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The Pseudoexhaustive Test of Sequential Circuits 
Hans-Joachim Wunderlich, Associate Member, IEEE, and Sybille Hellebrand, Associate Member, IEEE 

Abstract-The concept of a pseudoexhaustive test for sequen- 
tial circuits is introduced in a way similar to that which is used 
for combinational networks. Using partial scan all cycles in the 
data flow of a sequential circuit are removed, such that a com- 
pact combinational model can be constructed. Pseudoexhaus- 
tive test sequences for the original circuit are constructed from 
a pseudoexhaustive test set for this model. To make this con- 
cept feasible for arbitrary circuits a technique for circuit seg- 
mentation is presented which provides special segmentation 
cells as well as the corresponding algorithms for the automatic 
placement of the cells. Example circuits show that the pre- 
sented test strategy requires less additional silicon area than a 
complete scan path. Thus the advantages of a partial scan path 
are combined with the well-known benefits of a pseudoexhaus- 
tive test, such as high fault coverage and simplified test gener- 
ation. 

I. INTRODUCTION 
N [20] and [21] the pseudoexhaustive test was proposed I in order to reduce the costs of test pattern generation 

and test application. For a primary output o of a combi- 
national circuit, the cone CO is the subcircuit containing 
all predecessors of o (Fig. 1) .  A cone is tested by applying 
all possible patterns at its primary inputs. The total num- 
ber of all these patterns is smaller than an exhaustive test 
if the cones are sufficiently small. 

An obvious advantage of this test strategy is the high 
fault coverage: within a cone all combinationally faulty 
functions are detected. Faulty sequential behavior in- 
‘duced by stuck-open faults can be detected by applying 
the special pattern sequences described in [28]. Moreover 
the pseudoexhaustive test sets can be generated by special 
feedback shift registers [26], [3], [25], which may be used 
as a self-test technique or for an external low-cost test. A 
similar approach is possible for CMOS faults [28]. 

In this paper, we extend the approach to sequential cir- 
cuits. Using Roth’s notation of time frames, a sequential 
circuit is transformed into a combinational representation 
[22]. Its size increases linearly with respect to the circuit 
size if the data-flow graph of the circuit does not contain 
any cycles [27], [18]. Often the data-flow part of the cir- 
cuit is acyclic by itself; otherwise flip-flops must be in- 
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cluded in a partial scan path [24], [ 11, [2], [ 181. To obtain 
a pseudoexhaustive test, we generate a pseudoexhaustive 
test set for the combinational representation and transform 
these pattern sets into the respective sequences for the 
original sequential circuit. 

A pseudoexhaustive test of the combinational represen- 
tation is not applicable if a primary output depends on a 
very large number of primary inputs. In the presented ap- 
proach, this problem is solved by hardware segmentation, 
where additional segmentation cells are used to logically 
disconnect certain circuit lines in the test mode. 

A uniform technique is presented integrating the partial 
scan design and the segmentation of a sequential network 
in a way similar to that proposed in [13]. Examples show 
that the additional silicon area needed for the partial scan 
path and the segmentation cells together is less than the 
overhead for a complete scan path. As an additional ad- 
vantage we have complete fault coverage without expen- 
sive test pattern generation. 

After this introductory section, we sketch some basic 
graph-theory definitions and facts which are necessary in 
our approach to circuit modeling. In Section I11 we pre- 
sent the cells necessary for the design of pseudoexhaus- 
tively testable circuits. Besides the well-known LSSD 
latches, these are the segmentation cells already men- 
tioned. In Section IV we discuss placement algorithms 
which make a pseudoexhaustive test feasible using a min- 
imum number of these cells. 

In Section V we discuss pseudoexhaustive test se- 
quences. The sequences can be generated by linear feed- 
back shift registers (LFSR’s) in a way similar to that pro- 
posed for combinational networks [5]. Finally, we present 
some examples. 
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11. CIRCUIT MODELING AND RESTRICTIONS 
We assume that the sequential circuits are described at 

gate level, and that the following restrictions are fulfilled. 

The circuits are purely synchronous. 
Only D flip-flops are used. 
The D flip-flops can be augmented according to the 
rules of either level-sensitive or edge-triggered scan 
design (LSSD, ETSD). 
In order to control a partial scan path for ETSD cir- 
cuits, the test signal, T ,  must block the clock of the 
unscanned flip-flops. For LSSD, shift clocks and 
system clocks must be separated. 

Such a circuit is modeled by a directed graph G : = (V, 
E )  with vertices V and edges E C V2. V : = Vc U Vs U 
I is a disjoint union of combinational vertices, Vc, se- 
quential vertices, Vs, and inputs, I. The outputs of the 
gates are represented by Vc; the outputs of the flip-flops 
are represented by V,; and I contains both the primary and 
the pseudoprimary inputs. The pseudoprimary inputs cor- 
respond to the flip-flops within the scanpath. An example 
circuit and its circuit graph are shown in Figs. 2 and 3, 
respectively. 

The vertices of this circuit graph are partitioned into the 
three sets: Vc = (6, 8, 9, 12, 13, 15, 16, 18}, Vs = (7, 
10, 11, 14, 17}, a n d I =  { 1 , 2 ,  3 , 4 ,  5 ) .  

In general, we have ( U ,  w) E E if node U is an input of 
a component, gate, or flip-flop with output node w. The 
primary outputs are a subset 0 C V. For the example 
circuit, we have 0 : = { 14, 15, l8}. 

In the following some basic graph-theory notions are 
summarized; the corresponding symbols are listed in the 
Appendix. For a vertex v E V the set of direct predeces- 
sors i spd(v)  := {w E V I  (w, U )  E E } ,  and sd(v) := {w 
E V 1 ( U ,  w) E E }  is the set of direct successors. The set 
of predecessors is defined as p(v) : = {w E I/ 1 there is a 
path from w to U } ,  and s(v) : = {w E V 1 there is a path 
from v to w} is the set of successors. Finally a circuit 
graph G is called consistent if { U  E V I pd(v)  = 0} = I 
holds. We deal only with consistent circuit graphs. 

Only the topology of the storage elements Vs deter- 
mines the test length. It is described by the so-called S 
graph. 

Definition I: Let G : = (I/, E )  be a circuit graph with 
V : =  V ,  U Vs U Iand  0. Its S graph Gs := (Vs ,  E') is 
defined by: 

a) V s  : = Vs U I ,  Is : = I and 
Os : = { U  E V s  I there is a path w from v to an output 
o E 0 in G, and w fl V s  = { U } }  U (0 n V s ) .  

b) ES : = { ( U ,  w) E V s  X V s  I there is a path w from 
v to win G, and w fl V s  = { v , w } } .  

Fig. 4 shows the S graph corresponding to the circuit 
graph of Fig. 3.  

The approach presented is valid for circuits where the 
S graph does not contain any cycles. Every S graph can 
be made acyclic by integrating some of the flip-flops into 
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Fig. 2. Example circuit. 
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Fig. 3 .  Circuit graph. 

I 

Fig. 4. S graph. 

an incomplete scan path. For instance, if in the example 
circuit flip-flop 17 were a scan path element, then the re- 
sulting circuit graph would be acyclic (Fig. 5 ) .  

The pseudoexhaustive test of sequential circuits re- 
quires the application of pattern sequences instead of sin- 
gle patterns. Using Roth's notation of time frames, copies 
of the combinational part of the circuit are generated, and 
the number of time frames corresponds to the length of 
the test sequences. We modifiy this approach such that at 
each time step we copy only the small part of the com- 
binational circuit that is actually needed for fault detec- 
tion. In order to describe our solutions exactly, more 
graph-theory definitions are required: 

Definition 2: Let G : = (V ,  E )  be an acyclic graph. The 
rank of G is defined by rank (G) : = max {L(w) 1 w is a 
path in G}  , where L(w) denotes the length of a path W .  

Definition 3: Let G : = (V ,  E )  be an S graph. The func- 
tion P: 6 ( V )  + 6 ( V ) ,  defined by P(W) : = UWEwpd(w), 
is called a backtrace function. 

The nodes of a subset Wt c V have defined values at 
time step t if the nodes W'- : = P(W')  have defined val- 
ues at time step t - 1, and we can use this notation for 
state backtracing. 
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Fig. 5 .  Acyclic circuit graph. 

Observation I :  Let G : = ( V ,  E )  be an acyclic S graph 
with rank ( G )  = r. Then P r ( V )  c I. 

Corollary: Every state is reachable within r steps if it 
is reachable at all. 

Definition 4: Let G : = (V ,  E )  be a circuit graph. Let 
the corresponding S graph, G' : = (V', E') ,  be acyclic 
with rank r. Furthermore let 

W' := 0' 

V r : = W r U O U { v E V ~ 3 U E W r 3 w  

E 0 ( U  is member of a path w from U to w 

and w n V s  = { U } ) }  

and for 0 I t < r ,  
w' := P(W'+' ) ,  

I/':= { U  E V J  3 U E w'3 W E  w'+' 
(U # U is member of a path w from U to w and 

n vs = { U ,  w } ) }  U wt. 
The combinational representation of G is the graph ?? : = 
(7, E ) ,  where 
- v:= U V' x { t } ,  

E := U {((x, t) ,  ( y ,  t ) )  1 (x, y )  E vt x V' n E }  U 

U (((4 t ) ,  ( Y ,  t + l ) )  I x E V' A y 

O c t s r  

O s t s r  

O s t s r  

E W'+' A (x, y )  E E }  
and 
- 
V c : =  U { ( X , t ) E V I X E V C U  V , } ,  

O s t s r  

I : =  { ( X , t ) E / I X E z } , . S T : =  0 x { r } .  

It should be noted, that all flip-flops are mapped to com- 
binational buffers. The combinational representation for 
the example circuit graph of Fig. 5 is shown in Fig. 6. 
This straightforward construction provides our basic theo- 
rem. 
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Fig. 6. Combinational representation. 

Theorem I :  Let G : = ( V ,  E )  be an acyclic circuit 
graph with rank r and let ?? : = (7, E )  be its combinational 
representation. A pattern sequence ( ( b :  E (0 ,  l} I i E I) 
1 0 I t I r )  detects a fault of a node v E V exactly at 
time r if and only if in ??the corresponding multiple fault 
of the nodes ( U ,  t ) ,  0 I t I r ,  if defined, is detected by 
the pattern (b:  I ( i ,  t )  E 7). 

Theorem 1 justifies the following definition. 

Dejinition 5: Let G : = ( V ,  E )  be an acyclic circuit 
graph with rank r and let G : = (v, E )  be its combinational 
representation. A set B of pattern sequences of length r 
+ 1 is called a pseudoexhaustive test for G if the set B 
obtained by mapping each sequence ( ( b :  E {0,1} 1 i E 
Z ) I O  I t I r )  onto a pattern (bi I ( i ,  t )  E ?) provides a 
pseudoexhaustive test for G. 

If a cone CO of the combinational representation has 1 
primary inputs, it is tested exhaustively by 2' patterns. 
Each pattern is mapped to a sequence of the maximal 
length r in the original circuit. Thus the length of the 
pseudoexhaustive test sequence is bounded by r 2'. In 
Section V we discuss some further compactions. 

This approach is applicable to all fault models concern- 
ing the combinational function of a single node or of mul- 
tiple nodes. If the design is irredundant, a complete fault 
coverage is obtained. Faults affecting the topology of the 
S graph are not guaranteed to be detected. Bridges might 
connect various cones, but they are hard to detect in purely 
combinational circuits, too [4]. 

111. DEVICES SUPPORTING THE PSEUDOEXHAUSTIVE 
TEST 

A pseudoexhaustive test is feasible if the corresponding 
S graph is acyclic and if each cone of the combinational 
representation has only a limited number of inputs. The 
first condition can be satisfied by integrating some flip- 
flops or latches into a partial scan path, P ,  extending the 
well-known LSSD rules [9]. This results in the circuit 
structure of Fig. 7. In order to keep the hardward over- 
head small, the size of P should be minimal. 
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Fig. 9. Hardware segmentation by special cells 

In order to fulfill the second requirement, certain nodes 
within the sequential network have to be cut such that they 
are directly accessible. In this way new pseudoprimary 
inputs, vi, and outputs, U ,  are introduced to replace a cut 
node v (Fig. 8). 

If node v corresponds to a latch in the original network, 
it is cut by its integration into the partial scan path. For 
the general case multiplexer partition was originally pro- 
posed [20], but this has serious drawbacks with regard to 
area, speed, test control, and fault coverage [13]. These 
disadvantages are avoided by the use of segmentation cells 
(Fig. 9). 

In [6]  unmodified latches have been proposed for 
segmentation purposes. But this alters the clocking 
scheme, and the speed of the entire circuit is slowed down. 
For this reason, we use the more sophisticated cell shown 
in Fig. 10. In system mode S = 1 is asserted so that D 
and Q are directly connected. For S = 0 the cell works 
like the usual LSSD Ll(L2*) latch with data input D, 
clock CLK, shift input SDI, and shift clock A(B) .  

T1 

Q 

I 1  I 
T2 - T3 

I L 

I 

Fig. 10. Segmentation cell. 
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Fig. 1 1 .  Integrating segmentation and scan design. 

These cells are added to the partial scan path, but they 
do not affect the system operation of the circuit (Fig. 11). 

In the next section, we discuss how to place the directly 
accessible latches and segmentation cells. 

IV. DESIGN ALGORITHMS 
The following modifications of a design are required to 

a) A small number of latches must be integrated into a 
partial scan path in order to obtain an acyclic S graph. 

b) A minimal number of lines within the original circuit 
must be cut in order to obtain small sets of inputs of 
the cones within the combinational representation. 
Since the integration of an existing latch into the scan 
path requires less hardware overhead than adding a 
new segmentation cell, cutting nodes corresponding 
to latches is given preference. 

Now we want to describe these tasks in graph-theory 
terms. 

DeJinition 6: Let v E V. The cut of G : = (V, E )  in v 
is the graph Glol : = (Vc,,, where Vluj : = {q, v,} 

E )  V (J = U ,  A (x, U )  E E ) }  U E\{(x, y) I x = Z, V y = 

One easily verifies that for U ,  w E V the cuts are indepen- 
dent of their order, G{uliwj = G{,,,] Thus we have the 
following definition. 

realize a pseudoexhaustive test strategy: 

U V\{U},  ~ 1 ,  U ,  $ ‘v, E { u }  := {(x, y) 1 x = Ui A ( U ,  Y )  E 

V I .  
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Dejnition 7: Let W : = { w l  , * , w, } C V .  The cut 
of G = (V ,  E )  along W is the graph G ,  : = (V,, E,) : = 

The subproblem of generating acyclic S graphs can now 

Problem FBN (Feedback Node): Let G = ( V ,  E )  be an 
S graph. Find a set W C V of minimal cardinality such 
that Gw = (V,, E,) is acyclic. 

FBN is known to be NP-complete [17], and heuristics 
are used in order to obtain good, suboptimal solutions. 
Let ZG be the set of all elementary cycles of G. For each 
cycle z E Z,, we define n(z) := {v E V I v E z}, the set 
of all nodes of z .  Now the scan selection problem is di- 
vided into two subproblems: 

G{wd . ' ' {wm). 

be stated as follows: 

i) For the S graph G = (V ,  E ) ,  create the set of all 
elementary cycles ZG, i.e., all cycles where each 
node only appears once. 

ii) Set H : = UZEZG n(z). Find a set W C H of minimal 
cardinality such that V, E ZGW fl n(z) # 0. 

These are standard problems of graph theory, and there 
are well-known solutions. The implemented algorithms 
are based on methods described in [8] and [16], with ad- 
ditional heuristics used. Alternatively we select a bounded 
set 2;; of elementary cycles, solve the hitting set subprob- 
lem ii), and select another bounded 2;. A detailed de- 
scription of the implemented algorithm is found in [18] 
and [27]. 

The solution of modification b), mentioned at the be- 
ginning of this section, is more complicated. First we ex- 
plain how to segment purely combinational circuits, and 
then we extend this approach to general combinational 
representations. 

Dejnition 8: Let G = (v, E )  be a combinational rep- 
resentation, and let U E v. The natural number d(v)  := 
I I f l  p ( v )  1 is called the dependence level of U .  

Now we can state the segmentation problem of com- 
binational circuits exactly: 

Problem OCS (Optimal Circuit Segmentation): Let G 
: = ( V ,  E )  be a circuit graph of a combinational circuit, 
and I E IN. Is there a set W C V of size k I I V 1 such 
that all vertices U E V ,  in G ,  : = (V,, Ew) have a depen- 
dence level of at most 1, i.e., d(v) I 1 in G,? 

For any cut along W,  d(v) I I in G ,  can be checked 
in nearly linear time. Generating and checking all 2''' 
cuts would take exponential effort. Unfortunately, we 
cannot expect an algorithm of a better worst-case com- 
plexity, since OCS is NP-complete for 1 > 2. A complex 
proof of this theorem is found in [6 ] ,  with a shorter treat- 
ment in [ 121 and [29]. 

As OCS is NP-complete, we refrain from looking for 
minimal solutions, but present some efficient heuristics. 
Dealing with general combinational representations is 

even more complex, since one physical cut of the circuit 
corresponds to multiple cuts in various time frames. 

Definition 9: Let G = (V ,  E )  be an acyclic circuit 
graph, with G = (v, E )  its combinational representation 
and v E V. The relevant time steps of v are in the set T(v )  
: = {d 1 ( U ,  d)? V } .  The equivalent node set of v is Q(v) 
:= { ( w , d ) ~ V / w = v }  cv. 

For a subset W C V we use the abbreviation Q(W) : = 
U,,,Q(w). Now we can formulate the general segmen- 
tation problem: 

Problem OCRS: Let G : = (V ,  E )  be an acyclic graph, 
let G = (7, E )  be its combinational representation, and 
let 1 E IN. Is there a set W - c V of size - k I - I V I ,  such that 
all vertices v E VQ(,) in Gecw, = (VeCw,, EeCW,) have a 
dependence level of at most 1, i.e., d(v) 5 1 in Gecw,? 

We use some heuristics for an approximate solution of 
OCRS, applying well-known methods, since OCRS is an 
instance of a general combinatorial optimization problem: 

CO (Combinational Optimization): Let 3 be a set of 
states, 3* c 3 be a set of admissible states, and let k :  3 
-+ ZR be a cost function. Find an admissible state Z E 5* 
with minimal costs k (Z)  = min { k ( X )  I X E 3*} .  

For OCRS the set of states is 3 : = 6 ( V ) ,  since every 
Z C Vdetermines a set of cuts with resulting graph ?&z, 
= (veta EQo). The admissible states are 3" : = { Z  E 3 
I V v  E Ve(z) (d(v)  I 1 in ceca)}. 

The cost function k :  3 -+ ZR, k (Z )  : = I 2 1 corresponds 
to the necessary number of segmentation cells. 

We define a heuristical function h: 3 -+ ZR to evaluate 
states: 

- 

h(Z)  := ln(d(v)), 
U €  V '  

where V' := { U  E veCz, I d(v )  > 1 in Gecz,}. 

This function is an estimation of the number of vertices 
which have to be cut in the combinational representation. 
We assume an enumeration ( vi ,  , U , >  of v with vi 
Epd(v , )  * i < j .  

Dejnition 10: Let =AV, E )  be a combinational rep- 
resentation, and let v E V .  The cone C(v) of v is the 
subgraph C(v) : = ( p ( v )  U { U } ,  ( p ( v )  U { U } ) *  fl E ) .  

Definition 11: Let = (v, E )  be a combinational rep- 
is the resentation, and I E IN. The first violation fv E 

node fv = vi,  where i : = min { j 1 d ( v j )  > I}. 
This definition is illustrated by Fig. 12. 
We construct a search graph S = (3 ,  E ) ,  where the 

nodes Z E 3 = 6 ( V )  define cuts in the sequential net- 
work, and an edge (Zl, Z2) E & exists if and only if 

a) fu E V\Zl is the first violation in G,(Z,,; 
b) Z2 : = Zl U { U } ,  where Q(v) fl p ( f v )  # 0 and 

h(Zl U { U } )  is minimal. 
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Fig. 12. Example for I = 3 .  

first violation 

fv in G 
- 

e =  3 w 

vertices cut vertex cut 
in step 1 

Fig. 13. Steps of the segmentation algorithm for the example circuit of 
Fig. 2.  

in step 2 

The search is started at Z, = (25. One branches from Z 
to a Z, E { 2 1 (Z, 2) E E } ,  preferably cutting lines cor- 
responding to latches or flip-flops in order to reduce the 
hardware overhead, until an admissible state Z is reached. 
The results of this process are presented in Section VI. 

For the example circuit of Fig. 2 and 1 = 3, the algo- 
rithm requires two steps to determine a solution for OCRS. 
This is illustrated in Fig. 13, which shows the combina- 
tional representation of the circuit with an enumeration 
according to the signal flow. In the first step, node 14 is 
the first violation and the two equivalent nodes, 12 and 
13, are chosen to be cut. In the second step the first vio- 
lation is node 22 and the algorithm decides to cut node 
20. Nodes 12 and 13 correspond to node 7 in the original 
circuit, and node 20 corresponds to 14. As both 7 and 14 
are flip-flops, they simply have to be integrated into the 
partial scan path. 

Since node 17 has been cut before to guarantee an 
acyclic S graph, there are altogether three of five flip-flops 
in the partial scan path. Fig. 14 shows the resulting cir- 
cuit. 

integration into partial scan 
path for circuit segmentation 

I .  14 
1 

2 
15 

4 
3 18 

5 

integration into partial 
scan path to provide an 
acyclic S-graph 

Fig. 14. Resulting circuit after integration of a partial scan path and seg- 
mentation. 

V. PSEUDOEXHAUSTIVE TEST SEQUENCES 
A considerable amount of work has already been done 

in investigating the generation of pseudoexhaustive test 
sets for combinational circuits. Dependence matrices [ 151, 
linear sums [3], cyclic codes [23], [26], and special poly- 
nomials for linear feedback shift registers [5] have been 
proposed. They are all applicable to combinational rep- 
resentations, and little effort is needed to transform the 
resulting patterns into pseudoexhaustive test sequences. 
Each pattern p :, = (b ,  E ( 0 ,  l} I i E 7)  of the combina- 
tional representation corresponds to a pattern sequence. 
We remember I C I X T ,  where T : = { 0,  * - - , r }  ; hence 
the sequence is S ( p )  : = ( ( b j  E ( 0 ,  l} I j E I A t E T ( j ) )  
I t E T ) .  

It should be noted, that it is not for the entire set I X T 
that values are defined in S ( p ) .  This can be used for pat- 
tern compaction. 

A further compaction is possible if some sequences have 
common parts; e.g. the last patterns of sequence S ( p , )  are 
identical to the first of S ( p 2 ) .  These merged sequences can 
be generated with the help of linear codes by feedback 
shift registers, supporting a low-cost external test or a self- 
test. A complete test chip for generating pseudoexhaus- 
tive vectors and sequences externally is presented in [ 141. 
The details are beyond the scope of this paper, which aims 
at establishing a linear bound on the length of the pseu- 
doexhaustive test sequence. 

Let 0 C V be the set of primary and pseudoprimary 
outputs of the sequential network. Each output function 
of o E 0 is tested by at most 2’ patterns in the combina- 
tional representation. Hence the size of the pseudoex- 
haustive test set is bounded by 101 * 2’. Each pattern is 
mapped to a sequence of at most length r := rank (G); 
hence the entire pseudoexhaustive test sequence is 
bounded by Y - (01 * 2‘. 

VI. EXAMPLES 
We discuss three examples: the operation unit of the 

signal processor (SP) proposed in [7], a multiplier pre- 
sented in [lo], and a PROLOG coprocessor (PP) [ 111 (see 
Table I). 

The unmodified circuits are very hard to test, which is 
proven with the help of the program LASAR [ 191. Fault 
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TABLE I 
CIRCUIT CHARACTERISTICS 

TABLE IV 
NECESSARY NUMBER OF SEGMENTATION.~ELLS AND NUMBER OF FLIP-FLOPS 

I N  THE PARTIAL SCAN PATH, IN ORDER TO MAKE THE CIRCUITS 
PSEUDOEXHAUSTIVELY TESTABLE Circuit Inputs outputs Gates Flip-flops 

SP 83 55 1675 239 
MU 43 26 993 193 
PP 36 73 1428 136 

PP MU SP 

1 = 20: 
No. segmentation cells 
No. additional flip-flops in 

No. overall flip-flops in 
the scan path 

the scan path (percentage) 

1 = 16: 
No. segmentation cells 
No. additional flip-flops 

No. overall flip-flops in 
in  the scan path 

the scan path (percentage) 
1 = 12: 

No. segmentation cells 
No. additional flip-flops in 

No. overall flip-flops in 
the scan path 

the scan path (percentage) 

3 
6 

7 
6 

5 
72 

TABLE I1 
FAULT COVERAGE BY LASAR AFTER 1 h OF 

COMPUTING TIME 

PP MU SP 

11.2% 9.8% 8.7% 

34 
(25 %) 

78 
(43 %) 

113 
(47 %) 

6 
12 

4 
13 

9 
95 

40 
(29 %) 

85 
(46%) 

136 
(57%) 

TABLE 111 
NUMBER AND PERCENTAGE OF FLIP-FLOPS I N  A 

S-GRAPH 
PARTIAL SCAN PATH I N  ORDER TO OBTAIN A N  ACYCLIC 

23 
22 

24 
30 

16 
131 

50 
(37 %) 

102 
(56%) 

172 
(72%) PP MU SP 

28 72 41 
(20.6%) (39.3%) (17.2%) TABLE V 

NUMBER OF NECESSARY SEGMENTATION CELLS USING COMPLETE A N D  
PARTIAL SCAN DESIGN, RESPECTIVELY 

coverages obtained after 3600 seconds of computing time 
are listed in Table 11. 

To obtain acyclic S graphs, we first selected a small 
number of flip-flops using the technique described in [ 181 
and [27] (see Table 111). 

For these modified circuits, we generated the combi- 
national representation. The representations were seg- 
mented by the algorithms described, where the maximal 
number of inputs to a cone varied from I = 20 to 1 = 12. 
The required test sizes are between a few million and a 
few thousand patterns, which is competitive with a usual 
deterministic test. 

In Table IV below we distinguish between cuts of flip- 
flops resulting in additional scan path elements and other 
cuts requiring more expensive segmentation cells. This 
table shows significant savings of silicon area compared 
with the conventional complete scan design. The exact 
quantification depends on the layout of the LSSD and seg- 
mentation cells used. A rough estimation shows savings 
of approximately 50% for 1 = 20 and 1 = 16. But even 
for 1 = 12, the hardware overhead is competitive with a 
conventional scan design, since the larger number of seg- 
mentation cells is balanced by the shorter partial scan path. 

In all cases the advantages are obvious: 

complete fault coverage with respect to the usual 

0 no expensive test pattern generation; 
simple test application. 

Also, with respect to the number of necessary segmen- 
tation cells, the partial scan design is in most cases su- 
perior to the complete scan path. This is because the in- 
tegration of a complete scan path in general does not 
provide a pseudoexhaustively testable circuit. Additional 
segmentation cells are necessary. Table V shows the 

fault models; 

PP MU SP 

1 = 20: 
Partial scan path 3 7 5 
Complete scan path 9 4 4 

Partial scan path 6 4 9 
Complete scan path 14 7 10 

1 = 16: 

1 = 12: 
Partial scan path 23 24 16 
Complete scan path 40 11 56 

number of segmentation cells required for an efficient 
pseudoexhaustive test based on a complete and on a par- 
tial scan design. 

In most cases the additional number of segmentation 
cells increases if all flip-flops are integrated into a com- 
plete scan path. 

VII. CONCLUSIONS 
The new concept of a pseudoexhaustive test of sequen- 

tial circuits has been introduced. Flip-flops and latches 
are integrated into an incomplete scan path, such that each 
possible state of the circuit is reachable within a few steps. 
More flip-flops and new segmentation cells are added to 
the partial scan path in order to make a pseudoexhaustive 
test feasible. Algorithms have been presented for placing 
these devices automatically. Moreover it has been shown 
how to transform a pseudoexhaustive test set into a pseu- 
doexhaustive test sequence of a similar size. 

The analyzed examples show that a conventional com- 
plete scan path without additional testability features re- 
quires more hardware overhead than the presented test 
strategy, which retains all the known benefits of a pseu- 
doexhaustive test. 
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APPENDIX 

Power set of the set M .  
circuit graph. 
Set of combinational vertices in 

Set of sequential vertices in V. 
Set of inputs. 
Set of outputs. 
Set of direct predecessors of a 

Set of direct successors of a ver- 

Set of predecessors of a vertex v 

Set of successors of a vertex v E 

Length of a path W .  

Rank of an acyclic graph G. 
S graph of the graph G = (V ,  E ) .  
Backtrace function, P( W )  : = 

Combinational representation of 

Cut of the graph G = (V ,  E )  in v 

Cut of the graph G = (V ,  E )  along 

Dependence level of a vertex v E 

Set of relevant times steps of a 

Equivalent node set of a vertex v 

V. 

vertex v = V. 

tex v = V. 

E V. 

V. 

U W E  w Pd(W). 

the graph G = (V ,  E ) .  

E v. 
w c v. 
V ,  d ( v )  := IZ fl p(u)l  

vertex v E V. 

E v. 
U w s w  Q<w). 
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