
ACM/IEEE International Conference on CAD 94 (ICCAD-94), San Jose, Ca., November 1994

1

An Efficient Procedure for the Synthesis of Fast Self-Testable
Controller Structures

Sybille Hellebrand, Hans-Joachim Wunderlich
Institute of Computer Structures

University of Siegen
Germany

 Abstract

The BIST implementation of a conventionally synthe-
sized controller in most cases requires the integration of an
additional register only for test purposes. This leads to
some serious drawbacks concerning the fault coverage, the
system speed and the area overhead. A synthesis technique
is presented which uses the additional test register also to
implement the system function by supporting self-testable
pipeline-like controller structures. It will be shown, that if
the need of two different registers in the final structure is
already taken into account during synthesis, then the over-
all number of flipflops can be reduced, and the fault cover-
age and system speed can be enhanced. The presented algo-
rithm constructs realizations of a given finite state ma-
chine specification which can be trivially implemented by
a self-testable structure. The efficiency of the procedure is
ensured by a very precise characterization of the space of
suitable realizations, which avoids the computational over-
head of previously published algorithms.

1 Introduction
The increasing demand for highly reliable micro-elec-

tronic systems in various safety-critical applications
prompts for extremely high quality standards, which have
to be guaranteed by refined testing techniques. Built-in
self-test (BIST) is of particular importance, because it al-
lows an efficient production testing and the capabilities for
pattern generation and test response evaluation on chip can
also be used for periodic maintenance tests [1].

Often the BIST is implemented by so-called multi-func-
tional test registers like the well-known BILBO which are
able to work as a system register, to generate test patterns
and to compress the test responses by signature analysis.
Such registers have been developed for random, determinis-
tic, pseudo-exhaustive, and weighted random pattern test-

 This work was supported by EP 7107 ARCHIMEDES.

ing [4, 9, 17, 20, 26]. However, in general it is not pos-
sible to use one multi-functional register for test pattern
generation and test response evaluation concurrently, since
this way the required properties of the test patterns can
only be ensured in some special cases [12, 14, 19]. In
most cases two different registers are necessary to generate
the patterns and to compress the test responses. Conven-
tional synthesis procedures for controllers and even most
of the advanced synthesis techniques for sequentially irre-
dundant and easily testable controllers do not take into
account this fact [2, 5, 6, 7, 10, 11, 13, 22, 23, 24]. They
usually provide a circuit structure as shown in figure 1,
which has to be complemented by an extra test register for
BIST (see figure 2).

inputs outputscombi-
national
circuit

sy
ste

m
 &

 te
st

re
gi

ste
r R

C

Figure 1: Conventionally synthesized controller structure.

te
st

re
gi

ste
r T

combi-
national
circuit

sy
ste

m
 &

 te
st

re
gi

ste
r R

inputs outputs

C

Figure 2: Required modifications for BIST.

During test mode the register T is used as pattern gener-
ator and the multi-functional register R is configured as
signature analyzer, during system mode T must be trans-
parent. This configuration with an extra register only for
test purposes has some serious drawbacks:
1) The number of flipflops must be doubled.

2

2) In system mode the test register T must be transpar-
ent or bypassed. This prolongs the critical path and
may slow down the system speed of the controller.

3) There are faults on the feedback lines from R to the
inputs of C which are not detected, as these lines are
not completely exercised during self-test. This holds,
even if the connections between R and T are tested in
an additional step.

The above mentioned drawbacks can be avoided if the
required additional test register T is also used to implement
the system function. This results in a pipeline-like struc-
ture as shown in figure 3 and described in detail in [18].

R 1

inputs
outputs

R 2 C2C1

output
function

Figure 3: Controller target structure.

A state of the controller is represented by the contents
of both registers R1 and R2, and the state transition func-
tion is implemented by two independent combinational
circuits C1 and C2. Clearly none of the registers needs to
be transparent during system mode and there is no addi-
tional delay imposed this way. The self-test can be per-
formed in two sessions by alternatively using one of the
registers for pattern generation and the other for signature
analysis. Moreover, as there is no transparency mode or
bypassing a complete fault coverage is possible. In general
the registers R and T of figure 1b are wider than the regis-
ters R1 and R2 of the proposed target structure, hence the
structure of figure 3 needs less flipflops then the self-
testable structure of figure 1b. Furthermore, also the com-
binational circuits C1 and C2 are smaller than the original
circuit. As a consequence the critical path in C1, C2 and
the output function is shorter than in the circuit C of fig-
ure 1. This allows higher clock rates and thus leads to a
higher system performance.

It is important to note that this structure is different
from structures provided by decomposition techniques
where the resulting submachines contain internal feedback
loops [16, 3, 15]. In [18] a computationally expensive
search procedure was used for a feasibility study of the ap-
proach. In this paper a computationally efficient synthesis
procedure for target structures as shown in figure 3 is pre-
sented, which makes the approach generally applicable. In
contrast to known approaches trying to reduce dependen-
cies between state variables by appropriate state coding the
presented procedure relies on algebraic structure theory to
address the problem already at the finite state machine

level [25, 8]. The theoretical basis of the work is a very
precise characterization of the search space.

The organization of the paper is as follows: In section 2
the main results of [18] are briefly summarized. Subse-
quently in section 3 the main theorem for a precise charac-
terization of the search space is proven and an efficient
search procedure is developed. Section 4 provides experi-
mental results achieved for a collection of finite state ma-
chine benchmarks [McEl 93]. Conclusions are given in
section 5.

2 Partition Pairs and Self-Testable
Realizations

The problem of synthesizing controller structures com-
patible with BIST can be reduced to the problem of con-
structing suitable realizations of the original finite state
machine specifications.

Throughout this work it is assumed that a controller is
fully specified as a mealy-type finite state machine M =
(S, I, O, δ, λ) with a finite non-empty set of states S, a
finite non-empty set of inputs I, a finite non-empty set of
outputs O, a next state function δ: S × I → S and an
output function λ: S × I → O.

To guarantee that a finite state machine can be imple-
mented by a self-testable structure it is necessary to require
some additional properties.

Definition 1: Let M = (S, I, O, δ, λ) be a finite
state machine. M is called a finite state machine support-
ing a self-testable structure, if and only if there are sets S1
and S2 and functions δ1: S1 × I → S2, δ2: S2 × I →
S1, such that S = S1 × S2 and δ((s1, s2), i) = (δ2(s2, i),
δ1(s1, i)) holds for all s = (s1, s2) ∈ S and i ∈ I.

Obviously the straightforward implementation of such a
finite state machine with logic blocks for δ1, δ2 and λ and
registers for S1 and S2 provides a self-testable structure as
shown in figure 3.

Self-testable controllers can therefore be synthesized
from finite state machine specifications in two steps. First
a finite state machine which realizes the specification and
which supports a self-testable structure is constructed and
then state coding and logic minimization algorithms are
applied to this realization. A precise definition of the term
realization can be found in [16, 18].

In [18] it has been shown that self-testable realizations
for a finite state machine M = (S, I, O, δ, λ) correspond to
specific pairs of equivalence relations on the set of states
S. In the following equivalence relations on S will always
be considered as subsets ⊂ S × S. This way the set
theoretic operators „∩“ (intersection) and „∪“ (union) are
defined for equivalence relations and there is a partial order-
ing on the set of equivalence relations given by „⊂“ (sub-

3

set). The intersection of two equivalence relations is again
an equivalence relation, but the union need not be transi-
tive. Therefore an operator „+“ is defined for equivalence
relations by 1 + 2 := (1 ∪ 2)t, where t denotes the
transitive closure of a relation . For an equivalence rela-
tion ⊂ S × S and an element s ∈ S the corresponding
equivalence class is denoted by [s] . The set S/ of equiva-
lence classes completely specifies , and for convenience
we describe mostly by S/ and not by enumerating all
the pairs.

Definition 2: Let M = (S, I, O, δ, λ) be a finite
state machine, and let , ⊂ S × S be equivalence rela-
tions on S. (,) is called a partition pair for M, if and
only if ((s, t) ∈ ⇒ ∀ i ∈ I: (δ(s, i), δ(t, i)) ∈ holds.
If (,) is a partition pair, too, then (,) is called a
symmetric partition pair.

For the construction of self-testable realizations sym-
metric partition pairs are of special interest. The following
theorem has been shown in [18]:

Theorem 1: Let M = (S, I, O, δ, λ) be a finite state
machine. Let denote the equivalence of states and let (,

) be a symmetric partition pair for M satisfying ∩ ⊂
. Let M* = (S*, I*, O*, δ*, λ*) be defined by

(i) S* := S/ × S/ , I* := I, O* := O,
(ii) δ*((s1, s2), i)) := (δ2(s2, i), δ1(s1, i)) with

δ1(([s] , i)) := [δ(s, i)] and
δ2([s] , i)) := [δ(s, i)] , and

(iii) λ*((s1, s2), i) :=

λ(s, i) if s1 ∩ s2 ≠ ∅ and s ∈ s1 ∩ s2
o* else

,

where o* ∈ O is an arbitrary output value.
Then M* is a finite state machine supporting a self-
testable structure which realizes M.

Theorem 1 is illustrated by the following example.
Example 1: Figure 4 shows the next state table of a

small finite state machine. By S/ = {{1,

2},

{3,

4}} and
S/ = {{1,

4},

{2,

3}} a symmetric partition pair (,)
with ∩ ⊂ is defined.

equivalence
classes
under

equivalence
classes
under

1

3
2
1
4

0

1
4
3
2

S I

1
2
3
4

δ

Figure 4: Effect of a partition pair (,) on the next state
table of a finite state machine.

The resulting mappings δ1: S/ × I → S/ and
δ2: S/ × I → S/ , which provide the state transition
function δ*, are shown in figure 5.

1

[2]
[1]

0

[1]
[2]

S/
I

[1]
[3]

δ1 1

[3]
[1]

0

[1]
[3]

S/
I

[1]
[2]

δ2

Figure 5: Tables for δ1: S/ × I → S/ and δ2: S/ × I →
S/ .

If [1] and [1] are both encoded by 1 and [3] and [2]
are encoded by 0, then the constructed finite state machine
M* = (S/ × S/ , I, O, δ*, λ*) can be implemented by
the structure shown in figure 6. ❏

FF FF
=1 =1

I
λ* O

Figure 6: Structure of M*.

Theorem 1 has two consequences for the synthesis of
self-testable controllers. Firstly, there is always a trivial
self-testable realization for a given finite state machine M
= (S, I, O, δ, λ), since the identity relation ⊂ S × S
provides a symmetric partition pair (,) with ∩

 ⊂ . The resulting finite state machine M* = (S/ ×
S/ , I, O, δ*, λ*) corresponds to simply „doubling“ the
original machine. Secondly, the problem of finding an op-
timal self-testable realization with small registers of about
equal size can be formulated as follows:

Problem OSTR (Optimal Self-Testable Realiza-
tion): Let M = (S, I, O, δ, λ) be a finite state machine.
Find a symmetric partition pair (,) with ∩ ⊂ ,
such that
(i) log2 |S/ | + log2 |S/ | is minimal, and

(ii)
|S/ |
|S/ |

 - 1 is minimal

for all pairs satisfying (i).
In the next section an algorithm for OSTR will be de-

veloped, which is based on an efficient enumeration proce-
dure for symmetric partition pairs.

3 An Efficient Algorithm for OSTR
In the previous section it has been shown that the prob-

lem of synthesizing self-testable controllers can be reduced
to finding suitable symmetric partition pairs. The algo-
rithm to be developed in this paragraph rigorously exploits
the symmetry requirement in order to restrict the search to
a small number of candidate pairs. It is based on the no-
tion of „mm-pairs“ which will be introduced in the sequel.

4

Definition 3: Let M = (S, I, O, δ, λ) be a finite
state machine and let , ⊂ S × S be equivalence rela-
tions. Then m() denotes the ⊂-minimal equivalence rela-
tion, such that (, m()) is a partition pair, and M() de-
notes the ⊂-maximal equivalence relation, such that
(M(),) is a partition pair. (,) is called an Mm-pair,
if both M() = and m() = hold. If m() = and m()
= are both true, then (,) is called an mm-pair.

The Mm-pairs for a finite state machine can be regarded
as the skeleton for the set of all partition pairs [16], and
the basic procedure for OSTR described in [18] used an
enumeration procedure for the set of Mm-pairs. Since
Mm-pairs need not be symmetric, this resulted in an un-
necessary computational overhead. In the following it will
be shown that the set of symmetric partition pairs can be
directly characterized by mm-pairs. By definition of the m-
operator an mm-pair is a symmetric partition pair. To
show that it is sufficient to concentrate on mm-pairs some
more theoretical effort is required. The first result derived
from the symmetry property concerns the iterative con-
struction of an mm-pair from an initial relation . With
mi() denoting the relation m(mi-1()), where m0() :=

, the following lemma can be shown.
Lemma 1: Let M = (S, I, O, δ, λ) be a finite state

machine, and let ⊂ S × S be an equivalence relation.
Then the relations

 meven() := Σ
∞

i=0

 m2i() and modd() := Σ
∞

i=0

 m2i+1()

constitute an mm-pair (meven(), modd()). Further-
more, if (,) is any symmetric partition pair with ⊂

, then meven() ⊂ and modd() ⊂ .
Some useful properties of the operators meven and

modd can inductively be derived from the corresponding
properties of the m-operator proven in [16].

Observation 1: Let M = (S, I, O, δ, λ) be a finite
state machine, and let , ⊂ S × S be equivalence rela-
tions. Then meven(+) = meven() + meven() and
modd(+) = modd() + modd().

Observation 2: Let M = (S, I, O, δ, λ) be a finite
state machine, and let ⊂ ⊂ S × S be equivalence rela-
tions. Then meven() ⊂ meven() and modd() ⊂
modd().

The following characterization of symmetric partition
pairs is an immediate consequence of lemma 1.

Theorem 2: Let M = (S, I, O, δ, λ) be a finite state
machine, and let , ⊂ S × S be equivalence relations.
The pair (,) is a symmetric partition pair, if and only if
there is an mm-pair (*, *) with *= and * ⊂ ⊂
M(*).

With respect to problem OSTR it is important to note,
that an mm-pair (*, *) has the minimal intersection of

all pairs in {(,) | = * and * ⊂ ⊂ M(*)}, i.e. if
* ∩ * ⊄ , then ∩ ⊄ for all pairs in {(,) |

= * and * ⊂ ⊂ M(*)}. Consequently, if the set of
mm-pairs does not provide a better solution than (,)
for OSTR, then there is no better solution at all. Further-
more, using theorem 2 it is possible to derive all solu-
tions from the solutions found in the set of mm-pairs.
Therefore the search space can be restricted to mm-pairs,
and the algorithm for OSTR will be based on an efficient
procedure to enumerate the set of mm-pairs.

It is possible to construct the set of mm-pairs from the
base relations (S) := {

s,t |

s,t

∈

S

}, where s,t :=
∪

{(s, t), (t, s)} is the equivalence relation identifying the
states s and t in S and distinguishing all other states.

By lemma 1 an mm-pair (,) is characterized by
meven() = and modd() = . Thus the set of all mm-
pairs for a finite state machine M = (S, I, O, δ, λ) is de-
scribed by mm(M) := {

(meven(),

modd())

|

⊂ S

×

S

is an equivalence relation

}. Obviously, Σ
(s,t)∈

s,t is

true for any equivalence relation, and mm(M) =

{ (meven(), modd()) | =

Σ
∈

, ⊂ (S) }.

Therefore mm(M) can be constructed by enumerating
all possible sums of relations in (S) and calculating the
corresponding mm-pair with the help of the meven- and
the modd-operator. However, this would require a compu-
tational effort of O(2

|S|2). In fact, only those relations in
(S) have to considered which lead to different mm-pairs.

To make this more precise a partial ordering „≤“ on equiv-
alence relations is introduced as follows:

Definition 4: Let M = (S, I, O, δ, λ) be a finite
state machine, and let , ⊂ S × S be equivalence rela-
tions. Then is said to dominate (≤), if and only if
meven() ⊂ meven(). and are called mm-equivalent
(~), if both ≤ and ≤ are true.

It is easily verified that ~ is in fact in equivalence rela-
tion, and observations 1 and 2 provide the following ob-
servation:

Observation 3: Let M = (S, I, O, δ, λ) be a finite
state machine, and let , ⊂ S × S be equivalence rela-
tions. Then ≤ implies meven() = meven(+).

For mm-equivalent relations ~ observation 3 yields
meven() = meven(+) = meven() and therefore the
same mm-pair is obtained from and To construct the
set of all mm-pairs it is sufficient to consider the quotient
space (S)/~.

Theorem 3: Let M = (S, I, O, δ, λ) be a finite state
machine, and let ~ denote the mm-equivalence of relations.

5

Then the set of mm-pairs for M is characterized by
mm(M) =

{(meven(), modd()) | =

Σ
∈

 ,

⊂

(S)/~ }.

Making use of theorem 3 and observation 1 the follow-
ing basic search tree (V, E) can be constructed to enumer-
ate all mm-pairs. First the quotient (S)/~ is computed.
This computation also provides the set even :=
{ meven() | ∈ (S)/~ }. With even = { 1, 2, … }
ordered arbitrarily (V, E) is defined by:
V := (even)
E := { (1, 2) ∈ V × V | 2 = 1 ∪ { k} with

k > max{i | i ∈ 1} }
The root of the search tree is ∅. Each vertex in this tree

corresponds to a subset ⊂ even and provides an

mm-pair (, m()) with := Σ
i∈

i. The tree has

O(2| even|) vertices and in general | even| is much
smaller than |S|2, which already leads to an enormous re-
duction of the computational effort compared to the
straightforward approach. In addition to that, observation 3
shows that edges (, ∪ { }) in the search tree with

 ≤ := Σ
i∈

i can be omitted, since in this case

meven(

+

) = meven(). Therefore a reduced tree
(V*,

E*) with

E* := {

(1, 2) ∈ V

×

V | 2 = 1

∪

{ k} with

k > max{i | i ∈ 1} and k |≤ Σ
i∈ 1

}

is sufficient to get all mm-pairs.
To solve problem OSTR the tree (V*, E*) can be tra-

versed using a breadthfirst or depthfirst strategy. For each

vertex the relation := Σ
i∈

i is calculated. If

m() ∩ ⊂ is true, then the mm-pair (, m()) is a
solution for OSTR. The costs

log2 |S/m()| + log2 |S/ | and
|S/m()|

|S/ |
 - 1

are calculated for this pair and compared to the lowest
costs obtained so far. Finally the solution with minimal
costs is selected to realize the specification.

The specific requirements of problem OSTR provide
another criterion to prune the search tree and make the
basic procedure computationally more efficient.

Lemma 2: Let M = (S, I, O, δ, λ) be a finite state
machine, and let (V*, E*) be the search tree defined above.

For (1, 2) ∈ E let 1 := Σ
i∈ 1

i and 2 :=

Σ
i∈ 2

i. If m(1) ∩ 1 ⊄ , then m(2) ∩ 2 ⊄ .

As a consequence of lemma 2, once a node in the
searchtree with m() ∩ ⊄ is reached, all of its succes-
sors have this property and the subtree rooted at can be
discarded.

4 Experimental results
The algorithm for problem OSTR described in section 3

has been implemented as a depthfirst procedure and has
been applied to the finite state machine benchmarks dis-
tributed for the International Workshop on Logic Syn-
thesis ’93 [21]. For incompletely specified finite state
machines don't care transition were fixed to transitions
with next state = present state and output don't cares were
set to zero. For 23 examples a nontrivial solution of
OSTR (i.e. a solution different from (,)) could be
found. Table 1 shows the results in more detail for some
of these examples.

Name | S | | S1 | | S2 | # FFs
(conven-
tional)

FFs
(OSTR)

bbara 10 7 7 8 6
bbsse* 16 8 8 8 6
beecount* 7 4 6 6 5
dk16 27 21 23 10 10
dk512 15 11 14 8 8
ex1* 20 17 19 10 10
mark1* 15 11 6 8 7
planet* 48 44 45 12 12
s1488 48 44 45 12 12
s1494 48 44 45 12 12
s208 18 10 10 8 8
shiftreg 8 2 4 6 3
sse* 16 8 8 8 6
tav 4 2 2 4 2
tbk 32 16 16 10 8

Table 1: Results of depthfirst search procedure for problem
OSTR (incompletely specified examples are marked
with an asterisk).

Column 2 contains the number of states of the specifi-
cation. Columns 3 and 4 show the number of states in the
factors S1 and S2 of the best realization found, and

6

columns 5 and 6 list the required number of flipflops for a
conventional BIST and for an optimized BIST structure
based on the presented approach. The results show that for
eight examples the number of flipflops required for the op-
timized structure is less than for a conventional BIST. For
shiftreg and tav even the lower bound |

S1

|

·

|

S2

| = |

S

| is
achieved and the number of flipflops is reduced to 50%. In
terms of hardware costs the gain is even higher, because
the transparent register for the conventional solution is
more costly to implement than the registers used for the
presented approach.

Since the overall hardware costs for both alternatives
can only be compared after state coding and logic minimi-
zation, a state coding algorithm is currently being devel-
oped which takes advantage of the self-testable decomposi-
tion. A prototype version of this algorithm followed by
ESPRESSO was used to determine the required PLA area
for the circuits C1, C2 and the output function λ [5]. The
PLA area for the circuit C of a conventional implementa-
tion was determined by applying NOVA to the finite state
machine specifications [24]. In both cases the PLA area
was estimated by (2·i + o)·p, with i, o, p denoting the
number of inputs, the number of outputs and the number
of product terms, respectively. Table 2 shows the results.

Name area
for C1

area
for C2

area
for λ

total
area Σ

area
for C

Σ
 C

bbara 320 320 108 748 550 1.36
bbsse* 351 252 546 1149 990 1.16

beecount* 126 90 8 224 228 0.98
dk16 1045 931 432 2408 1584 1.52
dk512 224 182 114 520 323 1.61
ex1* 1053 1161 1815 4029 2652 1.52
planet* 2272 2304 3420 7996 4539 1.76
s1488 2738 2701 3355 8794 7473 1.18
s1494 2808 2736 3528 9072 7897 1.15
s208 176 176 210 562 780 0.72
shiftreg 3 12 3 18 96 0.19
sse* 351 252 546 1149 990 1.16
tav 3 3 128 134 198 0.68

Table 2: Comparison of PLA areas for conventional
implementations and optimized self-testable
realizations.

The results show that for all examples the PLA area for
the circuits C1, C2 and the output function is smaller than
the PLA area for C. Therefore it can be assumed that in a
multi-level implementation the critical path in each com-
binational logic block of the self-testable implementation
is shorter than in the logic block of a conventional imple-

mentation. Higher clock rates and a higher performance
can thus be expected. For four examples even the total
PLA area for the circuits C1, C2 and the output function
together is less than the PLA area for the conventional
implementation. Moreover, for all examples the total PLA
area is smaller than the area obtained by simply doubling
the original network C. This is true even for planet, s1488
and s1494 were the specification with 48 states could only
be decomposed into factors with 44 and 45 states, respec-
tively.

Table 3 compares the computational effort for the pre-
sented algorithm and the basic algorithm used in [18]. For
both procedures the size |V| of the search tree and the num-
ber of the nodes that have to be investigated to find the op-
timal solution are listed.

Name | S | log2 |V| # nodes
investi-

gated

log2 |V|
[18]

nodes
investi-

gated
[18]

bbara 10 7 19 43 815
bbsse* 16 43 timeout - -
beecount* 7 15 85 - -
dk16 27 20 15437 206 337041
dk512 15 15 221 56 343853
ex1* 20 10 53 - -
mark1* 15 45 timeout - -
planet* 48 9 75 - -
s1488 48 9 75 - -
s1494 48 9 75 - -
s208 18 28 255 - -
shiftreg 8 17 811 7 49
sse* 16 43 timeout - -
tav 4 5 21 7 47
tbk 32 11 55 - -

Table 3: Computational effort for exhaustive search.

The results confirm that the presented approach is able
to characterize the search space significantly better than the
procedure used in [18]. For example for dk16 the search
tree can be reduced from 2206 to 220 nodes. Moreover, the
impact of lemma 2 on the computational effort can be
seen clearly. For almost all examples the optimal solution
could be found by investigating only a small number of
nodes. The limit of 500 000 nodes (timeout) was reached
only by bbssee, mark1 and sse. But as table 1 indicates,
for these examples a large number of possible solutions
could be found before the limit was reached. All examples
which did not provide a non-trivial solution could be iden-
tified quickly.

7

5 Conclusions
Pipeline-like controller structures implement the states

of the specification by two different multi-functional
system registers. A self-test can be performed in two ses-
sions without any extra hardware by alternatingly using
the registers for test pattern generation and signature
analysis. This architecture increases the fault coverage as
well as the system performance.

An efficient algorithm has been presented to generate
minimal pipelined realizations from state transition dia-
grams. The proposed algorithm relies on algebraic struc-
ture theory to construct realizations which can be trivially
implemented by a self-testable structure. The efficiency of
the procedure is ensured by a very precise characterization
of the space of suitable realizations, the theoretical basis
of which is the newly introduced concept of mm-pairs.

The experimental results show that in general a shorter
critical path and thus a higher performance can be expec-
ted. In many cases the number of flipflops is less than the
respective number for a conventional BIST, and in some
cases even the total PLA area is reduced. This confirms
that not only higher speed and fault coverage can be ob-
tained this way, but also area can be saved.

References
1 V. D. Agrawal, C. R. Kime, K. K. Saluja: A Tutorial on

Built-In Self-Test, Part 1: Principles, IEEE Design & Test
of Computers, Vol. 10, No. 1, March 1993, pp. 73-82

2 P. Ashar, S. Devadas: Irredundant Interacting Sequential
Machines Via Optimal Logic Synthesis, IEEE Trans. on
CAD, Vol. 10, No. 3, March 1991, pp. 311-325

3 P. Ashar, S. Devadas, A. R. Newton: A Unified Approach
to the Decomposition and Re-decomposition of Sequen-
tial Machines, Proc. 27th ACM/IEEE Int. Design Automa-
tion Conf., 1990, pp. 601-606

4 Z. Barzilai, D. Coppersmith, A. L. Rosenberg: Exhaustive
Generation of Bit Patterns with Applications to VLSI
Self-Testing, IEEE Trans. on Computers, Vol. c-32, No.
2, February 1983, pp. 190 - 194

5 R. K. Brayton, G. D. Hachtel, C. T. McMullen: Logic
Minimization Algorithms for VLSI Synthesis, Kluwer
Academic Publishers, Boston, The Hague, Dordrecht,
Lancaster, 1984

6 R. K. Brayton et al.: MIS: A Multiple-Level Logic
Optimization System, IEEE Trans. on CAD, Vol. CAD-6,
No. 6, 1987, pp. 1062-1081

7 V. D. Agrawal, K.-T. Cheng: Finite State Machine Syn-
thesis with Embedded Test Function, Journal of Electronic
Testing Theory and Applications, Vol. 1, No. 3, October
1990, pp. 221-228

8 K.-T. Cheng, V. D. Agrawal: State Assignment for
Testable Design, Int. Journal of Computer Aided VLSI
Design, Vol. 3., March 1991

9 W. Daehn, J. Mucha: Hardware Test Pattern Generation for
Built-In Test, Proc. IEEE Int. Test Conf., Philadelphia,
1981, pp. 100 - 113

10 S. Devadas, K. Keutzer: A Unified Approach to the Syn-
thesis of Fully Testable Sequential Machines, IEEE Trans.
on CAD, Vol. 10, No. 1, January 1991, pp. 39-50

11 S. Devadas et al.: MUSTANG: State Assignment of Finite
State Machines Targeting Mulitlevel Logic Implementa-
tions, IEEE Trans. on CAD, Vol. 7, No. 12, Dec. 1988,
pp. 1290-1300

12 B. Eschermann, H.-J. Wunderlich: Parallel Self-Test and
the Synthesis of Control Units, Proc. 2nd European Test
Conf., Munich, 1991

13 B. Eschermann, H.-J. Wunderlich: Optimized Synthesis
Techniques for Testable Sequential Circuits, IEEE Trans.
on CAD, Vol. 11, No. 3, March 1992, pp. 301-312

14 R. Gage: Structured CBIST in ASICS; Proc. IEEE Int. Test
Conf., Baltimore, Maryland, 1993, pp. 332-338

15 Martin Geiger, Thomas Müller-Wipperfürth: FSM Decom-
position Revisited: Algebraic Structure Theory Applied to
MCNC Benchmark FSMs, Proc. 28th ACM/IEEE Design
Automation Conf., San Francisco, 1991, pp. 182-185

16 J. Hartmanis, R. E. Stearns: Algebraic Structure Theory of
Sequential Machines, Prentice Hall, Englewood Cliffs,
1966

17 S. Hellebrand, H.-J. Wunderlich, O. Haberl: Generating
Pseudo-Exhaustive Vectors for External Testing; Proc.
IEEE Int. Test Conf., Washingtion, D. C., 1990, pp. 670-
679

18 S. Hellebrand, H.-J. Wunderlich: Synthesis of Self-
Testable Controllers, in: Proc. EDAC/ETC/EuroAsic ’94,
Paris, Feb. 1994, pp. 580-585

19 K. Kim, D. Ha, J. Tront: On Using Signature Registers as
Pseudorandom Pattern Generators in Built-in Self Testing,
IEEE Trans. on CAD, Vol. 7, 1988, pp. 919-928

20 B. Koenemann, J. Mucha, G. Zwiehoff: Built-in Logic
Block Observation Techniques, Proc. IEEE Int. Test
Conf., Cherry Hill, N. J., 1979, pp. 37 - 41

21 K. McElvain: IWLS‘93 Benchmark Set: Version 4.0,
distributed as part of the IWLS‘93 benchmark distribution

22 I. Pomeranz, S. M. Reddy: Design and Synthesis for
Testability of Synchronous Sequential Circuits Based on
Strong-Connectivity, Proc. IEEE 23rd Int. Symp. on
Fault-Tolerant Computing, FTCS-23, Toulouse, June
1993, pp. 492-501

23 G. Saucier, M. C. De Paulet, P. Sicard: ASYL: A Rule-
Based System for Controller Synthesis, IEEE Trans. on
CAD, Vol. CAD-6, No. 6, Nov. 1987, pp. 1088-1097

24 T. Villa, A. Sangiovanni-Vincentelli: NOVA: State
Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations, Proc. 26th ACM/IEEE
Design Automation Conf., Las Vegas, 1989, pp. 327-332

25 P. Weiner, E. J. Smith: Optimization of Reduced Depen-
dencies for Synchronous Sequential Machines, IEEE
Trans. on Electronic Computers, Vol. EC-16, No. 6, Dec.
1967, pp. 835-847

26 H.-J. Wunderlich: Self Test Using Unequiprobable Ran-
dom Patterns, Proc. IEEE 17th Int. Symp. on Fault-Toler-
ant Computing, FTCS-17, Pittsburgh, 1987, pp. 258-263

