
CONFIGURING FLIP-FLOPS TO BIST REGISTERS

Albrecht P. Stroele
Institute of Computer Design and Fault Tolerance

University of Karlsruhe
D-76128 Karlsruhe, Germany

ABSTRACT

Built-in self-test test registers must segment a circuit such
that there exists a feasible test schedule. If a register
transfer description is used for selecting the positions of
test registers, the space for optimizations is small. In this
paper, 1-bit test cells are inserted at gate level, and an
initial test schedule is constructed. Based on the informa-
tion of this schedule, test cells that can be controlled in the
same way are assembled to test registers. Finally, a test
schedule at RT level is constructed and a minimal set of
test control signals is determined. The presented approach
can reduce both BIST hardware overhead and test
application time. It is applicable to control units and
circuits produced by control oriented synthesis where an
RT description is not available. Considerable gains can
also be obtained if existing RT structures are reconfigured
for self-testing in the described way.
KEYWORDS: Built-in self-test, register configuration,

test registers, test scheduling

1. INTRODUCTION
1.1 Test registers for BIST

Built-in self-test is one of the most important techniques
to test large and complex circuits. Test registers are added
at the primary inputs and outputs of the circuit, and some
additional test registers are inserted into the circuit. These
multi-mode test registers generate patterns or compact test
responses during test application (e.g. [13, 17, 261).

In the test mode, the circuit is segmented into a set of
subcircuits that are completely bounded by test registers
(see figure 1). For testing a portion of the circuit, at least
one test register must collect test responses. Thus the
smallest region that can be tested independently (test unit)
consists of one test register that can be configured as a
multiple input signature register (MISR), the block of
logic connected to the inputs of this register, and a set of
test registers to generate test patterns for the inputs of the

* This work was supported in part by ESPRIT-project 7107
ARCHIMEDES.

Hans;-Joachim Wunderlich *
lnstitiite of Computer Structures

University of Siegen, Holderlinstr. 3
D-:57068 Siegen, Germany

block (cf. [8, 181). If the collected signature differs from
the correct signature, the circuit is faulty.

In this way, every test unit u(Ti) is uniquely determined by
the test register Ti at its outputs. In figure 1, the test unit
u(T4) includes test register T4 (response compaction),
logic block 1, emcl the test registers T i and T2 (pattern
generation). The block contained in the test unit usually
consists of combinational or pipeline structured logic. Test
units may overlap.

T7

Figure 1: Example of test units at RT level (with test
registers Ti, ..., T7)

In order to obtiii13 testable subcircuits, the test registers
must be placed i3t appropriate positions. It has been shown
independently b y several authors that breaking all cycles in
the circuit structure bounds the length of the required test
sequerices to the sequential depth of the circuit [4, 6, 11,
19,201. To keep the hardware overhead low the number of
flip-flops that (are integrated into test registers in order to
break all cyclles should be as small as possible. If the
topology of the storage elements is represented by a so-
called S-graph whose vertices correspond to flip-flops and
whose edges indicate combinational paths between flip-
flops, then this problem is equivalent to finding a
"Minimum Feeidback Vertex Set" [9]. Some authors also
address extensions of this basic approach, as for example
targeting a pipeline structure, limiting the sequential depth
of the circuit, or considering timing constraints [4, 6, 11,
14, 19, 201.

INTERNATIONAL TEiST CONFERENCE 19!34
0-7803-21 02-2/94 $4.00 @ 1994 IEEE

Paper 38.2
939

At RT level, the register graph GR := (VR, ER) is the
counterpart of the S-graph. The nodes VR represent the
registers, and there is a directed edge between two nodes if
there exists a path of combinational elements between the
corresponding registers (see figure 2). The node set
VR = VN U VT includes the registers VN without test-
ability features and the test registers VT, which can
generate test patterns and compact test responses.

primary inputs

R6 R5 I

R8 R3
primary outplts

Figure 2: RT structure and corresponding register graph
(CLB: combinational logic block, Re: register)

The test register graph GT := (VT, ET) is an abstraction
of the register graph and describes the dataflow between the
test registers. For each path in GR that connects two nodes
of VT only via nodes of VN there is a corresponding edge
in ET. If for instance VT = {R3, R4, Rg} (figure 2), then
the test register graph is as shown in figure 3 and each
cycle of the register graph contains one test register.

t T5

4 T4
T3

Figure 3: Test register graph (all cycles broken)

However, the circuit structure obtained from breaking all
cycles is not a priori suited to BIST since during self-
testing some registers may have to generate patterns and
compact test responses concurrently (e.g. T4). This kind of
parallel self-test, where the signatures are used as test
patterns, is only feasible in some cases [16, 251, but in
general the required properties of the test patterns cannot be
guaranteed. In most cases the signatures are not

exhaustive, (weighted) random or even deterministic, and
an additional test register is required such that all cycles are
broken at least twice. Hence for BIST the set VT must
include RI, ..., R5, and we obtain the test register graph
of figure 4. The corresponding test units are shown in
figure 5.

T5?

T2

Figure 4: Test register graph for BIST

test unit u(T2) T4 T5 test

tes T I T I

T4

T2

R0

test unit u(T3)
Figure 5: Test units for BIST

1.2 Test schedule

For test application, the order of testing all the test units
must be determined. Generally not all test units can be
tested simultaneously as they share some test resources
that can be used only exclusively. These restrictions are
described in the test incompatibility graph GI := (VI, EI)
[8]. The nodes VI of this graph represent the test units, the
edges connect pairs of test units that cannot be tested
simultaneously (incompatible test units).

The test incompatibility graph depends on the test strategy
applied to the circuit under test. For example, pseudo-
random testing requires that the output patterns of a test

Paper 38.2
940

regiister that performs signature analysis are not used as
test patterns. Consequently, there is an edge ((U(Ti), U(Tj))
E E 1 if and only if the test register Ti is an input register
(pattern generator) of u(Tj) or the test register Tj is an
input register of U(Ti).

The. test schedule can be structured in the following way.
A test session Si is a set of test units that are processed
simultaneously. A test schedule S := (sr, 0) is described
by a sequence of test sessions s := (so, S I , ..., sd-l),
arepetition number r, and a subset 0 c VT of test
registers whose contents (signatures) are evaluated at test
end. The set 0 must include all the test registers at the
primary outputs since the signatures in these test registers
cannot influence any other signatures. sr is a short hand
notation for the sequence where s is concatenated r times,
sl := s, s2 = ss, etc.

In order to get a short test application time, a test schedule
S = ((so, s i , ..., sd-l), 0) has to be determined where d is
mindmum. The set of test units must be partitioned into
aminimum number of test sessions. This problem is
equivalent to coloring the nodes of the test incompatibility
graph with a minimum number of colors such that no edge
connects two nodes of the same color [5 , 8 , 181. The nodes
witlh the same color represent a set of compatible test
units. If for each color one test session is formed, the
nuniber of test sessions is minimum.

1.3 Configuring flip-flops to test registers

A gate level circuit corresponds to a variety of different test
register graphs. The test register graph is uniquely
detmnined by the way the flip-flops are partitioned and
assembled to test registers. Up to now, configuring flip-
flops to test registers has not been intensively studied in
literature. A top down design style has been assumed
where the register graph is available as an intermediate
structure. Then some of the registers have been
transformed to test registers [l, 18, 211. If there is a self-
loolp in the register graph, it is not possible to break all
cycles twice and an additional test register must be included
that is transparent in normal mode. These additional test
registers may cause considerable hardware overhead.

As new design styles and synthesis procedures are applied,
the top-down approach no longer leads to optimal results
or is not even possible:

Control units: Control units form an increasing part of
the circuits. Here the S-graph is strongly meshed, and an
intermediate register transfer structure is not available.
Exzunples are many of the ISCAS'89 benchmark circuits
P I .

Control oriented synthesis: Some high level synthesis
systems do not divide the system into data path amd control
unit (for an overview see [3]). As a conseqiience, the
system contains both registers and single flip-flops that
still need configuration to test registers.

General register transfer structures: The register configura-
tion of the system mode is not always optimal for testing.
As an example, figure 6 shows a carry save adder (CSA)
and its register graph. Such a circuit is often used for
implementing sequential multiplication [lo].

- b'l, ..., b'"-i , 0

13 C I
c'o, ..., c',.,
--I

Figure 6: CSA data path and its register graph

The register graph contains two self-loops, and two addi-
tional transparent test registers B' and C' of length n are
required for making ,it self-testable. Figure 7 shows the test
register graph and the corresponding test incompatibility
graph for random testing. The test schedule needs two test
sessions,.

@ test session I
0 test session 2

Figure 7': Test register graph including transparent test
registers B' and C' (left), colored test incom-
patibility graph (right)

But looking at this circuit in more detail it is found that
the transparent test register B' is superfluous. Flip-flop bi
just feeds flip-flops bi-1 and Ci, and flip-flop Ci feeds bi-1
and Ci; so the §-graph contains self-loops for thc: flip-flops
Ci, but not for the flip-flops bi. Hence it is more appro- n priate to split register B into two registers of length 5

Paper 38.2
94 1

during testing, namely Bo := (bo, b2, ..., bn-2) and
B1 := (bl , b3, ..., bn-1). The resulting register graph
contains only one self-loop, and only one additional test
register C' is required. The test incompatibility graph needs
four colors (figure 8).

A @ test session I
0 test session 2

@ test session 3
@ test session 4

W')

W)

Figure 8: Test register graph after inserting test register C'
and splitting register B (left), corresponding test
incompatibility graph (right)

Up to now the hardware savings are paid by a longer test
time. But if test register C is also split into CO :=
(CO, c2, ..., cn-2) and C1 := (cl, c3, ..., cn-l), and the
same is done with the transparent test register C', then two
test sessions are sufficient (see figure 9).

A . .

test session I 0 test session 2

Figure 9: Test register graph after register reconfiguration,
and corresponding test incompatibility graph

In this example, the hardware savings are obtained by cycle
breaking at gate level and using this information for test
register configuration. Also the test time is reduced by test
scheduling at gate level before test register configuration.

1 .4 Objectives of optimal test register
configuration

Test register configuration is subject to a variety of
objectives. First of all, the number of additional trans-
parent test registers should be minimized. The other
objectives are strongly related to BIST scheduling
techniques and aim at minimizing the test time and
reducing the hardware overhead. An optimal test register

configuration should support test scheduling in the
following ways:

Minimizing the number of test sessions: Generally, a
smaller number of test sessions reduces the overall test
time. In addition, less area is required by the BIST
control unit (e.g. [121).

Minimizing the number of different signals for con-
trolling the test registers: Multi-mode test registers
require at least two control signals: A signal TEST,
which distinguishes between normal mode and test
mode, and a signal c, which distinguishes between
pattern generation and signature analysis in the test
mode. All test registers may share the same TEST
signal, but in general several signals c are required. The
test control unit must generate these control signals for
all the test registers. If the total number of different
control signals is smaller, the test control unit can be
implemented with smaller hardware cost. The area
required for routing the control signals is reduced, too
(e.g. ~151).
Reducing the number of signatures to be evaluated a fer
testing: The test registers are initialized only once at
the beginning of the test. A test register that compacts
test responses can get a faulty signature if the processed
test unit contains a detectable fault, or if at least one of
the involved pattern generating test registers has got a
faulty signature some time before, and thus produces a
pattern sequence that differs from the fault-free case. In
this way the signatures can influence one another, and
the effects of a fault, namely faulty signatures, can
propagate through the circuit [23]. This can be utilized
to reduce the amount of self-test hardware, as for many
circuits scanning and evaluation of signatures can be
restricted to a subset of the test registers provided that
the test schedule is constructed appropriately. Moreover,
it is sufficient to scan the signatures only at the end of
the test since any difference between the actual contents
of a test register and the contents corresponding to the
fault-free case will remain unchanged in the pattern
generation mode.

The rest of the paper is organized as follows: In section 2,
the circuit is made self-testable by placing test cells in the
S-graph, and a test schedule is constructed at gate level.
The information of this schedule is then exploited to
determine maximal sets of test cells that can be controlled
in the same way, and test registers are assembled from
these sets (section 3). Another result of this step is a
minimal set of control signals. In section 4, the schedule
obtained at gate level is translated to a preliminary
schedule at RT level, which is optimized such that the
number of signatures to be evaluated at test end is

Paper 38.2
942

minimal. In section 5 , all things are put together and the
comlplete procedure is described, section 6 gives experi-
mental results.

2. TEST SCHEDULING AT GATE LEVEL
At the gate level, the counterparts of the register graph GR
and test register graph are the S-graph G R ~ and the test
cell or 1-bit test register graph G T ~ . In order to have at
least two test registers in each cycle of the register graph
GR, it is necessary to have at least two test register cells
in each cycle of the underlying S-graph G R ~ . Selecting the
nodes of G R ~ where test cells have to be inserted is
similar to the problem of selecting the flip-flops of a
partial scan path such that all cycles of the S-graph are
broken twice. Therefore a sligthly modified version of the
partial scan algorithms proposed in [l 1, 191 can be used.
First an additional node is inserted into each self-loop of
G R ~ , then all the elementary cycles of G R ~ are determined.
A subset of nodes is chosen that contains at least two
nodes of each cycle and is as small as possible. The nodes
of this subset become test cells. In addition, test cells are
inserted at all the primary inputs and outputs.

Figure 10 shows a simple example, which will be used
throughout the paper to explain the proposed approach.
Since the S-graph contains two self-loops, two storage
elements that are transparent in the normal mode, '10 and
rl1, have to be inserted. The storage elements '3, r4, 1-6,
r10, (and rl1 are selected to become test register cells (e.g.
I-bit elements of a BILBO or a cellular automaton). Then
each cycle of the S-graph contains two test cells. Further
test cells are added at the primary inputs (rl, 1-2) and
outputs (rg, rg).

1
Q

(r lO:

r8 u(t3) u(t4)

u(tl?jTi&--pl)
u(t8) u(t9)

Figwe 10: Example: S-graph G R ~ (top left),
test register graph -1 (top right),
test incompatibility graph G I ~ assuming
a pseudo-random test strategy (bottom)

The notion of test units can also be transferred to the gate
level. Every "I-bit test unit" is defined by the test cell at
its output. Moreover, similar to the test incompatibility

graph GI at RT level, a test incompatibility graph G I ~ at
gate level can be established, which represents the 1-bit
test units and the pairs of 1-bit test units that must not be
tested simultaneously

Using these concepts, a test schedule based on 1-bit test
units is constructed by graph coloring. For the example,
one gets two test sessions, s(i) = {u(t3), u(t4)} and
s':) = iu(t6), u(tg), U(19>, u(tlO), u(tll>}.

During a test session, a test cell operates in the pattern
generation mode or in the response compaction mode, or it
is not used for testing. Thus, for a given sequence of test
sessions, the operation of a test cell t has to be controlled
according to a specific mode vector
mt := (mt(O>, mt(l>, ..., mt(d-I)) where

0 if test cell t generates patterns i 2 else (test cell t not used in session j)

in session j

in session j
mta) := 1 if test cell t compacts test responses

for j = 0, 1, ..., d-1

The mode vector of a test cell at a primary input contains
at least one component of value 0 and possibly some
components of value 2. The mode vector of a test cell at a
primary output consists of d-1 components of value 2 and
one component of value 1 since the 1-bit test unit
corresponding to this test cell is tested in exactly one test
session.]Finally, the mode vector of every other test cell
contains at least one component of value 0, exactly one
component of value 1 , and possibly some components of
value 2.

The mode vectors of the example are mtl = mtz = (0, 2),
mt3 = mt4 = (1, 01, mt6 = (0, 11, mts = mt9 = (2, l),
mtlo = nitll = (0, 1)

3. SYNTHESIS 01F TEST REGISTERS
In order lo simplify test control, the operation of as many
test cells as possible should be controlled by the same
signals c that distinguish between pattern generation and
signature analysis (see section 1.4). Test cells that are
controlled by the same signal c can be included in the
same test register.

The test cells at the primary inputs never have to compact
test responses. Thus they can always operate i n pattern
generation mode, corresponding to the constant control
signal c = (0, 0, ..., 0). Similarly, all the test cells at the
primary outputs can be controlled by the constant signal c
= (1, 1, .I., 1). These cells are assembled to separate test
registers. The constant control signal makes it possible to
reduce the hardware costs of these test registers.

Paper 38.2
943

In the following, only the remaining test cells are consid-
ered. Two test cells t, and tb can be controlled by the same
signal if their mode vectors mta := (mt,(O), ..., mt,(d-l))
and mtb := (mtb(0), ..., mtb(d-l)) satisfy the condition

V jE {0, 1, ..., d-1) [mt,(i) + mt&) # 11
i.e. there is no test session where one of the test cells
must operate in pattern generation mode and the other in
response compaction mode. Then the mode vectors mta
and mtb are said to be compatible.

A minimal number of different control signals is required
if the mode vectors of the test cells are partitioned into
maximal subsets of mutually compatible mode vectors and
for each subset one control signal c is determined. Hence a
graph GM is constructed whose nodes represent the mode
vectors and whose edges describe pairs of incompatible
mode vectors. A minimal coloring of GM gives the desired
partition {PO, p1, ..., pk-l} of the mode vectors, where
all mode vectors of a subset pi are mutually compatible.
Since each mode vector has exactly one component of
value 1 and all mode vectors having the value 1 in the
same position are compatible, k I d always holds.

Let pi = (mtl, ..., mt,} be one of these subsets. The
values of the control signal ,(pi) during the d sessions are
computed by c(pi) := mtl @ mtz @ ... @ mt, where
the operator @ is associative and defined by
(ao, a i , ..., ad-1) @ (bo, bi , ..., bd-i) = (CO, Ci, ..., cd-1)

aj if a j = bj
'J := { (aj + bj) mod 2 else
for j =0, 1, ..., d-1.

The partition { P O , pi , ..., pk-11 of the mode vectors
induces a partition {To, TI, ..., Tk-1) of the test cells
where every test cell te Ti has a mode vector mtE Pi. Now
from each subset Ti we form one or more test registers that
are controlled by ,(pi).

The synthesized test registers should achieve low aliasing
probabilities when they are used for test response
compaction. Thus the size of the test registers must be
sufficiently large, e.g. at least 16 or 20 bit. If a subset Ti
is smaller, sometimes the coloring of the graph GM and
thus the partition (PO, p i , ..., pk-1) can be modified
such that the number of cells in Ti is increased, or
additional flip-flops must be included for test purposes. On
the other side, if a subset Ti is very large, several test
registers can be built. Considering the hardware costs of
configuring test cells, it is usually advantageous to group
all the cells of Ti that correspond to the same normal
register into the same test register.

For the example, the maximal sets of compatible mode
vectors are PO = {mt3, PI = {mts9 mtlo, mtll},
and the control signals are c(pO) = (1, 0), c(pl) = (0, 1).
We get the test registers T2 = TO = {t3, 4}, T3 = TI =
{t6, tio, t i l} , Ti = (t i , t2} at the primary inputs, and
T4 = (t8, t9) at the primary outputs. Figure 11 shows
how the test control unit and the test registers are
connected.

Figure 11:

data flow through combinational
logic and registers
control line
test register containing test cells ti, ..., tj

tT1
T3 4:: test register graph

Synthesized test registers and test control unit
for the example of figure 10

4. TEST SCHEDULING AT RT LEVEL
After test registers have been synthesized, the test sessions
s8), s(;), ..., si!! constructed using 1-bit test units are
translated to test sessions so, s i , ..., Sd-1 that are based
on the test units at RT level. For each 1-bit test unit u(ti)
tested in session s(!), the test unit u(Th) with ti€ Th has to
be included in the session Sj. A test unit at RT level may
be included in more than one test session. This is a
consequence of exploiting don't cares when the number of
control signals is minimized. The test sessions so, si , ...,
sd-1 and the control signals c(po), c(pl), ..., c(kd-')
together with the test lengths of the test sessions and the
set of signatures to be evaluated give a behavioral
specification of the test control unit. For the example, we
get the test sessions so = (~(Tz)} , si = {u(T3), u(T4)}.
A complete schedule is
(((u(T2)}, (u(T31, u(T4)1), v-2, T39 T41).

Paper 38.2
944

Up to this point, we aimed at a minimal number of test
sessions. In the following, the BIST hardware overhead is
reduced by minimizing the number of signatures that have
to be scanned and evaluated. The mutual influence of
signatures is utilized in order to drive the test response
information to the test registers at the primary outputs,
and these can be accessed very easily.

Of course the signatures collected in the test registers at
the primary outputs must always be evaluated since they
cannot influence any other signatures. Only if some test
registers at the primary outputs have a relatively high
aliasing probability, other test registers should be added to
the minimal set of test registers, Omin, whose contents
have to be evaluated at test end. The test session sequence
(so, s i , ..., sd-1)' must be composed such that with
repetition number r as small as possible the faults of all
test units can influence the signatures in the test registers

Each fault located in a nonredundant part of a test unit
u(Til) can cause a faulty signature in the corresponding
signature register Til. Propagating this faulty signature
along a path (Til, Ti2, ..., Ti,) of the test register graph
GT requires the test units u(Til), ~(Ti2), ..., u(Ti,) to be
processed in the same order, and the test session sequence
must look like (..., { u(Til), ... }, ..., { U(Ti2), ...}, ..., ...,
{u(Ti,), ...), ...). Thus each required propagation path
imposes a condition on the test session sequence. For each
test register that is used as a signature analyzer, one path
to a test register of Omin needs to be considered. If there
are multiple paths from a test register to test registers of
Omin, a shortest path is selected.

The resulting conditions are summarized by a directed tree
(precedence tree) where the nodes represent the test units
and an edge (u(Ti), U(Tj)) means that the test unit u(Ti)
must be processed before the test unit U(Tj). A dummy
node "end' is added to indicate the end of the test, and edges
are inserted from all the nodes u(Th), Th€Omin, to the
node "end". Figure 12 shows the test register graph, the
precedence tree, and the test incompatibility graph for the
example of figure 10.

of Omin.

T4 u (T 4 4 1 u(T4)

Figure 12:
end 1

Example: Test register graph GT (left),
precedence tree P (center),
and test incompatibility graph GI (right)

The procedure CONSTRUCT-SEQ implements this
scheduling approach (for a detailed description cf. [22]). As
inputs it takes the precedence tree P, the test
incompatibility graph GI, and the period d of the test
session sequence to construct. The results are the test
session sequence s of length d ' l d and the number r of
repetitions necessary to propagate the effects of all faults
to the test registers of Omin. For the example circuit
described in figure 10 and figure 11, the resulting test
schedules are (([u(T2)}, {u(T3), u (T ~) }) ~ , {Tq}) for d=2,
and (({u(T3)), {~(Tz)}, Iu(T4)}), V41) ford=3. If the
test lengths of the test units are not extremely short and
the test registers are sufficiently large (e.g. 20 bits or
more), the probability of aliasing is very small and can be
neglected even if faulty signatures are propagated through
several test units [23].

In order to control the test registers according to the sched-
uling of CONSTRUCT-SEQ, a new set of control signals
is required. The mode vectors of the test registers, maximal
sets of com atible mode vectors and finally the control

same way as at gate level (see sections 2 and 3).
signals c(po s , ..., c(pd*-l) can be determined in the

5. THE COMPLETE APPROACH
In this section, the ideas developed above are put together,
and the complete approach is described.

Input: 0 S-graph, = (VR1, ER^)
minimum size of test registers, nmin
average size of test registers, navg

0 test schedule, S
Output: 0 Set of test registers, VT

for all self-loops of GR 1 :
insert an additional (transparent) storage cell and
modify G R ~ accordingly;

/* result: Gdl = (Vd,, Edl) */

determine a minimal subset of nodes V T ~ c V ~ 1
that contains all primary inputs and outputs and at
least 2 nodes of each cycle of Gd ;

/* test register cells */

construct the 1-bit test register graph
GT1 = (vT1, ET1);
build the test incompatibility graph G I ~ based on

and the chosen test strategy;

GRAPHCOLOR (in: G I ~ , out: { ~$1, s(:), ..., si!] 1);
/* test sessions based on "1-bit test units" */

Paper 38.2
945

(6) for each test register cell t:
determine the mode vector mt according to the
test session sequence (s(A), s(i), ..., sf', 1;

(7)

(8)

build the mode incompatibility graph GM;

GRAPHCOLOR (in: GM, out: {PO, pi, ..., pk-i});
/* maximal sets of compatible mode vectors */

(9) for each set pi:
compute the control signal c(Fi);

/* control of test register cells */

(10) partition the set of test register cells into k subsets
T O , 21, ..., Tk-1 such that the mode vectors of the
test register cells of subset Ti are the mode vectors of
pi, i = 0, ..., k-1;

(I 1) for each set Ti:
if lTil < 2.nmin

form one test register including all the cells of
Ti ;

else

form LF] or pi test registers that
avg avg

each contain about navg cells of Ti;

/* result: set of test registers VT */

circuit

(12a) translate the test sessions s({), ..., si!! to test

/* test schedule
with minimal number of test sessions */

sessions so, S I , ..., sd-1 at RT level;

S := ((SO, S I , ... 7 Sd-119 T);

test
registers
(optimal) minimal average maximal

width of test registers (bit)

* I I

or alternatively

(12b) build the test register graph GT, the precedence tree
P, and the test incompatibility graph GI;

CONSTRUCT-SEQ (in: P, GI, d; out: s, d', r);

s := ((SO, S I , ...Y sd-l)', Omin);
/* test schedule where only the signatures

of O,in c T have to be evaluated */

compute new control signals c(Po),
c(Pd'-l) .

...,
/* control of test registers */

The graph coloring problems that have to be solved in step
(5) and step (8) are NP-complete problems [9]. But many
efficient heuristics are known that give good (suboptimal)
solutions. We applied the algorithm of [7, pp. 70-711.
This algorithm first determines an initial coloring using a
greedy strategy and then tries to improve this solution by
recoloring some nodes. All possible solutions are
implicitly enumerated. Solutions with 1, 2, or 3 colors are
guaranteed to be a minimum coloring.

6. EXPEFUMENTAL RESULTS
The described procedures have been applied to the large
circuits of the ISCAS'89 benchmark set [2]. For BIST,
test cells were added at the primary inputs and outputs, and
additional test cells were inserted such that each cycle of
the circuit structure contained at least two of them. The
test incompatibility graph for the I-bit test units, G I ~ ,
was constructed assuming pseudo-random testing. Then the
nodes of this graph were colored using a minimal number
of colors. In those cases where exhaustive search for a
minimum coloring took too much time, we stopped the
recoloring process after 10000 trials to improve the
solution and used the best solution found so far.

The result of these first steps is a minimal number of test
sessions that are based on 1-bit test units (see table 1). The
number of different mode vectors and the minimized
number of signals necessary to control the test cells are
also given in table 1. (Here and in the following tables we
count only the nonconstant mode vectors and control sig-
nals that are required for switching the test cells between
pattern generation mode and response compaction mode.)

Table 1: Test scheduling at gate level and minimization
of control signals

Subsequently, test registers were assembled by combining
test cells that are controlled by the same signal (table 2).

22 I 28.8 I

Is3593211 30 I 31 1 32.2 I
~38417 11 72 I 31 I 32.2 I 36
~38584 11 80 I 30 I 31.5 I 39

Table 2:

For comparison, we omitted test scheduling at gate level
and combined randomly chosen test cells to test registers.

Optimally synthesized test registers
(* except test registers at the primary inputs)

Paper 38.2
946

In this case only the compatibility conditions represented
by lthe graph G I ~ were taken into account. Again, the test
cells at the primary inputs and outputs were assembled to
separate test registers. Table 3 shows the statistics of the
randomly assembled test registers. They have about the
same sizes as the test registers of table 2.

test
registers
(random)

circuit

-

width of test registers (bit)

minimal average maximal * I I
L s9234 12

25

I si35932

22 28.8 32
21 31.4 34

P- si38584
Tuble3: 1

(
re
*

32 I 22 I 30.8 I 33
30 I 27 I 32.2 I 35
72 I 24 I 32.2 I 36
81 I 30 I 31.1 I 33

:st registers formed randomly
except test registers at the primary inputs)

Based on the assembled test registers and the test units
defined by them, test schedules can be constructed in two
different ways. One objective is minimizing the number of
test sessions, the other objective is a minimal number of
signatures to be evaluated.

In order to get a minimal number of test sessions the well-
known method of [8] can be applied to the circuit at RT
1eve:l. With our approach, however, we have already got a
test schedule based on 1-bit test units (see table 1) that
optimally matches with the synthesized test registers. This
gate: level test schedule can be translated to a IRT level test
schedule with the same minimal number of test sessions
and control signals. In table 4, the results of the presented
algorithm (column "optimal") are compared with test
schedules that were obtained by applying the method of [8]
to the circuits with randomly assembled test registers
(column "random").

random optimal random optimal
11 2 10 2
21 3 20 3

s:3 84 17
s:3 85 84 67 6 66

TubLe4: Test schedules with minimal number of test
sessions

Test registers that are synthesized optimally for BIST give
significant advantages both in terms of silicon area and test
length. Built-in self-test requires additional hardware for

0 test registers
0 test control unit
0 distribution of test control signals

The presented approach achieves benefits at all three of
these points. It minimizes the number of test cells and
needs at most as maany test cells as the approaches that
insert BILBO-like test registers at RT level. It minimizes
the number of test control signals and the number of test
sessions. This simplifies test control since the clontrol unit
must generate the specified values of the control signals
for all test sessions. The small number of contirol signals
also reduces the area overhead for distributing these signals
to the test registers.

Moreover, reducing the number of test sessioins usually
leads to a shorter overall test length. Of course, the test
length also depends on the type of the test registers and on
the fault coverage value that has to be achieved. The
method presented is compatible with different kinds of test
registers; [24]. For example, using test registers that can
produce weighted random patterns generally rt:sults in a
shorter lest length for the considered test unit than using
unbiased1 random patterns.

As an alternative to test schedules with minimal number
of test sessions, the procedure CONSTRUCT-SEQ gives
schedules where all the test response information is driven
to the primary outpul.s, and as a consequence only the few
signatures at the primary outputs have to be evaluated (see
table 5).

circuit # executed test # control # evaluated

I random I o t. rand. o t. rand. o t.

l Z d l Z F F W 1
Is35932 // 1 * 2 0 1 i z : 1 ;l 1 1 1: 1 1; I

~38417 1 * 6 5
~38584 1 * 67 * 7 66 6 9 9

Table 5: Test schedules constructed by
CONSTRtJCT-SEQ

Compared to the schedules with minimal number of test
sessions (cf. table 4, r = 1), the number of executed test
sessions (r*d) is larger. But further hardware savings can
be achieved since the number of signatures that have to be
evaluated is cut down. As all the test registers used as
signature analyzers h,ave at least 21 bits, the probability of
aliasing can be neglected and fault coverage is (piractically)
not affected by reducing the number of evaluated signa-
tures. Moreover, we see that with the randomly assembled
test registers the number of different test sessions (d) and
the number of executed test sessions (r * d) grow by a factor

Paper 38.2
947

of 3 to 11. The required number of control signals is 5 to
13 times larger. This again underlines the advantages of
test registers that are optimally synthesized for BIST.

7. CONCLUSIONS

Usually test register insertion and test scheduling are
considered separately. In this paper, both problems are
tackled together in order to find a global optimum. A
method has been presented that groups flip-flops of the
original design to test registers. The number of additional
test cells that are needed to break self-loops is minimized.
The proposed test register configuration minimizes the
number of different test sessions and the number of control
signals required to control the test registers. The effects are
reduced area of the test control unit, reduced area for
routing the control lines, and shorter test application time.
The final test scheduling process at RT level can cut down
the number of signatures that have to be evaluated at test
end.

8. REFERENCES

M. S. Abadir, M. A. Breuer: "A Knowledge-Based
System for Designing Testable VLSI Chips", IEEE
Design&Test, Aug. 1985, pp. 56-68
F. Brglez, D. Bryan, K. Kozminski: "Combina-
tional Profiles of Sequential Benchmark Circuits",
Int. Symposium on Circuits and Systems, 1989,

R. Camposano, R. A. Walker: "A Survey of High-
Level Synthesis Systems", Kluwer Academic
Publishers, Norwell MA, 1991
K.-T. Cheng, V. D. Agrawal: "A Partial Scan
Method for Sequential Circuits with Feedback",
IEEE Trans. on Computers, Vol. 39, No. 4, April
1990, pp. 544- 547
C.-I. H. Chen: "Graph Partitioning for Concurrent
Test Scheduling in VLSI Circuit", Design Automa-
tion Conference, San Francisco, 1991, pp. 287-290
V. Chickermane, J. H. Patel: "An Optimization
Based Approach to the Partial Scan Problem", Int.
Test Conference, Washington D.C., 1990, pp. 377-
386
N. Christofides: "Graph Theory - An Algorithmic
Approach", Academic Press, London, 1975
G. L. Craig, C. R. Kime, K. K. Saluja: "Test
Scheduling and Control for VLSI Built-In Self-
Test", IEEE Transactions on Computers, Vol. 37,
No. 9, Sept. 1988, pp. 1099-1109
M. R. Garey, D. S. Johnson: "Computers and
Intractability", Freeman, New York, 1979

pp. 1929-1934

D. Go 1 d her g : " Co mpu t er Arithmetic ", in :
J. L. Hennessy, D. A. Patterson: "Computer
Architecture: A Quantitative Approach", Morgan
Kaufmann, San Mateo CA, 1990
R. Gupta, R. Gupta, M. A. Breuer: "The BALLAST
Methodology for Structured Partial Scan Design",
IEEE Transactions on Computers, Vol. 39, No. 4,
April 1990, pp. 538-544
0. F. Haberl, H.-J. Wunderlich: "The Synthesis of
Self-Test Control Logic", COMPEURO, Hamburg,

P. D. Hortensius et al.: "Cellular Automata-Based
Pseudorandom Number Generators for Built-In Self-
Test", IEEE Trans. on CAD, 1989, pp. 842-859
J.-Y. Jou, K.-T. Cheng: "Timing Driven Partial
Scan", Int. Conference on Computer-Aided Design,
Santa Clara CA, 1991, pp. 404-407
J. Kalinowski, A. Albicki, J. Beausang: "Test
Control Signal Distribution in Self-Testing VLSI
Circuits", Int. Conf. on CAD, 1986, pp. 60-63
K. Kim, D. Ha, J. Tront: "On Using Signature
Registers as Pseudorandom Pattern Generators in
Built-in Self Testing", IEEE Trans. on CAD, 1988,

B. Koenemann, J. Mucha, G. Zwiehoff: "Built-In
Logic Block Observation Techniques", Test
Conference, Cherry Hill NJ, 1979, pp. 37-41
A. Krasniewski, A. Albicki: "Automatic Design of
Exhaustively Self-Testing Chips with BILBO
Modules", Int. Test Conference, Washington D.C.,

A. Kunzmann, H.-J. Wunderlich: "An analytical
approach to the partial scan problem", Journal of
Electronic Testing: Theory and Applications, 1990,

D. H. Lee, S. M. Reddy: "On Determining Scan
Flip-Flops in Partial-Scan Designs", Int. Conference
on CAD, 1990, pp. 322-325
S.-P. Lin, C. A. Njinda, M. A. Breuer: "A
Systematic Approach for Designing Testable VLSI
Circuits", Int. Conference on CAD, Santa Clara

A. P. Stroele, "Self-Test Scheduling With Bounded
Test Execution Time", Int. Test Conference,
Baltimore MD, 1992, pp. 130-139
A. P. Stroele, H.-J. Wunderlich: "Error Masking in
Self-Testable Circuits", Int. Test Conference,
Washington D.C., 1990, pp. 544-552
A. P. Stroele, H.-J. Wunderlich: "A Unified Method
for Assembling Global Test Schedules", Third Asian
Test Symposium, Nara, Japan, 1994
L.-T. Wang, E. J. McCluskey: "Concurrent Built-in
Logic Block Observer (CBILBO)", Int. Symposium
on Circuits and Systems, 1986, pp. 1054-1057
H.-J. Wunderlich: "Self Test Using Unequiprobable
Random Patterns", Int. Symp. on Fault-Tolerant
Computing, Pittsburgh, 1987, pp. 258-263

1989, pp. 5.134-5.136

pp. 919-928.

1985, pp. 362-371

pp. 163-174

CA, 1991, pp. 496-499

Paper 38.2
948

