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ABSTRACT 

Built-in self-test test registers must segment a circuit such 
that there exists a feasible test schedule. If a register 
transfer description is used for selecting the positions of 
test registers, the space for optimizations is small. In this 
paper, 1-bit test cells are inserted at gate level, and an 
initial test schedule is constructed. Based on the informa- 
tion of this schedule, test cells that can be controlled in the 
same way are assembled to test registers. Finally, a test 
schedule at RT level is constructed and a minimal set of 
test control signals is determined. The presented approach 
can reduce both BIST hardware overhead and test 
application time. It is applicable to control units and 
circuits produced by control oriented synthesis where an 
RT description is not available. Considerable gains can 
also be obtained if existing RT structures are reconfigured 
for self-testing in the described way. 
KEYWORDS: Built-in self-test, register configuration, 

test registers, test scheduling 

1. INTRODUCTION 
1.1 Test registers for BIST 

Built-in self-test is one of the most important techniques 
to test large and complex circuits. Test registers are added 
at the primary inputs and outputs of the circuit, and some 
additional test registers are inserted into the circuit. These 
multi-mode test registers generate patterns or compact test 
responses during test application (e.g. [ 13, 17, 261). 

In the test mode, the circuit is segmented into a set of 
subcircuits that are completely bounded by test registers 
(see figure 1). For testing a portion of the circuit, at least 
one test register must collect test responses. Thus the 
smallest region that can be tested independently (test unit) 
consists of one test register that can be configured as a 
multiple input signature register (MISR), the block of 
logic connected to the inputs of this register, and a set of 
test registers to generate test patterns for the inputs of the 
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block (cf. [8, 181). If the collected signature differs from 
the correct signature, the circuit is faulty. 

In this way, every test unit u(Ti) is uniquely determined by 
the test register Ti at its outputs. In figure 1, the test unit 
u(T4) includes test register T4 (response compaction), 
logic block 1, emcl the test registers T i  and T2 (pattern 
generation). The block contained in the test unit usually 
consists of combinational or pipeline structured logic. Test 
units may overlap. 

T7 

Figure 1: Example of test units at RT level (with test 
registers Ti,  ..., T7) 

In order to obtiii13 testable subcircuits, the test registers 
must be placed i3t appropriate positions. It has been shown 
independently b y  several authors that breaking all cycles in 
the circuit structure bounds the length of the required test 
sequerices to the sequential depth of the circuit [4, 6, 11, 
19,201. To keep the hardware overhead low the number of 
flip-flops that (are integrated into test registers in order to 
break all cyclles should be as small as possible. If the 
topology of the storage elements is represented by a so- 
called S-graph whose vertices correspond to flip-flops and 
whose edges indicate combinational paths between flip- 
flops, then this problem is equivalent to finding a 
"Minimum Feeidback Vertex Set" [9]. Some authors also 
address extensions of this basic approach, as for example 
targeting a pipeline structure, limiting the sequential depth 
of the circuit, or considering timing constraints [4, 6, 11, 
14, 19, 201. 
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At RT level, the register graph GR := (VR, ER) is the 
counterpart of the S-graph. The nodes VR represent the 
registers, and there is a directed edge between two nodes if 
there exists a path of combinational elements between the 
corresponding registers (see figure 2). The node set 
VR = VN U VT includes the registers VN without test- 
ability features and the test registers VT, which can 
generate test patterns and compact test responses. 

primary inputs 

R6 R5 I 

R8 R3 
primary outplts 

Figure 2: RT structure and corresponding register graph 
(CLB: combinational logic block, Re: register) 

The test register graph GT := (VT, ET) is an abstraction 
of the register graph and describes the dataflow between the 
test registers. For each path in GR that connects two nodes 
of VT only via nodes of VN there is a corresponding edge 
in ET. If for instance VT = {R3, R4, Rg} (figure 2), then 
the test register graph is as shown in figure 3 and each 
cycle of the register graph contains one test register. 

t T5 

4 T4 
T3 

Figure 3: Test register graph (all cycles broken) 

However, the circuit structure obtained from breaking all 
cycles is not a priori suited to BIST since during self- 
testing some registers may have to generate patterns and 
compact test responses concurrently (e.g. T4). This kind of 
parallel self-test, where the signatures are used as test 
patterns, is only feasible in some cases [16, 251, but in 
general the required properties of the test patterns cannot be 
guaranteed. In most cases the signatures are not 

exhaustive, (weighted) random or even deterministic, and 
an additional test register is required such that all cycles are 
broken at least twice. Hence for BIST the set VT must 
include RI,  ..., R5, and we obtain the test register graph 
of figure 4. The corresponding test units are shown in 
figure 5. 

T5? 

T2 

Figure 4: Test register graph for BIST 

test unit u(T2) T4 T5 test 

tes T I  T I  

T4 

T2 

R0 

test unit u(T3) 
Figure 5: Test units for BIST 

1.2 Test schedule 

For test application, the order of testing all the test units 
must be determined. Generally not all test units can be 
tested simultaneously as they share some test resources 
that can be used only exclusively. These restrictions are 
described in the test incompatibility graph GI := (VI, EI) 
[8]. The nodes VI of this graph represent the test units, the 
edges connect pairs of test units that cannot be tested 
simultaneously (incompatible test units). 

The test incompatibility graph depends on the test strategy 
applied to the circuit under test. For example, pseudo- 
random testing requires that the output patterns of a test 
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regiister that performs signature analysis are not used as 
test patterns. Consequently, there is an edge ((U(Ti), U(Tj)) 
E E 1  if and only if the test register Ti is an input register 
(pattern generator) of u(Tj) or the test register Tj is an 
input register of U(Ti). 

The. test schedule can be structured in the following way. 
A test session Si is a set of test units that are processed 
simultaneously. A test schedule S := (sr, 0) is described 
by a sequence of test sessions s := (so, S I ,  ..., sd-l), 
arepetition number r, and a subset 0 c VT of test 
registers whose contents (signatures) are evaluated at test 
end. The set 0 must include all the test registers at the 
primary outputs since the signatures in these test registers 
cannot influence any other signatures. sr is a short hand 
notation for the sequence where s is concatenated r times, 
sl := s, s2 = ss, etc. 

In order to get a short test application time, a test schedule 
S = ((so, s i ,  ..., sd-l), 0) has to be determined where d is 
mindmum. The set of test units must be partitioned into 
aminimum number of test sessions. This problem is 
equivalent to coloring the nodes of the test incompatibility 
graph with a minimum number of colors such that no edge 
connects two nodes of the same color [ 5 , 8 ,  181. The nodes 
witlh the same color represent a set of compatible test 
units. If for each color one test session is formed, the 
nuniber of test sessions is minimum. 

1.3 Configuring flip-flops to test registers 

A gate level circuit corresponds to a variety of different test 
register graphs. The test register graph is uniquely 
detmnined by the way the flip-flops are partitioned and 
assembled to test registers. Up to now, configuring flip- 
flops to test registers has not been intensively studied in 
literature. A top down design style has been assumed 
where the register graph is available as an intermediate 
structure. Then some of the registers have been 
transformed to test registers [l, 18, 211. If there is a self- 
loolp in the register graph, it is not possible to break all 
cycles twice and an additional test register must be included 
that is transparent in normal mode. These additional test 
registers may cause considerable hardware overhead. 

As new design styles and synthesis procedures are applied, 
the top-down approach no longer leads to optimal results 
or is not even possible: 

Control units: Control units form an increasing part of 
the circuits. Here the S-graph is strongly meshed, and an 
intermediate register transfer structure is not available. 
Exzunples are many of the ISCAS'89 benchmark circuits 
P I .  

Control oriented synthesis: Some high level synthesis 
systems do not divide the system into data path amd control 
unit (for an overview see [3]). As a conseqiience, the 
system contains both registers and single flip-flops that 
still need configuration to test registers. 

General register transfer structures: The register configura- 
tion of the system mode is not always optimal for testing. 
As an example, figure 6 shows a carry save adder (CSA) 
and its register graph. Such a circuit is often used for 
implementing sequential multiplication [lo]. 

- b'l, ..., b'"-i ,  0 

13 C I 
c'o, ..., c',., 
--I 

Figure 6: CSA data path and its register graph 

The register graph contains two self-loops, and two addi- 
tional transparent test registers B' and C' of length n are 
required for making ,it self-testable. Figure 7 shows the test 
register graph and the corresponding test incompatibility 
graph for random testing. The test schedule needs two test 
sessions,. 

@ test session I 
0 test session 2 

Figure 7': Test register graph including transparent test 
registers B' and C' (left), colored test incom- 
patibility graph (right) 

But looking at this circuit in more detail it is found that 
the transparent test register B' is superfluous. Flip-flop bi 
just feeds flip-flops bi-1 and Ci, and flip-flop Ci feeds bi-1 
and Ci; so the §-graph contains self-loops for thc: flip-flops 
Ci, but not for the flip-flops bi. Hence it is more appro- n priate to split register B into two registers of length 5 
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during testing, namely Bo := (bo, b2, ..., bn-2) and 
B1 := (bl ,  b3, ..., bn-1). The resulting register graph 
contains only one self-loop, and only one additional test 
register C' is required. The test incompatibility graph needs 
four colors (figure 8). 

A @ test session I 
0 test session 2 

@ test session 3 
@ test session 4 

W') 

W )  

Figure 8: Test register graph after inserting test register C' 
and splitting register B (left), corresponding test 
incompatibility graph (right) 

Up to now the hardware savings are paid by a longer test 
time. But if test register C is also split into CO := 
(CO, c2, ..., cn-2) and C1 := (cl, c3, ..., cn-l), and the 
same is done with the transparent test register C', then two 
test sessions are sufficient (see figure 9). 

A . .  

test session I 0 test session 2 

Figure 9: Test register graph after register reconfiguration, 
and corresponding test incompatibility graph 

In this example, the hardware savings are obtained by cycle 
breaking at gate level and using this information for test 
register configuration. Also the test time is reduced by test 
scheduling at gate level before test register configuration. 

1 .4  Objectives of optimal test register 
configuration 

Test register configuration is subject to a variety of 
objectives. First of all, the number of additional trans- 
parent test registers should be minimized. The other 
objectives are strongly related to BIST scheduling 
techniques and aim at minimizing the test time and 
reducing the hardware overhead. An optimal test register 

configuration should support test scheduling in the 
following ways: 

Minimizing the number of test sessions: Generally, a 
smaller number of test sessions reduces the overall test 
time. In addition, less area is required by the BIST 
control unit (e.g. [ 121). 

Minimizing the number of different signals for con- 
trolling the test registers: Multi-mode test registers 
require at least two control signals: A signal TEST, 
which distinguishes between normal mode and test 
mode, and a signal c, which distinguishes between 
pattern generation and signature analysis in the test 
mode. All test registers may share the same TEST 
signal, but in general several signals c are required. The 
test control unit must generate these control signals for 
all the test registers. If the total number of different 
control signals is smaller, the test control unit can be 
implemented with smaller hardware cost. The area 
required for routing the control signals is reduced, too 
(e.g. ~151). 
Reducing the number of signatures to be evaluated a fer  
testing: The test registers are initialized only once at 
the beginning of the test. A test register that compacts 
test responses can get a faulty signature if the processed 
test unit contains a detectable fault, or if at least one of 
the involved pattern generating test registers has got a 
faulty signature some time before, and thus produces a 
pattern sequence that differs from the fault-free case. In 
this way the signatures can influence one another, and 
the effects of a fault, namely faulty signatures, can 
propagate through the circuit [23]. This can be utilized 
to reduce the amount of self-test hardware, as for many 
circuits scanning and evaluation of signatures can be 
restricted to a subset of the test registers provided that 
the test schedule is constructed appropriately. Moreover, 
it is sufficient to scan the signatures only at the end of 
the test since any difference between the actual contents 
of a test register and the contents corresponding to the 
fault-free case will remain unchanged in the pattern 
generation mode. 

The rest of the paper is organized as follows: In section 2,  
the circuit is made self-testable by placing test cells in the 
S-graph, and a test schedule is constructed at gate level. 
The information of this schedule is then exploited to 
determine maximal sets of test cells that can be controlled 
in the same way, and test registers are assembled from 
these sets (section 3). Another result of this step is a 
minimal set of control signals. In section 4, the schedule 
obtained at gate level is translated to a preliminary 
schedule at RT level, which is optimized such that the 
number of signatures to be evaluated at test end is 
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minimal. In section 5 ,  all things are put together and the 
comlplete procedure is described, section 6 gives experi- 
mental results. 

2. TEST SCHEDULING AT GATE LEVEL 
At the gate level, the counterparts of the register graph GR 
and test register graph are the S-graph G R ~  and the test 
cell or 1-bit test register graph G T ~ .  In order to have at 
least two test registers in each cycle of the register graph 
GR, it is necessary to have at least two test register cells 
in each cycle of the underlying S-graph G R ~ .  Selecting the 
nodes of G R ~  where test cells have to be inserted is 
similar to the problem of selecting the flip-flops of a 
partial scan path such that all cycles of the S-graph are 
broken twice. Therefore a sligthly modified version of the 
partial scan algorithms proposed in [l 1, 191 can be used. 
First an additional node is inserted into each self-loop of 
G R ~ ,  then all the elementary cycles of G R ~  are determined. 
A subset of nodes is chosen that contains at least two 
nodes of each cycle and is as small as possible. The nodes 
of this subset become test cells. In addition, test cells are 
inserted at all the primary inputs and outputs. 

Figure 10 shows a simple example, which will be used 
throughout the paper to explain the proposed approach. 
Since the S-graph contains two self-loops, two storage 
elements that are transparent in the normal mode, '10 and 
rl1, have to be inserted. The storage elements '3, r4, 1-6, 
r10, (and rl1 are selected to become test register cells (e.g. 
I-bit elements of a BILBO or a cellular automaton). Then 
each cycle of the S-graph contains two test cells. Further 
test cells are added at the primary inputs (rl, 1-2) and 
outputs (rg, rg). 

1 
Q 

(r lO:  

r8 u(t3) u(t4) 

u(tl?jTi&--pl) 
u(t8) u(t9) 

Figwe 10: Example: S-graph G R ~  (top left), 
test register graph -1 (top right), 
test incompatibility graph G I ~  assuming 
a pseudo-random test strategy (bottom) 

The notion of test units can also be transferred to the gate 
level. Every "I-bit test unit" is defined by the test cell at 
its output. Moreover, similar to the test incompatibility 

graph GI at RT level, a test incompatibility graph G I ~  at 
gate level can be established, which represents the 1-bit 
test units and the pairs of 1-bit test units that must not be 
tested simultaneously 

Using these concepts, a test schedule based on 1-bit test 
units is constructed by graph coloring. For the example, 
one gets two test sessions, s(i) = {u(t3), u(t4)} and 
s':) = iu(t6), u(tg), U(19>, u(tlO), u(tll>}. 

During a test session, a test cell operates in the pattern 
generation mode or in the response compaction mode, or it 
is not used for testing. Thus, for a given sequence of test 
sessions, the operation of a test cell t has to be controlled 
according to a specific mode vector 
mt := (mt(O>, mt(l>, ..., mt(d-I)) where 

0 if test cell t generates patterns i 2 else (test cell t not used in session j)  

in session j 

in  session j 
mta) := 1 if test cell t compacts test responses 

for j = 0, 1, ..., d-1 

The mode vector of a test cell at a primary input contains 
at least one component of value 0 and possibly some 
components of value 2. The mode vector of a test cell at a 
primary output consists of d-1 components of value 2 and 
one component of value 1 since the 1-bit test unit 
corresponding to this test cell is tested in exactly one test 
session. ]Finally, the mode vector of every other test cell 
contains at least one component of value 0, exactly one 
component of value 1 ,  and possibly some components of 
value 2. 

The mode vectors of the example are mtl = mtz = (0, 2), 
mt3 = mt4 = (1, 01, mt6 = (0, 11, mts = mt9 = (2, l), 
mtlo = nitll = (0, 1) 

3. SYNTHESIS 01F TEST REGISTERS 
In order lo simplify test control, the operation of as many 
test cells as possible should be controlled by the same 
signals c that distinguish between pattern generation and 
signature analysis (see section 1.4). Test cells that are 
controlled by the same signal c can be included in the 
same test register. 

The test cells at the primary inputs never have to compact 
test responses. Thus they can always operate i n  pattern 
generation mode, corresponding to the constant control 
signal c = (0, 0, ..., 0). Similarly, all the test cells at the 
primary outputs can be controlled by the constant signal c 
= (1, 1, .I., 1). These cells are assembled to separate test 
registers. The constant control signal makes it possible to 
reduce the hardware costs of these test registers. 
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In the following, only the remaining test cells are consid- 
ered. Two test cells t, and tb can be controlled by the same 
signal if their mode vectors mta := (mt,(O), ..., mt,(d-l)) 
and mtb := (mtb(0), ..., mtb(d-l)) satisfy the condition 

V jE {0, 1, ..., d-1) [mt,(i) + mt&) # 11 
i.e. there is no test session where one of the test cells 
must operate in pattern generation mode and the other in 
response compaction mode. Then the mode vectors mta 
and mtb are said to be compatible. 

A minimal number of different control signals is required 
if the mode vectors of the test cells are partitioned into 
maximal subsets of mutually compatible mode vectors and 
for each subset one control signal c is determined. Hence a 
graph GM is constructed whose nodes represent the mode 
vectors and whose edges describe pairs of incompatible 
mode vectors. A minimal coloring of GM gives the desired 
partition {PO, p1, ..., pk-l} of the mode vectors, where 
all mode vectors of a subset pi are mutually compatible. 
Since each mode vector has exactly one component of 
value 1 and all mode vectors having the value 1 in the 
same position are compatible, k I d always holds. 

Let pi = (mtl, ..., mt,} be one of these subsets. The 
values of the control signal ,(pi) during the d sessions are 
computed by c(pi) := mtl @ mtz @ ... @ mt, where 
the operator @ is associative and defined by 
(ao, a i ,  ..., ad-1) @ (bo, bi ,  ..., bd-i) = (CO, Ci, ..., cd-1) 

aj if a j  = bj 
'J := { (aj + bj) mod 2 else 
for j =0, 1, ..., d-1. 

The partition { P O ,  pi ,  ..., pk-11 of the mode vectors 
induces a partition {To, TI, ..., Tk-1) of the test cells 
where every test cell te Ti has a mode vector mtE Pi. Now 
from each subset Ti we form one or more test registers that 
are controlled by ,(pi). 

The synthesized test registers should achieve low aliasing 
probabilities when they are used for test response 
compaction. Thus the size of the test registers must be 
sufficiently large, e.g. at least 16 or 20 bit. If a subset Ti 
is smaller, sometimes the coloring of the graph GM and 
thus the partition (PO, p i ,  ..., pk-1) can be modified 
such that the number of cells in Ti is increased, or 
additional flip-flops must be included for test purposes. On 
the other side, if a subset Ti is very large, several test 
registers can be built. Considering the hardware costs of 
configuring test cells, it is usually advantageous to group 
all the cells of Ti that correspond to the same normal 
register into the same test register. 

For the example, the maximal sets of compatible mode 
vectors are PO = {mt3, PI = {mts9 mtlo, mtll}, 
and the control signals are c(pO) = (1, 0), c(pl) = (0, 1). 
We get the test registers T2 = TO = {t3, 4}, T3 = TI  = 
{t6, tio, t i l} ,  Ti  = (t i ,  t2} at the primary inputs, and 
T4 = (t8, t9) at the primary outputs. Figure 11 shows 
how the test control unit and the test registers are 
connected. 

Figure 11: 

data flow through combinational 
logic and registers 
control line 
test register containing test cells ti, ..., tj 

tT1 
T3 4:: test register graph 

Synthesized test registers and test control unit 
for the example of figure 10 

4. TEST SCHEDULING AT RT LEVEL 
After test registers have been synthesized, the test sessions 
s8), s(;), ..., si!! constructed using 1-bit test units are 
translated to test sessions so, s i ,  ..., Sd-1 that are based 
on the test units at RT level. For each 1-bit test unit u(ti) 
tested in session s(!), the test unit u(Th) with ti€ Th has to 
be included in the session Sj. A test unit at RT level may 
be included in more than one test session. This is a 
consequence of exploiting don't cares when the number of 
control signals is minimized. The test sessions so, si ,  ..., 
sd-1 and the control signals c(po), c(pl), ..., c(kd-') 
together with the test lengths of the test sessions and the 
set of signatures to be evaluated give a behavioral 
specification of the test control unit. For the example, we 
get the test sessions so = (~(Tz)} ,  si = {u(T3), u(T4)}. 
A complete schedule is 
(((u(T2)}, (u(T31, u(T4)1), v-2, T39 T41). 
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Up to this point, we aimed at a minimal number of test 
sessions. In the following, the BIST hardware overhead is 
reduced by minimizing the number of signatures that have 
to be scanned and evaluated. The mutual influence of 
signatures is utilized in order to drive the test response 
information to the test registers at the primary outputs, 
and these can be accessed very easily. 

Of course the signatures collected in the test registers at 
the primary outputs must always be evaluated since they 
cannot influence any other signatures. Only if some test 
registers at the primary outputs have a relatively high 
aliasing probability, other test registers should be added to 
the minimal set of test registers, Omin, whose contents 
have to be evaluated at test end. The test session sequence 
(so, s i ,  ..., sd-1)' must be composed such that with 
repetition number r as small as possible the faults of all 
test units can influence the signatures in the test registers 

Each fault located in a nonredundant part of a test unit 
u(Til) can cause a faulty signature in the corresponding 
signature register Til. Propagating this faulty signature 
along a path (Til, Ti2, ..., Ti,) of the test register graph 
GT requires the test units u(Til), ~(Ti2), ..., u(Ti,) to be 
processed in the same order, and the test session sequence 
must look like ( ..., { u(Til), ... }, ..., { U(Ti2), ...}, ..., ..., 
{u(Ti,), ...), ... ). Thus each required propagation path 
imposes a condition on the test session sequence. For each 
test register that is used as a signature analyzer, one path 
to a test register of Omin needs to be considered. If there 
are multiple paths from a test register to test registers of 
Omin, a shortest path is selected. 

The resulting conditions are summarized by a directed tree 
(precedence tree) where the nodes represent the test units 
and an edge (u(Ti), U(Tj)) means that the test unit u(Ti) 
must be processed before the test unit U(Tj). A dummy 
node "end' is added to indicate the end of the test, and edges 
are inserted from all the nodes u(Th), Th€Omin, to the 
node "end". Figure 12 shows the test register graph, the 
precedence tree, and the test incompatibility graph for the 
example of figure 10. 

of Omin. 

T4 u ( T 4 4  1 u(T4) 

Figure 12: 
end 1 

Example: Test register graph GT (left), 
precedence tree P (center), 
and test incompatibility graph GI (right) 

The procedure CONSTRUCT-SEQ implements this 
scheduling approach (for a detailed description cf. [22]). As 
inputs it takes the precedence tree P, the test 
incompatibility graph GI, and the period d of the test 
session sequence to construct. The results are the test 
session sequence s of length d ' l d  and the number r of 
repetitions necessary to propagate the effects of all faults 
to the test registers of Omin. For the example circuit 
described in figure 10 and figure 11, the resulting test 
schedules are (([u(T2)}, {u(T3), u ( T ~ ) } ) ~ ,  {Tq}) for d=2, 
and (({u(T3)), {~(Tz)},  Iu(T4)}), V41) ford=3. If the 
test lengths of the test units are not extremely short and 
the test registers are sufficiently large (e.g. 20 bits or 
more), the probability of aliasing is very small and can be 
neglected even if faulty signatures are propagated through 
several test units [23]. 

In order to control the test registers according to the sched- 
uling of CONSTRUCT-SEQ, a new set of control signals 
is required. The mode vectors of the test registers, maximal 
sets of com atible mode vectors and finally the control 

same way as at gate level (see sections 2 and 3). 
signals c(po s , ..., c(pd*-l) can be determined in the 

5. THE COMPLETE APPROACH 
In this section, the ideas developed above are put together, 
and the complete approach is described. 

Input: 0 S-graph, = (VR1,  ER^) 
minimum size of test registers, nmin 
average size of test registers, navg 

0 test schedule, S 
Output: 0 Set of test registers, VT 

for all self-loops of GR 1 : 
insert an additional (transparent) storage cell and 
modify G R ~  accordingly; 

/* result: Gdl = (Vd,, Edl) */ 

determine a minimal subset of nodes V T ~  c V ~ 1  
that contains all primary inputs and outputs and at 
least 2 nodes of each cycle of Gd ; 

/* test register cells */ 

construct the 1-bit test register graph 
GT1 = (vT1, ET1); 
build the test incompatibility graph G I ~  based on 

and the chosen test strategy; 

GRAPHCOLOR (in: G I ~ ,  out: { ~$1, s(:), ..., si!] 1); 
/* test sessions based on "1-bit test units" */ 
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(6) for each test register cell t: 
determine the mode vector mt according to the 
test session sequence ( s(A), s(i), ..., sf', 1; 

(7) 

(8) 

build the mode incompatibility graph GM; 

GRAPHCOLOR (in: GM, out: {PO, pi,  ..., pk-i}); 
/* maximal sets of compatible mode vectors */ 

(9) for each set pi: 
compute the control signal c(Fi); 

/* control of test register cells */ 

(10) partition the set of test register cells into k subsets 
T O ,  21, ..., Tk-1 such that the mode vectors of the 
test register cells of subset Ti are the mode vectors of 
pi, i = 0, ..., k-1; 

(I 1) for each set Ti: 
if lTil < 2.nmin 

form one test register including all the cells of 
Ti ;  

else 

form LF] or pi test registers that 
avg avg 

each contain about navg cells of Ti; 

/* result: set of test registers VT */ 

circuit 

(12a) translate the test sessions s({), ..., si!! to test 

/* test schedule 
with minimal number of test sessions */ 

sessions so, S I ,  ..., sd-1 at RT level; 

S := ((SO, S I ,  ... 7 Sd-119 T); 

# test 
registers 
(optimal) minimal average maximal 

width of test registers (bit) 

* I  I 

or alternatively 

(12b) build the test register graph GT, the precedence tree 
P, and the test incompatibility graph GI; 

CONSTRUCT-SEQ (in: P, GI, d; out: s, d', r); 

s := ((SO, S I ,  ...Y sd-l)', Omin); 
/* test schedule where only the signatures 

of O,in c T have to be evaluated */ 

compute new control signals c(Po), 
c(Pd'-l) .  

..., 
/* control of test registers */ 

The graph coloring problems that have to be solved in step 
(5) and step (8) are NP-complete problems [9]. But many 
efficient heuristics are known that give good (suboptimal) 
solutions. We applied the algorithm of [7, pp. 70-711. 
This algorithm first determines an initial coloring using a 
greedy strategy and then tries to improve this solution by 
recoloring some nodes. All possible solutions are 
implicitly enumerated. Solutions with 1, 2, or 3 colors are 
guaranteed to be a minimum coloring. 

6. EXPEFUMENTAL RESULTS 
The described procedures have been applied to the large 
circuits of the ISCAS'89 benchmark set [2]. For BIST, 
test cells were added at the primary inputs and outputs, and 
additional test cells were inserted such that each cycle of 
the circuit structure contained at least two of them. The 
test incompatibility graph for the I-bit test units, G I ~ ,  
was constructed assuming pseudo-random testing. Then the 
nodes of this graph were colored using a minimal number 
of colors. In those cases where exhaustive search for a 
minimum coloring took too much time, we stopped the 
recoloring process after 10000 trials to improve the 
solution and used the best solution found so far. 

The result of these first steps is a minimal number of test 
sessions that are based on 1-bit test units (see table 1). The 
number of different mode vectors and the minimized 
number of signals necessary to control the test cells are 
also given in table 1. (Here and in the following tables we 
count only the nonconstant mode vectors and control sig- 
nals that are required for switching the test cells between 
pattern generation mode and response compaction mode.) 

Table 1: Test scheduling at gate level and minimization 
of control signals 

Subsequently, test registers were assembled by combining 
test cells that are controlled by the same signal (table 2). 

22 I 28.8 I 

Is3593211 30 I 31 1 32.2 I 
~38417 11 72 I 31 I 32.2 I 36 
~38584 11 80 I 30 I 31.5 I 39 

Table 2: 

For comparison, we omitted test scheduling at gate level 
and combined randomly chosen test cells to test registers. 

Optimally synthesized test registers 
(* except test registers at the primary inputs) 

Paper 38.2 
946 



In this case only the compatibility conditions represented 
by lthe graph G I ~  were taken into account. Again, the test 
cells at the primary inputs and outputs were assembled to 
separate test registers. Table 3 shows the statistics of the 
randomly assembled test registers. They have about the 
same sizes as the test registers of table 2. 

# test 
registers 
(random) 

circuit 

- 

width of test registers (bit) 

minimal average maximal * I  I 
L s9234 12 

25 

I si35932 

22 28.8 32 
21 31.4 34 

P- si38584 
Tuble3: 1 

( 
re 
* 

32 I 22 I 30.8 I 33 
30 I 27 I 32.2 I 35 
72 I 24 I 32.2 I 36 
81 I 30 I 31.1 I 33 

:st registers formed randomly 
except test registers at the primary inputs) 

Based on the assembled test registers and the test units 
defined by them, test schedules can be constructed in two 
different ways. One objective is minimizing the number of 
test sessions, the other objective is a minimal number of 
signatures to be evaluated. 

In order to get a minimal number of test sessions the well- 
known method of [8] can be applied to the circuit at RT 
1eve:l. With our approach, however, we have already got a 
test schedule based on 1-bit test units (see table 1) that 
optimally matches with the synthesized test registers. This 
gate: level test schedule can be translated to a IRT level test 
schedule with the same minimal number of test sessions 
and control signals. In table 4, the results of the presented 
algorithm (column "optimal") are compared with test 
schedules that were obtained by applying the method of [8] 
to the circuits with randomly assembled test registers 
(column "random"). 

random optimal random optimal 
11 2 10 2 
21 3 20 3 

s:3 84 17 
s:3 85 84 67 6 66 

TubLe4: Test schedules with minimal number of test 
sessions 

Test registers that are synthesized optimally for BIST give 
significant advantages both in terms of silicon area and test 
length. Built-in self-test requires additional hardware for 

0 test registers 
0 test control unit 
0 distribution of test control signals 

The presented approach achieves benefits at all three of 
these points. It minimizes the number of test cells and 
needs at most as maany test cells as the approaches that 
insert BILBO-like test registers at RT level. It minimizes 
the number of test control signals and the number of test 
sessions. This simplifies test control since the clontrol unit 
must generate the specified values of the control signals 
for all test sessions. The small number of contirol signals 
also reduces the area overhead for distributing these signals 
to the test registers. 

Moreover, reducing the number of test sessioins usually 
leads to a shorter overall test length. Of course, the test 
length also depends on the type of the test registers and on 
the fault coverage value that has to be achieved. The 
method presented is compatible with different kinds of test 
registers; [24]. For example, using test registers that can 
produce weighted random patterns generally rt:sults in a 
shorter lest length for the considered test unit than using 
unbiased1 random patterns. 

As an alternative to test schedules with minimal number 
of test sessions, the procedure CONSTRUCT-SEQ gives 
schedules where all the test response information is driven 
to the primary outpul.s, and as a consequence only the few 
signatures at the primary outputs have to be evaluated (see 
table 5). 

circuit # executed test # control # evaluated 

I random I o t. rand. o t. rand. o t. 

l Z d l Z F F W 1  
Is35932 // 1 * 2 0  1 i z :  1 ;l 1 1 1: 1 1; I 

~38417 1 * 6 5  
~38584 1 * 67 * 7 66 6 9 9 

Table 5: Test schedules constructed by 
CONSTRtJCT-SEQ 

Compared to the schedules with minimal number of test 
sessions (cf. table 4, r =  1), the number of executed test 
sessions (r*d) is larger. But further hardware savings can 
be achieved since the number of signatures that have to be 
evaluated is cut down. As all the test registers used as 
signature analyzers h,ave at least 21 bits, the probability of 
aliasing can be neglected and fault coverage is (piractically) 
not affected by reducing the number of evaluated signa- 
tures. Moreover, we see that with the randomly assembled 
test registers the number of different test sessions (d) and 
the number of executed test sessions (r * d) grow by a factor 
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of 3 to 11. The required number of control signals is 5 to 
13 times larger. This again underlines the advantages of 
test registers that are optimally synthesized for BIST. 

7. CONCLUSIONS 

Usually test register insertion and test scheduling are 
considered separately. In this paper, both problems are 
tackled together in order to find a global optimum. A 
method has been presented that groups flip-flops of the 
original design to test registers. The number of additional 
test cells that are needed to break self-loops is minimized. 
The proposed test register configuration minimizes the 
number of different test sessions and the number of control 
signals required to control the test registers. The effects are 
reduced area of the test control unit, reduced area for 
routing the control lines, and shorter test application time. 
The final test scheduling process at RT level can cut down 
the number of signatures that have to be evaluated at test 
end. 
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