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Abstract 
In order to a register transfer structure tes/able, il 

is u.sually divided into /wIerional blocks that can be tested 
independently by various test methods. The tesl palUms 
aTt shifttd in or generated autonomously at the inpu.ts of 
tach block. The. test ruponsu of a block are compacted or 
obstTved 0.1 its output register. In this paper a unified 
method fOT asumbling all the single tests to a global 
sCMdule is presented. It is compatible with a variety 0/ 
dif/utnl test 1M/hods. The descriJnd scheduling procedures 
reduce the ovuoll test lirM and minimizt the number of 
intemaJ. registers that have to bt made directly observable. 

KEYWORDS: Built-in self-ust, data path. SJnlhesisfof 
testability, test scheduling 

1. Introduction 
Integrated circuits and systems usually tequire a divide 

and conquer approach for testing. The circuit is divided 
into subcircuits whose inputs and outputs are easily con-
trollable and observable. respectively, ()r can generate 
patterns and compact test responses in a self-test mode. 
The work presented here assumes that during high-level 
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Figure 1: Example of test units at register transfer level 

(with test registers Tl, ...• T7) 
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synthesis or during top-down design test circuitry has 
already been added at the register tranfer level. and the 
circuit has been segmented into subcircuits that are 
surrounded by test registers (e.g. [1. 16]). Figure I shows 
an example. 

The test registers can be shift registers included in a 
(partial) scan path. or multifunctional regislern for generat-
ing test patterns and compacting test responses in an auto-
nomous mode (BIST registers). Compaction is mostly 
done by signature analysis whereas the generated patterns 
may be random (BILBO [10]), weighted random (OURT 
[20]), pseudo-exhaustive 12], 01" even deterministic patterns. 

For test execution, the order of testing the subcircuils 
has to be specified. The test schedule should achieve a 
shon test time, and its implementation should cause only 
low additional hardware cost. In this paper a scheduling 
approach for assembling a complete test is presented 
which allows combining various test strategies, e. g. 
(weighted) random, (pseudo-)exhaustive or deterministic, 
and extemal scan-based or built-in test. 

If only a scan-based external test is considered, the test 
hardware overhead is independent of the test schedule. In 
\1, IS), a segmentation approach for this si tuation is 
des<:ribed, all subcircuits are tested simultaneously. The 
first test session lasts until the subcircuil with the 
smallest test length has been tested completely. After-
wards. test patterns are applied only to the remaining 
subcircuits. [IS] proposed a procedure to order the registers 
included in the scan chain such that the exccution time of 
this test schedule is minimized. 

For self-testable c ircuits, a different segmentation is 
appropriate. In order to test a panion of the circuit, at least 
one test register must collect test responses. Thus the 
smallest region that can be tested independently (tert unit) 
consists of one test register that can be configured as a test 
response collector, the block of logic connected to the 
inputs of this register, and a set of test registers to supply 
test patterns for the inputs of the block. 

In this way, every test unit u(Ti) is uniquely determined 
by the test register Tj at its outputs. In figure I , the test 
unit U(T4) includes test register T4 (collecling test 
responses), logic block I, and the test registers TI and T2 
(supplying patterns). The block contained in the test unit 
usually consists of combinational or pipeline structured 
logic. Test units may overlap. 



In this paper. we consider block tests as defined in (5) . 
A block test is a test of a !est unit using one specific test 
method. Block tests are regarded as indivisible entities for 
scheduling. Generally not all block tests can be perfonned 
simultaneously since they share some test resources that 
can be used only exclusively. If for instance delenninistic 
patterns are applied. the block !ests of test units u(f4) and 
u(TS) in figure I might have contradicting requirements on 
the contents of register T2. These restrictions are described 
in the test incompatibility graph GI := (U. Ed (5). The 
nodes UE U of this graph represent the block tests. the 
edges connect pairs of block tests that cannot be perfonned 
simultaneously (incompatible block tests). 

If a test unit is tested by multiple test methods (e.g. 
applying random patterns followed by some detenninistic 
patterns). there are muhiple block tests for this test unit. 
These block tests are pairwise incompatible and form a 
complete subgraph of the test incompatibility graph. For 
simplicity. we assume in the following that there is just 
one block test for each test unit . Then we do not have to 
distinguish between test units and their block tests 
explicitly. But the scheduling procedures presented in this 
paper can easily be extended to the general case of test 
units with multiple block tests. 

Based on test units. the test schedule can be structured 
in the following way. A teSt session Si is a set of pairwise 
compatible leu units that are processed iimuhaneously. 
A Itst schtdult S:= (sr, E) is described by a sequence of 
test sessions 5::: (SO. 51, ...• !>d-l)' a repetition number r, 
and a subset E of test registers whose contents are 
evaluated at test end. The set E must include all the test 
registers at the primary outputs since the signatures in 
these test registers cannot influence any other signatures. 
sr is a shan hand nOlation for the sequence where s is 
concatenated r times. 51 =5, 52=55. etc. 

In order to minimize the number of test sessions, the 
set of test units must be partitioned into a minimal 
number of subsets with pairwise compalible test units. 
This problem is equivalent to coloring the nodes of the 
test incompatibility graph with a minimal number of 
colors such that no edge connects two nodes of the same 
color [5, I I}. The nodes with the same color represent a 
set of compatible test units. If for each color one test 
session is formed. the number of test sessions is 
minimum. During test execution, all the test units of a 
test session are staned simultaneously. and the test session 
continues until the test unit which requires the largest test 
length has been finished. 

The test schedule also has an impact on the number of 
signatures that have to be evaluated. A BIST register that 
operates in the signature analysis mode can get a faulty 
signature if the processed test unit contains a detectable 
fault. or if at least one of the involved pattern generating 
DIST registers has got a faulty signature some time before 
and thus produces a pattern sequence that differs from the 
fault-free case. In this way faulty signatures can propagate 
through the circuit provided that the test registers are not 

"" 

reinitializ.ed during test execution [18). If for instance in 
figure I the !est of unit u(TS) produced a faulty signature 
in test register TS. and afterwards this register generates 
patterns for u(T1). then u(T1) gets an entirely wrong 
pauern sequence and the responses observed in T1 differ 
from the fault-free situation. 

In this paper the propagation of faulty signatures is 
utilized to reduce the amount of self-test hardware. For 
many circuits the scanning of test registers and the 
evaluation of signatures can be restricted to a subset of the 
test registers and must be done only once at the end of the 
entire test. The advantages of this approach are short test 
times, a simplified self-test control and savings in hard-
ware overhead by omitting the internal scan path. 

The rest of this paper is organized as follows: The next 
section introduces test units more formally and discusses 
the compatibility of !est units that are subject to different 
test strategies. In section 3. the resulting test incompati-
bility graphs are constructed and test scheduling is reduced 
to graph coloring. Furthennore. an algorithm is presented 
which builds test schedules such that no internal signa-
tures need to be evaluated. an internal scan path is not 
required, and the complete test infonnation is available at 
the primary outputs. Finally, in section 4 some experi-
mental results are discussed. 

2. Test units 
2. I Regislu transrer description 

Test scheduling procedures require a description of the 
circuit under teSI including DIST and scan registers. 
A common description is the register graph that is 
produced as an intennediate structure during high-level 
synthesis or during top-down design (see figure 2). 

The nodes of the register graph GR :::: (VR. ER) 
represent the registers, and there is a directed edge between 
two nodes if there exists a path of combinational elements 
between the corresponding registers. The node set VR 
includes the subsets 
N: Registers without any testability features 
0 : Directly accessible registers 

(primary inpul5 I. primary outputs 0, and registers 
that are integrated into a partial or complete scan path) 

T: BIST registers for generating test patterns and com-
pacting test responses in an autonomous mode 

Some or all DIST registers are directly accessible. In a 
fully self-testable design we have T:::> I u O. 

The test register graph G,.;= (VT, ET) has the node 
set VT := OuT. and for each path in GR that connects 
two nodes of VT only via nodes of N there is a correspond-
ing edge in ET- Iffor inSlance 0 = Rsl and T=0 
(figure 2), then the test register graph is as shown in 
figure 3. 
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Figure 2: Registcr (fansftr structure: and corresponding 
register graph 

The hardware overhead for testability reasons depends on 
both the number of scannable: registers and the number of 
8 1ST registers. Including BIST registers in It (partial) scali 
path increases the overhead as the BIST registers need an 
extra shift mode:, additional area is required for wiring, and 
test control is more compleJ{, 

2.2 Placement or test registers 
In order to obtain leSiable subcircuits, the scannable 

registers and the BIST registers must be placed at appropri-
ate positions. Breaking all cycles in the circuit structure 
by It partial scan path bounds the length of the required lest 
sequences to the sequential depth of the circuit [4,7,12. 
14]. 
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Figure 3: Test register graph and test unilS for scan-based 
testing 

The placement of test registers as shown in figure 3 
breaks al1 cycles and is sui ted to scan·based testing. As T,' 
is not used for collecting test responses, we obtain two 
test units. 

For scan-based testing, the output register of a test unit 
may also serve as one of its input registers, For BIST, 
however, the circuit SlnlCture obtained from breaking all 
cycles is not a priori suited to BIST since during self-
testing some registers may have 10 generate patterns and 
compact test responses concurrently (e.g. T4'). This kind 
of parallel self-test, where the signatures are used as test 
patterns, is feasible in some cases 19, 19), but in general 
the required properties of the test patterns (exhaustive, 
random , etc.) cannot be guaranteed. So additional test 
registers are required such that all cycles are broken at least 
twlce. Hence for BIST the set T must include RI, ... , R" 
and we obtain the test register graph and the test units 
shown in figure 4. 
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Figure 4: Test register graph and test units for BrST 

2.3 Compatibility or tes t units 

Test units can be tested by detenniniSlic, random, 
weighted random or (pseudo-)exhaustive patterns. The 
chosen test methods have an impact on the compatibility 
of test units: 
a) Scan-based test (patterns generated externally, 

responses evaluated externally) 

2" 

al : Random patterns: All test units can be processed 
concurrently as all the input patterns are equally 
disuibuted, 

a2: Weighted random, pseudo-exhaustive or 
deterministic patterns: Two test units are 
compatible if their input regi sters are disjoint , 
Otherwise they are incompatible si nce weights, 
distributions, and pattern sets are spec.:ific to each 



lesl unit. In figure I only the lesl unilS U(T4l and 
u(TS) are incompatible. 

b) BIS T (patterns generated inlemally. 
responses compacted inlemally) 

bJ : RCUldom paltltnu: Two test unilS are incompati-
ble if Ihe output register of one is an input 
register of the othef. In this situation the register 
would have to compact and generate patterns 
Simultaneously, and random properties could not 
be guaranteed. In the ell.ample of figure I, u(TS) 
and u(T,) are incompatible. 

b2: Wltighud random. pseudo·uhouslivlt or determi-
nislic pal/ems: Tn addition to the 'condition of b l . 
here also the input registers have to be disjoint. 
Hence u(TS) and u(T,) are incompatible, but also 
u(T4) and u(Ts)· 

Using these conditions, the test incompatibility graph 
0 1 :- (U, Ell is constructed where the edges connect 
incompatible test units. Depending on the test method 
applied, figure 5 shows the resulting test incompatibi lity 
graph for the circuit of figure 2. 
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Figure 5: Test incompatibi li ty graphs for the structure of 
figure 2 

3. Test scheduling 
In this section, general test scheduling procedures arc 

presented that can be applied to circuilS with a variety of 
different testing techniques, LeI E be the set of all the test 
registers that arc used for collecting test responses. If the 
only objecti ve is a minimum number of test sessions, 
then a test schedule S '"' «SO. $1 .... , id-I). E) has to be 
constructed where d is minimum. This problem can be 
solved by coloring the test incompatibility graph G,. 

In order to reduce the BIST hardware overhead, the 
number of eVlluated signatures should be minimized. The 
signalures collected in the test registers at the primary 
outpulS must always be evaluated since they cannot 
influence any otncr signatures. Usually these Signatures 
arc sufficient. Only if some test registers at the primary 
outpulS have a re latively high alilSing probability, other 
test registers must be added 10 the minimal sel of teSI 
registers, Emin, whose conlents have 10 be evaluated al 
tesl end. 1lIe following problem hIS to be solved. 

'" 

Test scbeduling wltb • nxed (minlm.1) set of 
eva lu.ted slgn.tures: 

Given: • Test register graph, Gr (including .lilSing 
probabilities of all signature lIIa1yz.ers) 

• Set of test registers whose signalures are 
evaluated at test end. Emin 

• Test incompatibility graph. GI 
• Set of faults. F 
• Requi red fau lt covenlgc. FCo 
• Number of different test sessions, d 

Find: Test schedule S '" «SO, sl, .. " Sci.d. Emin) 
where fault coverage is at lelSt FCo and r is 
minimum 

It can be shown Ihal the corresponding decis ion 
problem contains the graph K-colorability problem (6J as 
a special ease and hence is NP·hard. 

Each fault located in a nonredundant part of a test uni t 
u(TiI) can cause a faulty signature in the corresponding 
signature register Til' Propagating this faulty signature 
along a path (Til' Th, ,." Ti. ) of the tcst register graph 
GT requires the test units u(Til)' u(Til)' .. " u(Ti,) 10 be 
processed in the same order, and the tcst session sequence 
must look like ( ...• lu(Th) •... , ..... (u(Ti0 .... J, ... , ... , 
I u(Ti.), ... 1, ... ). Thus each required propagation imposes 
a condition on the tesl SC$sion sequence. 

For each test register used IS I Signature analyzer, it is 
sufficient to consider a shortesl path to a test register of 
Emin. 1bere always ellists such a path since the infonna-
tion in all nonredundant pans of the circuit hIS an effect 
on tnc data at the primary outputs. The resulting con-
ditions can be summarized by a directed tree (prltcedeflu 
tree) wncre lhe nodes represent the test units and an edge 
(u(T i). u(Tj» means that the test unit U(Ti) must be 
processed before lhe test unit u(Tj)' 

Each node u(Ti) of the tree is marked with a value 
dist(u(Ti» that gives the length of the longest path leading 
to u(Ti). In order to propagate the effects of all faullS to 
the signatures at the primary outputs. at least dist(u(TO» 
test sessions must be executed . Figure 7 shows the 
precedence tree for the circui t of figure 6. 

The leSI session sequence (S(), 51, ... , Sci· I)! that 
satisfies all Ihe conditions given by the test 
incompatibilily graph and Ihe precedence tree is built in 
f ltvtrsed limit ordtr. Since Ihe signatures at the primary 
outputs cannot influence any other signatures. il is best to 
collect them during the lISt test session. The signatures 
that can influence tnc signatures I t the primary outpulS 
should preferably be COlJecled during the lISt but one test 
session, and so on. 

At the beginning, all the lest sessions are empty, and 
only the root of the precedence tree is marked IS scheduled. 
f n each step, all nodes of the precedence tree that have 00l 
yet been marked as scheduled, but whose immediate 



have already been marked as scheduled, can be 
included in the next test session. If not all of these 
candidates are compatible to each other and to the test 
units already included in the test session, the nodes with 
higher distance values are preferred. 1bese priori ties help 
to keep the test session sequence as short as possible. 1be 
newly included nodes are also marked as scheduled. For the 
example circuit of figure 6 and d=3, the resulting test 
schedule is «l u(T3), u(TS>l, (u(T4). u(T7)1. lu(T2), 
u(TS),u(T9)Jf. ITS. T91)· 

Figure 6: Example circuit 
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" u(H) u(T8) ""., , u(T8) " " " u(TS) u(TS) u(T5) , """ , 

""'" . 
Figure 7: Test register graph (left). test incompatibi lity 

graph (center), and precedence tree (right) for 
the circuit of figure 6 

If the constructed test schedule (sr, Emin) does not 
achieve the required fault coverage, the number of 
repetitions must be increased unt il the value FCo is 
reached (ct. ( 181). Of course a fault coverage value greater 
than the value obtai ned withoUl test response comp3l.:tion 
(and fault masking) cannot be obtained. 

The method desc ri bed above is easily extended to 
circuits containing some lest units that are tes ted using a 
scan path. The scan nable registers that collect teSt 
responses are added to the set Emin before the precC(!ence 
tree is constructed. Then the procedure described above is 
applied in the same way. 

m 

4 . Experimental results 
This section presents the results achieved on three 

different designs. The circuit M U impleme nts matrix 
mul tiplication. and its register transfer structure was 
generated by a high-level synthesis system (8]; the signal 
processor SP is the result of a manual design as described 
in [ 13]; and 535932 is one of the ISCAS'89 sequential 
benchmark circu its [3) whose description at register 
transfer level has been constructed us ing the method of 
[17). The other sequential benchmllfk circuits cannot serve 
as examples since they seem to be control units with an 
irregular structure, and their descriptions at register transfer 
level are not known . Table I and table 2 list the 
characteristic data of the considered cin.:uits. 

circu it II primary II primary II gates II flip-
inputs outPUtS 0,.. 

MU 43 26 ". 183 
SP 83 " 13.54 239 

13S932 " 320 1606S 1728 .. Tabk J: Gale level charactensuc$ of lhe Circu its 

circuit " regiuers " scan regiuers " BI ST regi:ners 

deSIgn 
(desian with 
external 

(design with 
internal 

MU 24 14 " SP 68 44 " s3.5932 67 40 67 
Table 2. Registers. scannable reglsten, and B1ST registers 

For the external scan-based test using weighted random, 
pseudo-exhaustive or detenninistic patterns, ali the regis-
ters at the primary inputs and outputS were included in 
a scan chain and in addition a minimal number of registers 
such that each cycle of the register graph conlains at least 
one scannable register. Then the test incompatibili ty 
graphs were construc ted. and the test schedules with 
a minimal number of tes t sessions were detennined using 
the graph coloring method (table 3). Compared to sequen· 
tially tes ting all the test units, the number of test sessions 
is reduced by 50% (MU), 56% (SP) and 24% (s35932), 
respect ively. 

circuit 1/ test units scheduling method " sessions 
MU JO araph coloring , 
SP " graph coloring " $3S932 37 graph coloring 28 

Tabl, J: Test scheduling for external tUI 
For the internal test, multifunctional test registers were 

placed at the primary inputs and o utputs, and a minimal 
number of additional BIST registers was insened such that 
each cycle of the register graph includes at least two of 
them. In general , we get o ther test units than those ob-
tained in the scan deSigns. The test incompatibility graphs 
differ for random patterns on the one hand and weighted 
I1lndom. pseudo-exhaustive or deterministic patterns on the 
OIherhand. 



Table 4 and table 5 show the scheduling results of the 
graph coloring method and the procedure described in 
section 3 (called SEQUENCE). The graph coloring 
method assumes that all test regis ters are observable. 
whereas SEQUENCE drives the signatures to the primary 
outputs and thus reduces the number of test registers that 
must be observable from 15 to 4 eMU), from 31 to 13 
(SP). and from 64 10 10 (s35932), respeclively. d is the 
number of d ifferent tes t sessions. r denoles how often 
these: test sessions musl be executed so thaI the faults of 
all test ullits can influence the signatures at the primary 
outputs. 1be algori thm provides various solutions where a 
larger d in general complicates test conrrol. and a larger r 
prolongs test time 

circuit scheduling #sessions (r - d.) 
method 

MU graph coloring 2 
(IS test un its) 'fQUENCE 3 - 2 

S , -, 
" SP Sl!r coloring 3 
31 um units1 S ,'4 

535932 graph coloring 2 
(64 test units) '-2 

, - 7 
Table 4: Test scheduhng for Internal test usmg random 

pallerns 
Table 5 shows that us ing weighted random, (pseudo-) 
exhaustive or deterministic pallems has a strong impact on 
self-test control and test application time as both the 
number of different test sessions, d. and the total number 
of executed test sessions r -d increase . . 

circuit scheduling II sessions (rod) 
method 

MU graph coloring , 
(IS test units) 2'0 

J ' 7 ,p graph coloring 11 
131 test units) , I • II 

535932 graph coloring 28 
64 test unitsl S , ' 29 

Table j: Test scheduling for mlernal test usmg weIghted 
random. pseudo-exhaustive or deterministic panems 

5 . Conclus ions 
A unified method for test scheduli ng is presented that 

takes into account combinations of various test methods 
as external. scan-based or bui lt-in tes t, and random. 
weighted random, (pseudo-)exhaustive or deterministic 
paltems. In order to get a test schedule with a minimal 
number of tes l sessions, a graph coloring approach is 
applied. For BIST, the scheduling algorithm has been 
extended such that a shon test application lime (compared 
to testing all the test un its sequentially) and reduced test 
hardware overhead are obtained. It drives internal signatures 
to the primary outputs of the circuit such thai no shifl 
mode of the BIST registers and no internal scan path are 
required for scanning signatures. Moreovcr. signatures need 

only be evaluated after completing the entire test. and self-
test conrrol is simplified. 
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