit 
s38417 with s,,, = 212. The first 9 columns show the 
feedback polynomial, i t . ,  ho. h153, h170, h183, h194, h201, 
h206, hzol. These 16 polynomials provide that capability to 
encode all the 91 test cubes which, combined with lOOk 
other pseudorandom vectors generated the 32-stage LFSR, 
guarantee complete coverage of testable single stuck-at faults. 
To demonstrate the encoding capability of this MP-LFSR we 
analyzed 10000 random test cubes with 212 specified bits 
each. The last column contains the frequency of not finding 
a seed. Notice that this value is very close to the value 
0.389678 z e-1 theoretically determined in Observation 5. 
The probability of not finding encoding for all 16 polynomials 
is estimated by the product of all these values as 0.222 *lop6. 
This is consistent with the results of Theorem 3. 

Column “Average rank” in the Table I shows the average 
rank of the row-reduced echelon matrix which is produced 
during the process of solving the systems of linear equations 
[21]. The average rank can be interpreted as the average 

number of linearly independent equations. This parameter can 
be used to evaluate the suitability of polynomials for reseeding. 
In this example, if the value was 212 the equations would 
always be linearly independent and the solution would always 
be guaranteed. 

The result of the encoding of the merged cubes is shown in 
Table 11. The length of a test cube for each circuit is defined 
as the number of primary inputs and the number of flip-flops 
which together form the scan chain. The reduction factor in 
the last column of the table gives the ratio of the number of 
bits that we had to store without and with encoding of the 
test cubes: 

reduction factor 

._ (length of a test cube) . (#test cubes) 
( m a .  # specified bits + 1) . (#test cubes) ’ 

.- 

As can be seen from Table I1 the reduction factor tends 
to increase as the test cube length increases. The encoding 
scheme is more efficient for larger circuits. 

In the second part of the experiments we concatenated the 
test cubes obtained after merging. We limited the maximum 
number of test cubes allowed to be concatenated to two. The 
concatenation process was performed using the algorithm of 
Fig. 8. The optimal LFSR length for each case was obtained 
by computing the encoding efficiency for varying values of s* 
around the predicted value of s* and then choosing that value 
that gives the highest encoding efficiency [18]. 

The results for the concatenation for selected benchmark 
circuits are shown in Table 111. Column 6 of Table I11 shows 
the number of dummy cubes which have to be inserted to keep 
the scheme simple. As can be seen the time overhead caused 
by these additional cubes is very low. Similar to merging a 
reduction factor was computed for the concatenation of test 
cubes, defined as shown at the bottom of the page. 

(length of an original test cube) . (# test cubes before concatenation) 
(max . # specified bits + 1) . (# test cubes after concatenation) 

reduction factor = 
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TABLE 111 

STORAGE REQUIREMENTS AFTER CONCATENATION 
ENCODING EFFICIENCY AND REDUCTION OF 

circuit length of # random #test cubes # specified # additional encoding reduction 
test cubes patterns (concat.) bits (max.) test cubes efficiency factor 

s5378 428 Ik 43 132 1 0.94 3.18 
2k 35 117 0 0.93 3.63 
5k 22 104 0 0.88 4.08 
10k 17 98 2 0.90 4.07 

s9234 494 lk 82 127 12 0.94 3.58 
2k 75 127 1 1  0.91 3.58 
5k 61 1 I5 6 0.95 4.05 
10k 56 101 5 0.97 4.63 

~13207 1400 lk 99 266 2 0.74 5.14 
2k 86 264 1 0.60 5.25 
5k 68 262 I 0.60 5.28 
IOk 53 262 1 0.53 5.27 

~35932 3526 32 26 254 3 0.90 13.03 
64 18 246 2 0.76 13.38 
128 5 169 I 0.93 18.67 

~38417 3328 l00k 46 360 1 0.94 9.12 
150k 46 283 I 0.95 11.59 
200k 39 296 0 0.94 11.21 
250k 44 217 0 0.97 15.27 

As in the case of merging, the reduction factor increases 
with the circuit size, and for all examples the concatenation 
process provided a considerably higher reduction factor that 
simply merging the cubes. Also it can be seen from column 
7 of Table I11 that the encoding efficiency is greater than 0.90 
in most cases which means that in the average we have to 
store less than 1.1 bits per specified bit of the test set. Cube 
concatenation can be used only if the MP-LFSR does not share 
flip-flops with the scan. 

In all cases reported in Table I1 and I11 the MP-LFSR’s 
had 16 polynomials with s,, stages. We were always able 
to find an encoding for every test cube for the a priori 
selected polynomials. Figs. 9(a) and (b) show very clearly the 
effect concatenation has on the distribution of the numbers of 
specified bits in the test set. While these numbers are almost 
uniformly distributed between the minimal and maximal num- 
ber of specified bits before concatenation the whole spectrum 
shifts to the extreme right after concatenation. This is achieved 
by combining test cubes having a large number of specified 
bits with those cubes with a small number of specified bits. 
The average number of specified bits is much closer to the 
maximum number, and therefore a higher encoding efficiency 
can be achieved. 

As already pointed out full fault coverage is achieved using 
the MP-LFSR as mixed-mode vector pattern generator. The 
partitioning of the test into random and stored pattern test 
affects both, test application time and test data storage and we 
have to trade-off one against the other. A comparison between 
test application time and test data storage for the circuits ~5378, 
~9234, and ~13207 after concatenation is shown in Fig. 10. 

This comparison is very useful in deciding at which point 
the random test should stop and the deterministic test phase 
should start. Considering for example the circuit s9234 it can 
be seen that a random test beyond 30k random pattems has 
no significant influence on the amount of test data that has to 
be stored for the deterministic test. 

The MP-LFSR consists of a q-bit counter (q is usually 
from 2 to 4), s,,,-stage shift register, programmable feedback 

Ill. 
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number of specified blts 

(a) 
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I 1  l i t  II 
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number of specified bits 
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Fig. 9. 
random pattems) (a) after merging, (b) after concatenation. 

Distribution of the numbers of specified bits (circuit s9234, after lk  

I 

0 10 20 30 40 50 60 70 80 
random pattern length (in k) 

Tradeoff between random pattem length and test data storage. Fig. 10. 

polynomial, and control logic. The number of flip-flops in this 
scheme depends on the maximum number of specified bits in 
a test cube that the scheme is designed to encode. The other 
logic is constant and independent of the size of the circuit. 
As an example let us consider the area overhead in circuit 
~38417 with scan implemented using edge triggered D-type 
flip-flops. If the MP-LFSR does not share the flip-flops with 
the scan chain, the area overhead of a 212-stage MP-LFSR 
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and 32-stage compactor for ~38417 is approximately 5%. If 
the scan register flip-flops are shared with the MP-LFSR than, 
assuming 32-stage generator which is not shared, the overhead 
is 1.5%. In this number only less than 0.25% of the total 
area is contributed by feedback polynomial reconfiguration 
logic. In other words for circuit ~38417 with scan, 32-stage 
generator and 32-stage compactor it takes additional 0.25% 
area to implement this new MP-LFSR BIT scheme. In all 
analyzed cases we were able to implement this scheme with 
less than 100 additional gates. Since the complexity of this 
hardware does not depend on the size of the circuit, for circuits 
larger than lOOk gates the additional area overhead of this 
scheme is less than 0.1%. 

VIII. CONCLUSIONS 
High quality requirements demand that microelectronics 

circuits are thoroughly and completely tested. However, due 
to area or performance constraints it is not always possible 
to design large digital systems to be completely testable by 
random patterns. Those circuits can still be completely tested 
by a combination of random and deterministic patterns. Such 
solution offers small test data volume and complete fault 
coverage. 

In this paper we presented a new and very efficient scheme 
for the compression and decompression of input test data 
which is based on reseeding of MP-LFSR’s. The test hardware 
is simple as it involves less than a hundred additional gates 
to implement the scheme in a circuit that already has scan 
and BIST logic. The scheme is compatible with scan, parallel 
scan, partial scan and boundary scan design. This whole 
approach relies on a very mature domain of automatic test 
pattern generation to obtain the test cubes for difficult to test 
faults. The scheme is applicable to any fault model, including 
delay faults, as long as the test cubes can be generated. 
The mixture of random and encoded deterministic patterns 
guarantees a complete fault coverage. It is also very flexible 
since the decompression hardware is programmable with the 
seed information which can be modified even after the circuit 
design has been completed. 

The compressed test data can be stored in an inexpensive 
system memory, moved easily through slow serial channels, 
like boundary scan, to the chip, and then decompressed with 
a very simple hardware. The benefits arising from the reduced 
bandwidth requirements for the compressed data can also be 
exploited by external testers with the “scan option.” Currently 
the test data for scan designs is very often overspecified, i.e., 
test cubes are represented as test vectors with all positions 
specified. The scan memory is very often one of the most 
heavily used and limiting resources in traditional testers. The 
overspecification of test data also increases the time required 
to load the data on chip and effectively increasing the test 
application time. 

This compression scheme creates also new challenges for 
automatic test pattern generation. Here the objective of test 
pattern generation is focused on the minimization of the total 
number of specified bits in test cubes for difficult to test faults, 

rather than the number of test vectors as it is done in generation 
of compact tests [22]. 
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