
Proceedings EDAC/ETC/EuroAsic, Paris 1994

1

Synthesis of Self-Testable Controllers

Sybille Hellebrand, Hans-Joachim Wunderlich
Institute of Computer Structures

University of Siegen
Germany

 Abstract

The paper presents a synthesis approach for pipeline-
like controller structures. These structures allow to im-
plement a built-in self-test in two sessions without any
extra test registers. Hence the additional delay imposed by
the test circuitry is reduced, the fault coverage is increased,
and in many cases the overall area is minimal, too. The
self-testable structure for a given finite state machine spec-
ification is derived from an appropriate realization of the
machine. A theorem is proven that such realizations can
be constructed by means of partition pairs. An algorithm
to determine optimal realizations is developed and bench-
mark experiments are presented to demonstrate the appli-
cability of the presented approach .

1 Introduction
The application of microelectronic systems in safety-

critical areas, e.g. in avionics or medicine, demands ex-
tremely high quality standards, and thus refined testing
techniques. The problem of implementing efficient tests
providing a complete or very high fault coverage is partic-
ularly difficult for controllers because of their irregular
structure and the reduced observability and controllability
of internal states. Conventionally the circuit structure for a
controller is synthesized from a finite state machine spec-
ification performing state coding and logic minimization
[5, 6, 12, 23, 22]. But even if advanced synthesis tech-
niques are used to generate sequentially irredundant con-
trollers, the necessary test sequences might be prohibi-
tively long [11, 2, 21]. To overcome this problem either
additional test functions have to be considered during syn-
thesis or testability features such as built-in self-test
(BIST) have to be added to the synthesized structure [7, 9,
1]. With respect to safety-critical applications BIST is of
special importance, since the capabilities for test pattern
generation and test response evaluation on chip can also be
used for periodic maintenance tests.

 This work was supported by EP 7107 ARCHIMEDES.

Usually the BIST is implemented by so-called multi-
functional test registers like the well-known BILBO which
are able to work as a system register, to generate test pat-
terns and to compress the test responses by signature anal-
ysis. Such test registers have been developed for random,
deterministic, pseudo-exhaustive and weighted random pat-
terns [19, 10, 4, 25, 17]. However, the circuit structure
obtained from conventional synthesis procedures as shown
in figure 1 is not a priori compatible with BIST, as during
self-testing the register should generate patterns and evalu-
ate test responses concurrently.

inputs outputscombi-
national
circuit

sy
ste

m
 &

 te
st

re
gi

ste
r R

C

Figure 1: Result of conventional synthesis procedure.

This kind of parallel self-test, where the signatures are
used as test patterns, is only feasible in a few cases, but in
general the required properties of the test patterns cannot
be guaranteed [18, 13]. In most cases the signatures are
not exhaustive, (weighted) random or even deterministic,
and an additional test register is usually required (figure 2).

te
st

re
gi

ste
r T

combi-
national
circuit

sy
ste

m
 &

 te
st

re
gi

ste
r R

inputs outputs

C

Figure 2: Typical controller structure with BIST.

The test register T is only incorporated for test pur-
poses, and it must be transparent during system mode.
This is a common self-test architecture, for variations see
also [1]. But all these configurations have some serious
drawbacks:

2

1) The number of flipflops must be doubled.
2) In system mode the test register T must be transparent

or bypassed. This prolongs the critical path and may
slow down the system speed of the controller.

3) There are faults on the feedback lines from R to the
inputs of C which are not detected, as these lines are
not completely exercised during self-test. This holds,
even if the connections between R and T are tested in
an additional step.

The last two disadvantages can be circumvented by dou-
bling not only the flipflops but also the combinational
circuitry (see figure 3). If both copies of R are initialized
to the same values, the structure of figure 3 implements
the same machine as the structure of figure 1. None of the
registers needs to be transparent during system mode and
there is no additional delay imposed this way. The self-test
can be performed in two sessions by alternatively using
one of the registers for pattern generation and the other for
signature analysis. Moreover, as there is no transparency
mode or bypassing a complete fault coverage is possible.

inputs

combi-
national
circuit

sy
ste

m
 &

 te
st

re
gi

ste
r R

C

outputs

sy
ste

m
 &

 te
st

re
gi

ste
r R

combi-
national
circuit

C

Figure 3: Self-testable controller structure with doubled
system register and combinational circuitry.

The main drawback of the solution shown in figure 3 is
the high hardware overhead. In this paper a synthesis tech-
nique is presented which reduces this overhead by imple-
menting two different combinational networks C1 and C2
and two different registers R1 and R2 (see figure 4).

R 1

inputs
outputs

R 2 C2C1

output
function

Figure 4: Optimized self-testable controller structure.

In general the registers R and T of figure 1 to 3 are
wider than the registers R1 and R2, hence the structure of
figure 4 needs less flipflops than the self-testable struc-
tures of figure 2 and 3. Furthermore, also the combina-
tional circuits C1 and C2 are smaller than the original cir-
cuit. It will be shown that in many cases not only fault-
coverage and speed are increased, but also the hardware

overhead for integrating a self-test is reduced. In addition to
that this architecture is also compatible with synthesis
techniques which use autonomous transitions of the test
register as system transitions [14].

It is important to note that this structure is different
from structures provided by decomposition techniques
where the resulting submachines contain internal feedback
loops [16, 3, 15]. In contrast to known approaches trying
to reduce dependencies between state variables by appropri-
ate state coding the presented work addresses the problem
already at the finite state machine level [24, 8]. Based on
algebraic structure theory for a given finite state machine
specification a realization is constructed which supports a
self-testable structure as shown in figure 4. State coding
and logic minimization are then applied to this realization.

The rest of the paper is organized as follows: In section
2 the notion of finite state machines supporting self-
testable structures is introduced and the problem of synthe-
sizing optimal self-testable controllers is stated as an
optimization problem at the finite state machine level.
Subsequently in section 3 the existence of suitable finite
state machine realizations is related to the existence of par-
tition pairs with additional properties, and an algorithm is
developed which solves the problem stated in section 2.
Section 4 provides experimental results. Conclusions and
comments on future work are given in section 5.

2 Basic definitions and problem
statement

In this section the problem of synthesizing self-testable
controllers is reduced to an optimization problem at the
finite state machine level. To allow a precise problem
statement first some basic definitions are summarized and
the notion of finite state machines supporting self-testable
structures is introduced. Throughout this work it is
assumed that controllers are fully specified as mealy-type
finite state machines.

Definition 1: A mealy-type finite state machine
(fsm) is a 5-tupel M = (S, I, O, δ, λ), where S is a finite
non-empty set of states, I a finite non-empty set of inputs
and O a finite non-empty set of outputs. δ: S × I → S is
called the transition (or next state) function and λ: S × I
→ O the output function of M.

The functions δ and λ are represented by a state transi-
tion table. An entry in row s and column i represents the
values δ(s, i) / λ(s, i). This table is sometimes split into a
next state table and an output table with entries δ(s, i) and
λ(s, i), respectively. Figure 5 shows an example, which
is used throughout this paper.

To guarantee that a finite state machine can be imple-
mented by a self-testable structure as shown in figure 4 it
is necessary to require some additional properties.

3

1

3/1
2/0
1/1
4/0

0

1/1
4/0
3/0
2/1

S
I

1
2
3
4

Figure 5: Example finite state machine specification.

Definition 2: Let M = (S, I, O, δ, λ) be a finite
state machine. M is called a finite state machine support-
ing a self-testable structure, if and only if there are sets S1
and S2 and functions δ1: S1 × I → S2, δ2: S2 × I →
S1, such that S = S1 × S2 and δ((s1, s2), i) = (δ2(s2, i),
δ1(s1, i)) holds for all s = (s1, s2) ∈ S and i ∈ I.

Obviously the straightforward implementation of such a
finite state machine provides a self-testable structure with
Registers R1 and R2 for the sets S1 and S2, combina-
tional circuits C1 and C2 implementing the functions δ1
and δ2 and an output function λ.

Self-testable controllers can therefore be synthesized
from finite state machine specifications in two steps. First
a finite state machine which realizes the specification and
which supports a self-testable structure is constructed and
then state coding and logic minimization algorithms are
applied to this realization. The term realization is used in
the sense of definition 3.

Definition 3: Let M = (S, I, O, δ , λ) and M* =
(S*, I*, O*, δ*, λ*) be two finite state machines. M*
realizes M, if and only if there is a tripel (α, ι, ζ) of map-
pings α: S → S*, ι: I → I* and ζ: O* → O, such that
δ*(α(s), ι(i)) = α(δ(s, i)) and ζ(λ*(α(s), ι(i))) = λ (s, i)
holds for all s∈S and i∈I.

For a given finite state machine several realizations
supporting self-testable structures might exist. To obtain
self-testable controllers with small registers of about equal
size the following problem has to be solved:

OSTR (Optimal Self-Testable Realization): Let M =
(S, I, O, δ, λ) be a finite state machine. Find a realization
M* = (S1* × S2*, I*, O*, δ*, λ*) supporting a self-
testable structure, such that

(i) log2 |S1*| + log2 |S2*| is minimal, and

(ii)
|S1*|
|S2*| - 1 is minimal

for all solutions satisfying (i).
In the next section a constructive approach to solve this

problem is presented.

3 An algorithm for OSTR based on
partition pairs

The algorithm proposed in this section constructs a
solution for problem OSTR by means of partition pairs.
Before a detailed description is given the concept of parti-

tion pairs is repeated shortly and a theorem providing the
theoretical basis for the presented algorithm is proven.

In the following equivalence relations on the set of
states S of a finite state machine will always be considered
as subsets ⊂ S × S. This way the set theoretic opera-
tors „∩“ (intersection) and „∪“ (union) are defined for
equivalence relations and there is a partial ordering on the
set of equivalence relations given by „⊂“ (subset). For an
equivalence relation ⊂ S × S and an element s ∈ S the
corresponding equivalence class is denoted by [s] . The set
S/ of equivalence classes completely specifies , and for
convenience we define mostly by S/ and not by enu-
merating all the pairs.

Definition 4: Let M = (S, I, O, δ, λ) be a finite
state machine, and let , ⊂ S × S be equivalence rela-
tions on S. (,) is called a partition pair for M, if and
only if

(s, t) ∈ ⇒ ∀ i ∈ I: (δ(s, i), δ(t, i)) ∈ (*)
holds. If (,) is a partition pair, too, then (,) is called
a symmetric partition pair.

Condition (*) ensures that the state transition function
δ maps equivalence classes under the relation to uniquely
determined equivalence classes under , and thus induces a
well defined mapping [δ]: S/ → S/ between the quotient
spaces. For the solution of problem OSTR symmetric par-
tition pairs are of special interest. The following theorem
can be shown:

Theorem 1: Let M = (S, I, O, δ, λ) be a finite state
machine. Let denote the equivalence of states and let (,

) be a symmetric partition pair for M satisfying ∩ ⊂
. Let M* = (S*, I*, O*, δ*, λ*) be defined by

(i) S* := S/ × S/ , I* := I, O* := O,
(ii) δ*((s1, s2), i)) := (δ2(s2, i), δ1(s1, i)) with δ1(([s] ,

i)) := [δ(s, i)] and δ2([s] , i)) := [δ(s, i)] and
(iii) λ*((s1, s2), i) :=

λ(s,i) if s1 ∩ s2 ≠ ∅ and s ∈ s1 ∩ s2
o* else

,

where o* ∈ O is an arbitrary output value.
Then M* is a finite state machine supporting a self-
testable structure which realizes M.

Proof: The functions δ1 and δ2 are well-defined,
since (,) is a symmetric partition pair for M. The func-
tion λ* is well defined because of ∩ ⊂ . Obviously
M* supports a self-testable structure. With mappings α :
S → S*, α(s) := ([s] , [s]), ι : I → I*, ι(i) := i and ζ :
O* → O, ζ(o) := o the equations δ*(α(s), ι(i)) = α(δ(s, i))
and ζ(λ*(α(s), ι(i))) = λ (s, i) hold by definition of δ* and
λ*, i.e. M* realizes M. ❏

Theorem 1 is illustrated by the following example.
Example 1: Figure 6 shows a symmetric partition

pair for the finite state machine of figure 5. It can be eas-
ily verified that for S/ = {{1,

2},

{3,

4}} and S/ = {{1,
4},

{2,

3}} equivalence classes under are mapped by δ to

4

uniquely determined equivalence classes under and thus
(,) is a partition pair. The same is true for (,) and
∩ = {(1,1), (2,2), (3,3), (4,4)} ⊂ .

equivalence
classes
under

equivalence
classes
under

1

3
2
1
4

0

1
4
3
2

S I

1
2
3
4

δ

Figure 6: Effect of (,) on the next state table of the finite
state machine of figure 5.

The resulting mappings δ1: S/ × I → S/ and δ2:
S/ × I → S/ , which provide the state transition func-
tion δ*, are shown in figure.

1

[2]
[1]

0

[1]
[2]

S/
I

[1]
[3]

δ1 1

[3]
[1]

0

[1]
[3]

S/
I

[1]
[2]

δ2

Figure 7: Tables for δ1: S/ × I → S/ and δ2: S/ × I →
S/ .

If [1] and [1] are both encoded by 1 and [3] and [2]
are encoded by 0, then the constructed finite state machine
M* = (S/ × S/ , I, O, δ*, λ*) can be implemented by
the structure shown in figure 8. ❏

FF FF
=1 =1

I
λ* O

Figure 8: Structure of M*.

Theorem 1 has two consequences for the solution of
problem OSTR. Firstly, there is always a trivial solution
for problem OSTR, since the identity relation ⊂ S ×
S provides a symmetric partition pair (,) with
∩ ⊂ . The resulting finite state machine M* = (S/
× S/ , I, O, δ*, λ*) corresponds to „doubling“ the orig-
inal machine as shown in figure 3. Secondly, the problem
of finding an optimal self-testable realization for a given
finite state machine M = (S, I, O, δ, λ) reduces to the
problem of finding a symmetric partition pair (,) with

 ∩ ⊂ , such that
(i) log2 |S/ | + log2 |S/ | is minimal, and

(ii)
|S/ |
|S/ |

 - 1 is minimal for all pairs satisfying (i).

To solve this problem a search procedure has been de-
veloped which makes use of the lattice structure of the set

of partition pairs. In fact, it will be shown that the search
space can be mainly reduced to so-called Mm-pairs.

Definition 5: Let M = (S, I, O, δ, λ) be a finite
state machine and let , ⊂ S × S be equivalence rela-
tions on the set of states. Then m() denotes the ⊂-mini-
mal equivalence relation, such that (, m()) is a partition
pair, and M() denotes the ⊂-maximal equivalence rela-
tion, such that (M(),) is a partition pair. (,) is called
an Mm-pair, if both M() = and m() = hold.

The Mm-pairs for a finite state machine M form a lat-
tice, which has been studied intensively by [16]. The Mm-
lattice can be regarded as the skeleton for the set of all par-
tition pairs. The correspondence between Mm-pairs and
symmetric partition pairs is described by the following
theorem.

Theorem 2: Let M = (S, I, O, δ, λ) be a finite state
machine, and let , ⊂ S × S be equivalence relations.
The pair (,) is a symmetric partition pair, if and only if
there is an Mm-pair (*, *) with m(*) ⊂ ⊂ * and

* ⊂ ⊂ M(*), which is also a symmetric partition
pair.

Proof: Let (,) be a symmetric partition pair. Be-
cause (,) is a partition pair, by [16] there is an Mm-
pair (*, *) with ⊂ * and * ⊂ . Since (,) is
also a partition pair, * ⊂ implies ((s, t) ∈ * ⇒ (s,
t) ∈) and consequently (∀ i ∈ I: (δ(s, i), δ(t, i)) ∈
⊂ *) is true, which proves, that (*, *) is also a parti-
tion pair. By [16] this provides m(*) ⊂ ⊂ * and * ⊂
⊂ M(*).
If, conversely, there is an Mm-pair (*, *) which is a

symmetric partition pair, then by [16] (,) with ⊂ *
and * ⊂ is a partition pair and also (,) with ⊂
M(*) and m(*) ⊂ ❏

Consequently, if there is no Mm-pair for a finite state
machine M which is a symmetric partition pair, then there
is no symmetric partition pair for M. Furthermore Mm-
pairs mostly provide more balanced realizations because of

 ⊂ * and * ⊂ . With respect to problem OSTR it is
important to note, that for an Mm-pair (*, *) the pair
(m(*), *) has the minimal intersection of all pairs in
{(,) | m(*) ⊂ ⊂ * and * ⊂ ⊂ M(*)}, i.e. if
m(*) ∩ * ⊄ , then ∩ ⊄ for all pairs in {(,)
| m(*) ⊂ ⊂ * and * ⊂ ⊂ M(*)}.

The Mm-lattice for a finite state machine M = (S, I, O,
δ, λ) can be calculated from certain basis relations s,t,
where s,t := ∪ {(s, t), (t, s)} is the equivalence rela-
tion identifying the states s and t in S and distinguishing
all other states [16]. Based on the procedure described in
[16] and on the conclusions drawn from theorem 2 a search
tree (V, E) for problem OSTR is constructed as follows:

First the set := {m(s,t) | s, t ∈ S} is generated and
ordered arbitrarily (= { 1, 2,…, }). The nodes of
the searchtree correspond to subsets ⊂ . A node

5

new is a successor of a node old, if and only if
new = old ∪ { k} with k > max{i | i ∈ old},

i. e.:
V := ()
E := { (1, 2) ∈ V × V | 2 = 1 ∪ { k}

with k > max{i | i ∈ 1} }
The root of the search tree is ∅.
For each node in the search tree := (∪)t and

M() are calculated, where t denotes the transitive closure
of a relation . By [16] (M(),) is an Mm-pair. If (,
M()) is also a partition pair and M() ∩ ⊂ , then
(M(),) provides a solution for OSTR and the costs

log2 |S/M()| + log2 |S/ | and
|S/M()|

|S/ |
 - 1

are calculated. If M() ∩ ⊄ , then m() is calculated.
By theorem 2 (m(),) is a symmetric partition pair with
m() ∩ ⊂ M() ∩ . If m() ∩ ⊂ , then (m(),)
is a solution for OSTR and the costs are calculated for this
pair. Finally the solution with minimal costs is selected
to realize the specification.

This basic search procedure is of very high complexity,
since the number of nodes in the searchtree is | V | =
O(2

|S|2). But the following lemma provides a criterion to
prune the search tree.

Lemma 1: Let M = (S, I, O, δ, λ) be a finite state
machine, and let (V, E) be the search tree defined above.
For a node (1, 2) ∈ E let 1 := (∪ 1)t and 2
:= (∪ 2)t. If m(1) ∩ 1 ⊄ , then m(2) ∩ 2 ⊄ .

Proof: By definition of the searchtree 1 ⊂ 2, and
by [16] this implies m(1) ⊂ m(2), and thus m(1) ∩

1 ⊂ m(2) ∩ 2. ❏

As a consequence of lemma 1, once a node in the
searchtree with M() ∩ ⊄ is reached, all of its succes-
sors have this property and the subtree rooted at can be
discarded. As demonstrated by the experimental results de-
scribed in the next section this leads to an enormous reduc-
tion of the computational effort.

4 Experimental results
The algorithm for problem OSTR described in section 3

has been implemented as a depthfirst procedure and has
been applied to most of the fully specified finite state ma-
chine benchmarks distributed for the International Work-
shop on Logic Synthesis ’93 [20]. The results are shown
in table 1. Column 2 contains the number of states in the
original finite state machine, and columns 3 and 4 contain
the number of states in the factors S1 and S2 of the best
realization found. Columns 5 and 6 list the required num-
ber of flipflops for a conventional BIST and for a BIST
with the optimized structure by the presented synthesis
approach. Except for tbk, for all examples the exact solu-

tion for OSTR could be calculated. For tbk the solution
obtained within a given timelimit is shown.

Name | S | | S1 | | S2 |
FFs
conv.
BIST

FFs
pipeline
structure

bbara 10 7 7 8 6
bbtas 6 6 6 6 6
dk14 7 7 7 6 6
dk15 4 4 4 4 4
dk16 27 24 24 10 10
dk17 8 8 8 6 6
dk27 7 6 7 6 6
dk512 15 14 15 8 8
mc 4 4 4 4 4
s1 20 20 20 10 10
shiftreg 8 4 2 6 3
tav 4 2 2 4 2
tbk*) 32 16 16 10 8

Table 1: Results of depthfirst search procedure for OSTR.
*) timeout

The practical impact of lemma 1 on the computational
effort is demonstrated in table 2. Column 3 lists the over-
all number |

V

| of nodes in the searchtree for OSTR in
contrast to the number of nodes that had to be investigated
when pruning the searchtree according to lemma 1
(column 4).

Name | S | | V |
nodes

investigated

bbara 10 243 815
bbtas 6 216 175
dk14 7 210 19
dk15 4 24 7
dk16 27 2206 337041
dk17 8 220 63
dk27 7 216 203
dk512 15 256 343853
mc 4 27 13
s1 20 2162 323
shiftreg 8 28 49
tav 4 27 47

Table 2: Impact of lemma 1 on the computational effort.

The results in table 1 show that for eight examples a
nontrivial solution for OSTR, i.e. a solution with |

S 1

|
< |

S

| or |

S 2

| < |

S

|, could be found. For shiftreg and
tav even the lower bound |

S 1

| · |

S 2

| = |

S

| is
achieved. In these eight examples the combined networks
C1 and C2 need to implement less state transitions than
the original network C. Depending on the implementation

6

style significant hardware savings are obtained compared to
simply doubling C as shown in figure 3, whereby the
advantages with respect to fault coverage and speed are
retained. In four examples even the number of flipflops
required for a self-testable pipelined controller is smaller
than the number required for a conventional BIST.

5 Conclusions and future work
A method has been presented for implementing self-

testable controllers without doubling the system registers
during test mode. The proposed pipeline-like structure does
not contain any direct feedback loops and is partitioned by
two system registers. During self-test these registers per-
form test pattern generation and signature analysis alterna-
tively. This architecture reduces the delay imposed by by-
passing test registers and increases the fault coverage.

A synthesis procedure has been presented for generating
minimal pipelined realizations from state transition dia-
grams. In most cases this optimized solution is superior
to simply doubling the registers and combinational net-
works, and in many cases the number of flipflops is less
than it is required for a conventional BIST. This indicates
that not only higher speed and fault coverage is obtainable
this way, but also area can be saved.

Future work will concentrate on modifying the state
transition diagram to obtain functionally equivalent ma-
chines whose self-testable realizations lead to better solu-
tions of problem OSTR.

6 References
1 V. D. Agrawal, C. R. Kime, K. K. Saluja: A Tutorial on

Built-In Self-Test, Part 1: Principles, IEEE Design and
Test of Comp., Vol. 10, No. 1, March 1993, pp. 73-82

2 P. Ashar, S. Devadas: Irredundant Interacting Sequential
Machines Via Optimal Logic Synthesis, IEEE Trans. on
CAD, Vol. 10, No. 3, March 1991, pp. 311-325

3 P. Ashar, S. Devadas, A. R. Newton: A Unified Approach
to the Decomposition and Re-decomposition of Sequen-
tial Machines, Proc. 27th Design Automation Conf.,
1990, pp. 601-606

4 Z. Barzilai, D. Coppersmith, A. L. Rosenberg: Exhaustive
Generation of Bit Patterns with Applications to VLSI
Self-Testing, IEEE Trans. on Comp., Vol. c-32, No. 2,
Feb. 1983, pp. 190 - 194

5 R. K. Brayton, G. D. Hachtel, C. T. McMullen: Logic
Minimization Algorithms for VLSI Synthesis, Kluwer
Academic Publishers, Boston 1984

6 R. K. Brayton et al.: MIS: A Multiple-Level Logic Opti-
mization System, IEEE Trans. on CAD, Vol. CAD-6, No.
6, 1987, pp. 1062-1081

7 V. D. Agrawal, K.-T. Cheng: Finite State Machine Syn-
thesis with Embedded Test Function, Journal of Electronic
Testing Theory and Applications, Vol. 1, No. 3, Oct.
1990, pp. 221-228

8 K.-T. Cheng, V. D. Agrawal: State Assignment for
Testable Design, Int. Journal of Computer Aided VLSI
Design, Vol. 3., March 1991

9 S. T. Chakradar, S. Kanjilal, V. D. Agrawal: Finite State
Machine Synthesis with Fault Tolerant Test Function,
Proc. 29th Automation Conf., Anaheim, Ca., 1992, pp.
562-567

10 W. Daehn, J. Mucha: Hardware Test Pattern Generation for
Built-In Test, Proc. IEEE Int. Test Conf., Philadelphia,
1981, pp. 100 - 113

11 S. Devadas, K. Keutzer: A Unified Approach to the Syn-
thesis of Fully Testable Sequential Machines, IEEE Trans.
on CAD, Vol. 10, No. 1, Jan. 1991, pp. 39-50

12 S. Devadas et al.: MUSTANG: State Assignment of Finite
State Machines Targeting Mulitlevel Logic Implementa-
tions, IEEE Trans. on CAD, Vol. 7, No. 12, Dec. 1988,
pp. 1290-1300

13 B. Eschermann, H.-J. Wunderlich: Parallel Self-Test and
the Synthesis of Control Units, Proc. 2nd European Test
Conf., Munich, 1991

14 B. Eschermann, H.-J. Wunderlich: Optimized Synthesis
Techniques for Testable Sequential Circuits, IEEE Trans.
on CAD, Vol. 11, No. 3, March 1992, pp. 301-312

15 Martin Geiger, Thomas Müller-Wipperfürth: FSM Decom-
position Revisited: Algebraic Structure Theory Applied to
MCNC Benchmark FSMs, Proc. 28th Design Automation
Conf., San Francisco, 1991, pp. 182-185

16 J. Hartmanis, R. E. Stearns: Algebraic Structure Theory of
Sequential Machines, Prentice Hall, Englewood Cliffs,
1966

17 S. Hellebrand, H.-J. Wunderlich, O. Haberl: Generating
Pseudo-Exhaustive Vectors for External Testing, Proc.
Int. Test Conf., Washingtion, D. C., 1990, pp. 670-679

18 K. Kim, D. Ha, J. Tront: On Using Signature Registers as
Pseudorandom Pattern Generators in Built-in Self Testing,
IEEE Trans. on CAD, Vol. 7, 1988, pp. 919-928

19 B. Koenemann, J. Mucha, G. Zwiehoff: Built-in Logic
Block Observation Techniques, Proc. IEEE Int. Test
Conf., Cherry Hill, N. J., 1979, pp. 37 - 41

20 K. McElvain: IWLS‘93 Benchmark Set: Version 4.0, dis-
tributed as part of the IWLS‘93 benchmark distribution

21 I. Pomeranz, S. M. Reddy: Design and Synthesis for
Testability of Synchronous Sequential Circuits Based on
Strong-Connectivity, Proc. IEEE 23rd Int. Symp. on
Fault-Tolerant Computing, Toulouse, 1993, pp. 492-501

22 G. Saucier, M. C. De Paulet, P. Sicard: ASYL: A Rule-
Based System for Controller Synthesis, IEEE Trans. on
CAD, Vol. CAD-6, No. 6, Nov. 1987, pp. 1088-1097

23 T. Villa, A. Sangiovanni-Vincentelli: NOVA: State
Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations, Proc. 26th Design Automa-
tion Conf., Las Vegas, 1989, pp. 327-332

24 P. Weiner, E. J. Smith: Optimization of Reduced Depen-
dencies for Synchronous Sequential Machines, IEEE
Trans. on Electronic Comp., Vol. EC-16, No. 6, Dec.
1967, pp. 835-847

25 H.-J. Wunderlich: Self Test Using Unequiprobable Ran-
dom Patterns, Proc. IEEE 17th Int. Symp. on Fault-
Tolerant Computing, Pittsburgh, 1987, pp. 258-263

