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Abstract-Innovative synthesis for testability strategies aim 
at considering testability while synthesizing a circuit, whereas 
conventional design for testability methods modify the design 
after the circuit structure is synthesized. We describe a synthe- 
sis approach that maps a behavioral FSM description into a 
testable gate-level structure. The term “testable” in this con- 
text, besides implying the existence of tests, also means that the 
application of test patterns is facilitated. Depending on the test 
strategy, the state registers of the FSM are modified e.g. as 
scan path or self-test registers. The additional functionality of 
these state registers is utilized in system mode by interpreting 
them as “smart” state registers, capable of producing certain 
state transitions on their own. To make the best use of such 
registers, we propose a novel state encoding strategy based on 
an analytic formulation of the coding constraint satisfaction 
problem as a quadratic assignment problem. An additional 
minimization potential can be exploited by appropriately 
choosing the pattern generator for self-testable designs. Exper- 
imental results indicate that, compared with conventional de- 
sign for testability approaches, significant savings are possible 
this way. 

I. INTRODUCTION 
ONVENTIONAL design for testability methods C commonly require circuit modifications after the 

functional design is finished. Supplementary hardware 
used only for testing purposes has to be added (e.g. [15], 
[25], [35]). Testability can also be taken into account dur- 
ing the synthesis of the circuit (“synthesis for testabil- 
ity”). The test strategy is determined in advance, based 
on considerations such as test generation complexity, re- 
quired test equipment, test application effort, tolerable 
hardware overhead, and fault coverage. The advantages 
of this approach are twofold. First, the circuit is designed 
for a specific test strategy; logic design decisions can be 
targeted toward obtaining circuits which are easily test- 
able “by construction” (cf. [ l ] ,  [14], [16], and [17]). 
Second, test hardware, which has to be implemented any- 
way, can be utilized in system mode instead of being su- 
perfluous after the test is finished, thus reducing the 
amount of logic needed to implement the system func- 
tionality. 
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This paper describes an approach for transforming a be- 
havioral finite state machine (FSM) description into a 
structural description supporting a given test strategy. We 
focus on the synthesis of FSM’s with state registers mod- 
ified to enhance testability, e.g. scan path or self-test reg- 
isters, called smart state registers in the sequel. For an 
external test a scan path often stays necessary even if the 
circuit is sequentially irredundant (cf. [14] for a defini- 
tion), since the worst-case length of an input sequence to 
detect a fault otherwise increases exponentially with the 
number of storage elements [29]. This is particularly crit- 
ical if the FSM is embedded in a larger circuit such that 
its inputs and outputs are not directly accessible. The ap- 
plication of test patterns is further facilitated by including 
pattern generators for implementing a self-test. 

The main idea is that in test mode the above-mentioned 
storage elements cycle through a sequence of states. If the 
encodings of the present and the next state of the FSM are 
consecutive elements in this cycle, the state transition does 
not have to be implemented by additional logic, and the 
next state can be generated by using the test mode. By 
utilizing the test logic for implementing a part of the sys- 
tem functionality, hardware overheads of testing can be 
reduced. 

In the sequel we first review some design for testability 
strategies for FSM’s and summarize their properties in an 
abstract model. In Section I11 we give a synthesis proce- 
dure that utilizes these properties to reduce the amount of 
combinational logic needed to implement FSM’s. Section 
IV analyzes the solution in terms of testability and area 
consumption. The main results are summarized in Section 
V. 

11. BASIC PRINCIPLES 
A .  Finite State Machines 

The behavior of a synchronous sequential circuit can 
be modeled with an FSM description (e.g. a state transi- 
tion diagram), its srructure by an interconnection of com- 
binational logic and storage elements (see Fig. 1). In in- 
tegrated circuits these storage elements are generally 
realized with D-type latches or flip-flops. We assume a 
general Mealy machine 

9lz = (1, s, 0, fs, f”> 
with the input set I ,  the state set S, the output set 0, and 
the next. state and output functions 
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Fig. 1 .  Finite state machine model 

f,: I x S -+ S, f , ( i ,  s) = ss 

fo: I x S -+ 0, fo(i, s) = 0. 

The FSM model is particularly useful for circuits with 
irregular combinational logic and a relatively small num- 
ber of storage elements. 

B. Test Strategies and Test Equipment 
One of the most widely used design for testability 

methodologies is to incorporate a scan path, in which all 
the flip-flops are connected as a serial shift register in test 
mode. Test patterns thus can be shifted into the flip-flops; 
test responses can be shifted out. Examples of this test 
methodology can be found in [ 151 (LSSD) and [35] (edge- 
triggered scan design, ETSD). 

Self-testable circuits contain test pattern generators as 
well as response analyzers on chip. Depending on the test 
strategy, the pattern generator may be a linear feedback 
shift register (LFSR) [25], a cellular automaton [22], or 
a nonlinear feedback shift register [ lo] .  In all these cases 
the memory elements work as D flip-flops in system mode, 
whereas in test mode a complex specialized behavior is 
desired. Although in some cases the same register may be 
used for pattern generation and response analysis [24], in 
the circuits typically modeled as FSM’s this is more dif- 
ficult [9]. An architecture for FSM’s in which the system 
flip-flops can be configured as pattern generator and the 
responses are compacted in a separate multiple-input 
LFSR (MISR) was proposed in [4] and [33] (see Fig. 2 ) . ’  
The MISR may be saved if the observability of state 
variables is secured by other means (cf. e.g. [20]). 

C. Target Structure of the Synthesis Process 
Both scan designs and self-testable designs demand 

more area than designs without test aids. The additional 
area is required to modify the storage elements. At least 
two modes of operation are needed. In system mode the 
storage elements merely load the outputs of the combi- 
national logic, whereas in test mode some provision is 
made to apply test patterns or to capture test responses. 
Since a fair amount of hardware is spent to enable the 

‘Pattern generation and response analysis for the primary inputs and out- 
puts are not shown. 

I combinational logic] 

m o d e  
I - 
I i 

Fig. 2 .  Architecture o f  self-testable FSM’s. 

storage elements to perform these additional tasks, it 
would be desirable to utilize this increased functionality 
during normal system operation as well. 

Pattern generators for self-testable designs in autono- 
mous mode cycle through a fixed sequence of states to 
stimulate the circuit. This property can also be used in 
system mode if the encodings of the present and the next 
state are consecutive elements in this cycle. Whenever the 
next state code is produced by the pattern generation reg- 
ister, which has to be implemented for testing purposes 
anyway, it is not necessary to generate it in the next state 
logic. Replacing the next state entries with don’t cares for 
all such transitions greatly increases the potential for logic 
optimization of the combinational logic. Fig. 3 illustrates 
a possible realization of this idea [ 161. An additional out- 
put signal “Mode” determines whether the state machine 
flip-flops behave like ordinary D flip-flops or work as a 
pattern generator. In the second case the state register is 
“smart” enough to generate the next state on its own, so 
the next state signals generated by the combinational logic 
can be set to arbitrary values. 

A similar result can be obtained for scan paths by feed- 
ing back the contents of the last storage element into the 
first element of the chain. Depending on whether or not 
the feedback is inverted, the resulting state memory be- 
comes a loadable Johnson counter or ring counter. Such 
a “counter” is not mandatory-it is possible to choose 
any other feedback structure as well-but these simple 
feedback structures minimize the necessary overhead. 
There are three modes: a test mode (scan mode), a normal 
system mode, in which the storage elements work as D .  
flip-flops, and a feedback mode, in which the next state 
is produced by operating the storage elements as a counter. 
The feedback mode and the test mode are actually equiv- 
alent for all flip-flops in the scan chain (see Fig. 4). A 
special case, PLA-based FSM’s implemented with load- 
able Johnson counters as state memories, was previously 
investigated and found to be quite effective [2]. However, 
the synthesis procedure presented there is not general 
enough for the majority of test registers. 

Both approaches can be generalized in that there is a 
“smart” state register (in the sequel abbreviated SSR) that 
is capable of generating a number of state transitions on 
its own. This characteristic can be utilized to reduce the 
combinational logic of the FSM. The price to be paid is 
that an additional output signal must be produced by the 
combinational logic to control the state register mode. Ex- 
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Fig, 3.  Self-testable FSM with “smart” state memory. 
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Fig. 4. FSM with scan path and “smart” state memory. 

perimental evidence indicates that this expense is small 
compared with the possible savings. 

The main problem is to find a state assignment that will 
reduce the combinational logic required to implement the 
modified FSM. Conventional state assignment algorithms 
are not suitable for this purpose because the pattern gen- 
eration capability of the state memory cannot be taken 
into account until after the state assignment. On the other 
hand, it is not necessarily advantageous to maximize the 
number of state transitions generated by the SSR, since it 
may be impossible to further minimize the combinational 
network for the remaining state transitions. Both aspects, 
minimization by replacing next state entries with don’t 
cares and minimization by conventional logic optimiza- 
tion techniques, must be regarded concurrently during 
state assignment. 

D. State Assignment Methods 
Many recent state assignment algorithms for PLA-based 

FSM’s2 are based on the work of DeMicheli et al. [ 111, 
[12]. After a “symbolic minimization’’ of the FSM, in 
which a symbolic cover (3 with certain coding constraints 
is created, the task of the state assignment algorithm is to 
satisfy as many of these coding constraints as possible. 

An adjacency constraint requires a set of states to be 
encoded in a Boolean subspace not containing any 
other states [ 1 11. 
A covering constraint between a pair of states re- 
quires that each state variable which is “1” in the 
state to be covered has a correspond to a “1” in the 
other state [ 121. 

The process is illustrated with the example in Fig. 5, in 
which the state groups Z, U Z2 and Z, U Z3 correspond 

’Multilevel logic is treated in subsection 111-D. 

n.state output 

303 

a 01 10 00 

Fig. 5. Symbolic minimization and satisfaction of coding constraints. 

I LFSR 1+x+x2 *mode 
Fig. 6.  PLA realization of the modified self-test structure. 

to the adjacency constraints and Z, G Z, and Z3 C Z, to 
the covering constraints. Since the first and the third line 
in the minimized table of Fig. 5 completely cover the sec- 
ond line, the outputs in that line can be left unspecified. 
The state assignment 2,: 11,  2,: 01, 5: 10 satisfies all 
these constraints and the number of PLA product terms is 
reduced to 7.  

For four of the symbolic implicants no reduction is pos- 
sible, because they do not give rise to any constraints and, 
therefore, are not considered in the encoding process. 
They can, however, be completely saved if the ideas of 
subsection 11-C are applied. A self-test register based on 
an LFSR with a feedback polynomial p ( x )  = 1 + x + x 2  
can produce the state transitions 00 3 00, 11 -+ 01, 
01 -+ 10, and 10 -+ 11 on its own. With Mode = 0 caus- 
ing the SSR to switch to LFSR mode, only three product 
terms are needed for the combinational logic of the FSM 
(Fig. 6). 

111. SYNTHESIS PROCEDURE 
A .  Problem Formulation 

To incorporate the ideas of subsections 11-C and 11-D 
into a synthesis procedure for PLA-based FSM’s, three 
different mechanisms of reducing the number of product 
terms should be taken into account: adjacency relations, 
covering relations, and transitions realizable with the SSR. 
Our approach is based on the analytical formulation of a 
cost function for the state assignment problem, in which 
the SSR transitions can be easily incorporated. Let s be 
the number of states of the FSM, and n the number of bits 
used for the encoding of these states. We use the minimal 
number of state bits, no = [log2 s1 , since choosing a 
number n > no only rarely decreases the PLA area [23], 
[32], particularly if the area of the additional flip-flops is 
also considered. 

Dejinition I :  The adjacency matrix, A ,  of a minimized 
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symbolic cover C? is an s X s matrix of nonnegative in- 
teger entries aij. For i # j the value aij corresponds to the 
number of adjacency constraints of e to which states i and 
j both belong; the diagonal entries ai; are set to 0. 

Definition 2: The distance matrix, D ,  is a 2" x 2" ma- 
trix with Boolean entries d ,  E (0, l } ,  where di, = 0 if the 
Hamming distance of codes i a n d j  is less than or equal 
to 1,  and dij = 1 otherwise. 

Similar adjacency and Hamming distance values have 
been used in other state assignment algorithms (see [3] 
for one of the first references). In a good assignment, state 
pairs appearing together in many symbolic implicants are 
assigned to codes with small Hamming distances, pref- 
erably to adjacent codes. Let 

4:  (SI * * s,} ( (4:  - - qk,)(k E (1  * * - s}} 
be an injective mapping, which assigns a unique code 
(q: * * * qk,) to each state sk. Then a partial cost of 

a(i, j ,  4) := i * aij d$(i)$(j)  
is incurred by the assignment of a pair of nonadjacent 

appearing together in symbolic implicants of e (aii = aji 
> 0). The factor 4 takes the symmetry of the matrices A 
and D into account. Matrix A collects the information 
about pairs of states from the minimized symbolic cover; 
matrix D contains the information about pairs of codes 
necessary for the encoding process. To include the cov- 
ering conditions, two additional matrices are necessary. 

Definition 3: The state covering matrix,' S ,  of a min- 
imized symbolic cover C? is an s x s matrix of nonnega- 
tive integer entries si, where sij corresponds to the num- 
ber of implicants of C? that require covering state j with 
state i .  

Definition 4: The code covering matrix, C, of an r-bit 
code is a 2" x 2" matrix with Boolean entries cij E (0, I } ,  
where cij = 0 if code i covers codej ,  and cl,, = 1 other- 
wise. 

A cost function similar to a(i, j ,  4)  can be formulated 
for the covering constraints. A partial cost of 

x ( i ,  j ,  4)  := sij * C + ( i ) $ ( j )  

is incurred if state i should cover statej (sij > 0) and code 
+ ( i )  does not cover code ~ $ ( j ) ( c ~ ( ; ) ~ ( , )  > 0). To describe 
the effect of the SSR transitions, two more matrices are 
introduced. 

Definition 5: The transition matrix, T ,  of a minimized 
symbolic cover C? is an s X s matrix of nonnegative in- 
teger entries tij , where tu is the number of implicants with 
a present state i and next statej, which do not belong to 
an adjacency or covering constraint of e. 

Definition 6: The pattern matrix, P ,  of an r-bit pattern 
generator is a 2" x 2" matrix with entries pij E (0, l} ,  
where pii = 0 if code j is the successor of code i in the 
sequence generated by the autonomous SSR, and pi j  = 1 
otherwise. 

codes 4( i )  and 4 ( j )  (d$( i )$( j )  - - d $ ( j ) G ( i )  > 0) to states 

'Note that this matrix is a simple extension of the matrix termed adja- 
cency matrix in [12]. In spite of the naming, it does not correspond to the 
matrix introduced in Definition 1 of this paper. 

0 1 1 1  .;I 0 1 0  ; :] ; ; 0'1 
1 0 1 1  

Fig. 7 .  Example matrices for the FSM of Fig. 5 .  

If transitions not minimizable with the help of adja- 
cency or covering constraints (tIJ > 0) cannot be realized 
with the help of SSR transitions ( P d ( r ) m ( J )  > 0), this cor- 
responds to a cost function value of 

7 ( i 9  j9 4 )  := tIJ * P$(I )$(J)*  
Example: For the cover of Fig. 5, the matrices in Fig. 

7 are obtained. In matrices A ,  S, and T the ith row/column 
corresponds to state Z,. The order of entries in matrices 
D ,  C, and P corresponds to the codes 00, 01, 10, and 11 
in that sequence. For matrix P ,  an LFSR with a feedback 
polynomial p(x )  = 1 + x + x 2  was used. Note that A and 
D are symmetric matrices, whereas S, C, T ,  and P are not. 

Finding an appropriate assignment 4 such that as many 
adjacency and covering constraints as possible are satis- 
fied and that the remaining state transitions are preferably 
produced by the SSR can then be formulated as a combi- 
natorial optimization problem: 

min (4): V(4) = [ k ,  * a(i, j ,  4)  + k2 * x ( i ,  j ,  4)  
1 . J  

+ k3 . ~ ( i , j ,  4)l 
= V,(4> + VJ4) + V,(4) 

with certain weighting factors k l ,  k 2 ,  k3 I 0. The com- 
plete cost function consists of three terms, one for the 
violation of adjacency constraints, a second for the vio- 
lation of covering constraints, and a third for the remain- 
ing transitions not realizable with the help of the SSR. 

Dejnition 7: The assignment matrix, X ,  of a state as- 
signment 4 is an s x 2" matrix with Boolean entries x,k E 
(0, l}, where x,k = 1 if k = + ( i )  and x,k = 0 otherwise. 

Using this matrix, the problem can be formulated as a 
0-1 integer program in which the product xlk * xJl selects 
all those cost values belonging to the current assignment: 

min (X): V ( X )  = c [k ,  i * a, dkl + k 2  srJ * ckl 
f , J . k , l  

+ k3 ' P k l l  x i k  * X j l  

(1) 
= VIJkl x i k  x ~ l  

I , J . k , [  
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Xik  E (0 ,  1} v i ,  k .  (4) 

The s + 2" linear constraints ( 2 )  and ( 3 )  ensure that X 
indeed represents an injective mapping 4, i . e . ,  that each 
state is assigned exactly one code and each code is as- 
signed to at most one state. 

Example: For the example of Fig. 6 the assignment 
matrix, X ,  is 

and the minimal cost value V ( X )  = 0 is obtained. Both 
adjacency constraints are satisfied ( V , ( X )  = O ) ,  since the 
state groups {Z, ,  2,) and {Zl ,  Z 3 }  are both coded with a 
Hamming distance of 1. The code for ZI covers the code 
for Z2 and Z3 (V,(X) = 0) and all the remaining transitions 
are realized with the help of SSR transitions ( V , ( X )  = 0). 

The problem comprising (1)-(4) is a well-known coml 
binatorial optimization problem, the quadratic assign- 
ment problem [ 191. It was proven to be NP-complete [ 181, 
but because of its relevance for many applications much 
effort was spent in developing feasible solution methods 
(see [7] for an overview). We use an exact algorithm using 
implicit enumeration techniques from [5] for FSM's with 
up to eight states. For larger machines, at least 16 state 
codes have to be considered and the exact algorithm be- 
comes quite slow. In these cases, we use heuristic algo- 
rithms [6], [8]. Since state assignment is an NP-hard 
problem [34], the use of heuristics is inevitable. How- 
ever, by representing the state assignment problem as a 
quadratic assignment problem, a very general problem 
formulation and solution method are obtained, allowing 
different types of coding constraints and arbitrary SSR's. 

B. Adequacy of the Formulation 
In the above framework, only pairwise adjacency re- 

lations can be represented. A group of m states to be en- 
coded in a minimal subspace of Boolean r-space is split 
into m (m - 1) state pairs. The minimization (1) at- 
tempts to code all these state pairs with a Hamming dis- 
tance of 1, which is obviously not possible (for m > 2 ) .  

Within a single state group, the minimization of C & aij 
d $ ( i ) $ ( j )  can be reduced to a minimization of C d $ ( j ) 4 ( , )  

over all admissible code pairs 4(i), c$(j), because aii is 
constant within this state group. Alternatively, E (1 - 
d 4 ( j ) 4 ( j J  can be maximized; i.e., the maximum number 
of adjacent codes is sought. Situations with isolated state 
codes, i.e., state codes not adjacent to any other state 
code, are obviously not optimal; the number of adjacen- 
cies could simply be increased by encoding the isolated 

3 adjacencies 4 adjacencies 
Fig. 8. Encoding possibilities for a state group with in = 4 states 

state with any unused code adjacent to one of the other 
state codes. The remaining possibilities for m = 4 are 
illustrated in Fig. 8. 

In what follows we prove that maximizing the number 
of adjacent code pairs guarantees not only that pairs of 
symbolic implicants can be merged, but also that adja- 
cency groups S with an arbitrary number of states m = 
IS1 are encoded in a minimal subspace of dimension 
[log, ml . As a consequence, for m = 2" all correspond- 

ing transitions can indeed be merged into one. Let 
k 

m = C c , ~ ,  c, E {o, I}, ck = 1 and 
, = O  

I{c,Ic, = 1}1 = #c. 

Theorem 1: Encoding the elements of an adjacency 
group S in a Boolean subspace of minimal dimension 
[log, 1 S 1 1 such that #c subsets of states with cardinality 

2' (corresponding to the values c, = 1) are encoded in 
cubes of dimension i, maximizes the number of pairwise 
adjacencies. 

Proofi Theorem 1 is proven by induction on k .  Let 
A ( S )  be the maximal number of pairwise state adjacencies 
within a state group S and let A(S , ,  S,)  be the maximal 
number of adjacencies between states of different groups 
SI and S, .  

1) k = 1, m E (1, 2 ,  3}, trivial. 
2) Assume that Theorem 1 is valid for m = CfZd c, 2'. 
3) Prove that Theorem 1 is valid for m' = 

For m' = 2k,  the number of edges in a hypercube 
of dimension k is m 'k. Having encoded the states 
in a hypercube of dimension k ,  there exists a state 
variable ql that partitions S into two disjoint subsets 
SA = {s E S l q ,  = 0} and SE = {s E S lq ,  = l}. 
Both subsets (dimension I SA I = I SE I = m ' / 2  = 
2 k -  ') are encoded in disjoint hypercubes of dimen- 
sion k - 1. Because of 2 )  the number of adjacencies 
within the subsets is maximized by this encoding, 

~ ' 2 ' .  

L L  

The number of adjacencies between the disjoint hy- 
percubes SA and SE is bounded by 
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So we have 

1 m’ m‘ 1 
2 2  2 2  

(k  - 1) + - = - m‘k. 5 2 - -  

Therefore, m‘k is an upper bound for A ( S ) .  By 
encoding the states in a hypercube of dimension k ,  
this upper bound is reached; i.e., the number of ad- 
jencies is maximized. The case m’ > 2k can be 
treated analogously by using a state variable to par- 
tition S into two disjoint subsets SA, I SAl = 2k and 
S E ,  ISBI < 2k. 

In experiments it turned out that changing the entries 
of the distance matrix, D, from Boolean values dii E 
(0, l }  to nonnegative integer values dij equal to the Ham- 
ming distance of codes i and j improved the results for 
two-level state assignment. The reason seems to be that 
more information is provided by this modified matrix D, 
although the optimality proof given is no longer valid in 
this case. 

If m is not a power of 2 and the total number, s, of 
states is smaller than the number 2” of available state 
codes, it may still be possible to merge all the correspond- 
ing m transitions: Some codes in the Boolean subspace 
determined by these transitions can be left unused by en- 
coding the other states outside of that subspace. The cost 
function value obtained for (1) does not reflect this pos- 
sibility. If a small negative value is assigned to all the aii 
previously set to 0, i.e., those state pairs not to be en- 
coded in a Boolean subspace, the cost value decreases if 
states i and j are assigned to codes with a large Hamming 
distance; hence nonadjacent states are kept apart from 
each other. In what follows this modified cost function is 
denoted v u ( X ) .  

C .  Experimental Validation 
Deciding whether a Boolean function can be imple- 

mented in two-level form with some number, K ,  of prod- 
uct terms belongs to the class of NP-complete problems 
[18]. Therefore, we cannot expect to find a cost function 
for a given state assignment accurately predicting the 
complexity of the resulting combinational logic, which 
can be computed in polynomial time. To be useful as a 
heuristic, the cost function should, however, be able to 
distinguish between good and bad state assignments with 
a high probability. Another problem is that exact logic 
minimization is infeasible for larger Boolean functions. 
Even if the optimal state assignment were known, it might 
not yield the best implementation obtainable in practice. 
Hence the only possibility of testing the quality of the cost 
function is to validate it experimentally. 

For several FSM examples were generated a series of 
random state assignments. For each state assignment we 
evaluated the cost function v u ( X )  and v u ( X )  + V,(X) and 
minimized the resulting combinational logic. Comparing 
the cost function value and the actual implementation cost 

# of product terms 
min # of product terms 

I 
1.4 -. 

1.2-0 
. 

0 

. 
o o o o  

0 

# of product terms 
min # of product terms 

4 . 

1 1  - V(X) 
min V(X) 1 2 3 4 5 6 7 8  

(b) 
Fig. 9. Predictive value of the cost function. 

should indicate how good the cost function estimate is. 
Results for a typical example are illustrated in Fig. 9. It 
turns out that the cost function v u ( X )  alone gives a me- 
diocre prediction for the ranking of different state assign- 
ments with respect to the complexity of the combinational 
logic (see Fig. 9(a)). The correlation coefficient, r ,  of a 
linear regression in Fig. 9(a) is r = 0.64; Spearman’s 
rank correlation coefficient rs = 0.62. Unfavorable re- 
sults particularly have to be expected when only a small 
number of adjacency constraints can be derived: In this 
case the minimization potential is mainly due to covering 
relations and other effects not modeled in the cost func- 
tion. By utilizing the SSR transitions, the FSM transitions 
not included in adjacency constraints can also be mini- 
mized. This is considered in the composite cost function 
V(X) = v u ( X )  + V,(X),  which gives reasonably accurate 
estimates for the resulting logic (see Fig. 9(b) for the FSM 
example of Fig. 9(a)). The correlation coefficient of a lin- 
ear regression, r ,  in Fig. 9(b) is r = 0.81; Spearman’s 
rank correlation coefficient r, = 0.77. 

D. Multilevel Logic 
Multilevel logic synthesis programs differ from two- 

level programs in that expressions can be factored and 
common subexpressions can be extracted. The multilevel 
state assignment algorithm developed by Devadas et al. 
[13] seeks to create common cubes. Two approaches can 
be distinguished: one maximizes the size of common 
cubes (“fan-out oriented”), while the other maximizes 
the frequency with which common cubes occur (“fan-in- 
oriented”). In either case, a heuristic cost function is 
minimized. Using the assignment matrix, X ,  for repre- 
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senting the resulting state assignment, the cost function 
can be written as 

where dkl represents the Hamming distance of codes k and 
1. Since this cost function has the same mathematical 
structure as the cost function for two-level logic, SSR 
transitions can be taken into account in exactly the same 
way. The values aij are not derived by symbolic mini- 
mization but by estimating the number of common cubes 
that can be extracted from the resulting combinational 
network. The coefficients aij now represent the impor- 
tance of encoding states i and j with a small Hamming 
distance. The adjacency values aij in our algorithm are 
generated in a way similar to that in [ 131, except that we 
count multiple edges in the state transition graph only 
once, since the creation of common cubes caused by the 
state encoding does not depend on the multiplicity of 
edges. 

Thus, a unified framework for both two-level and mul- 
tilevel state assignment is obtained. Design style specific 
knowledge enters into the coding constraint generation 
step, whereas the solution algorithm for the mathematical 
optimization problem can be kept generic. 

E.  Implications of the SSR Structure 
Until now the characteristics of the SSR were needed 

only to determine the pattern matrix, P.  Therefore, any 
SSR described by such a matrix can be accommodated: 
Johnson counters, ring counters, LFSR's, nonlinear feed- 
back shift registers, cellular automata, etc. For self-test- 
able designs the choice is based on the required fault cov- 
erage and the hardware overhead. LFSR's with primitive 
feedback polynomials can be used to obtain a maximum 
length test sequence. In general one such polynomial is 
taken from a table listing primitive polynomials over 
GF(2), e.g. [31]. In order to minimize LFSR area, i.e., 
to reduce the number of XOR'S, minimum weight poly- 
nomials are often preferred. 

In the synthesis method presented in this paper, the state 
assignment depends on the feedback polynomial and so 
does the complexity of the resulting combinational logic. 
The optimal solution requires an LFSR structure that is 
best suited to the FSM under consideration. Choosing the 
feedback polynomial of the LFSR by minimizing the cost 
function presented earlier over all pertinent polynomials 
p ( x ) ,  i.e., all pattern matrices P ,  thus provides an addi- 
tional degree of freedom. Although the number of poly- 
nomials which have to be considered grows exponentially 
with the number of flip-flops, it is still small for typical 
FSM's, such that encoding the states for all polynomials 
to choose the best solution is feasible. An interesting fact 
is that it does not matter whether a standard implemen- 
tation or a modular implementation [28] of the LFSR is 
chosen as long as a minimum weight polynomial of the 
f o r m p ( x )  = 1 + X '  + x-'!, 1 I i < n,  is used. The reason 
is that in this case the two implementations differ only in 

standard implementation 

modular implementation 

Fig. 10. Standard and modular LFSR with p ( x )  = 1 + x '  + x "  

the sequence of flip-flops (see Fig. lo), which is irrele- 
vant to state assignment and logic minimization. Matrix 
D remains unchanged, because the permutation of coding 
columns does not influence the Hamming distance of 
codes. 

go = g, = 1, be the LFSR feedback polynomial. The 
contents of the n LFSR states q = (qo * * q, - I )T  can be 
described by the recurrence equation q(t  + 1) = G q(t) 

Let p ( x )  = go + g,x + * + g , - l x n - l  + gnxn ,  

with 

G =  

0 1 0 * * *  0 

. .  
. .  . .  

The reciprocal polynomial of g(x) is p'(x) = 1 + g, - I x 
+ . . .  

Theorem 2: An LFSR with feedback polynomial p ( x )  
produces a code sequence which, when reversed, is equal 
to the sequence produced by the reciprocal feedback poly- 
nomial p ' ( ~ ) .  

Proof: The recurrence equation for the LFSR with 
the reciprocal feedback polynomial p'(x) is r ( t  + 1) = 
H r ( t ) ,  where 

+ g l x n - l  + X t 1 .  

gl go 

H =  i':Ig;: ; o  . .  . .  

. . .  
It can be easily verified that for go = g, = 1 G * H = I , ,  
the n X n identity matrix. The recurrence equations for k 
time steps are 

q(t + k )  = Gk * q( t ) ,  

r ( t  + k )  = H~ r ( t )  e r ( t )  = H~ r ( t  - k ) .  
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If we start with the same register contents in both cases, 
r(to) = q(to) for some time to, using the above equations 
we get 

q(to + k )  = Gk q(t0) = Gk * r(to) 

= Gk H k  r(to - k )  
- - Gk-1 . G . H .  Hk-1 . 

& Fig. 1 1 .  Johnson counter. 

with the cycle distance d, = k:  

= r(to - k) .  

= w ( J ~  e I,> * q(t) CB C J'  e 
r = o  

k -  I 
( ) 

) 
( 
( r = l  

( [  I) 
1 1 ( h - l  r = o  ) 

k - l  Thus the contents q(to + k)  of an LFSR k time steps after 
to are equal to the contents r(to - k )  of the LFSR with 
reciprocal feedback polynomial k steps back in time. Since 

derivation is also valid for k e 0. H = w ( J ~  e I,> (J q(t - 1) e e)  e C J' 
G and H are nonsingular matrices for go = g ,  = 1, the 

Because of this, the pattern matrix, P', obtained for 
p'(x) is equal to the transpose of the pattern matrix P for 
P ( 4 .  

Some worthwhile theoretical results can be derived for 
Johnson counters (Fig. 11). Each pattern has a unique 
successor and predecessor in Johnson counter mode. The 
number of cycles is 

r = O  

k 

= w J ( J ~  e I,> * q(r - 1) CB C J'  

= w J ( J ~  e I,) 

= w ( J ~  e I,) - q(r - 1) e C J' - e 

e 

q(r - 1) Q C J'  e 
I = o  

k - l  

z(n) = - * C ~ ( d )  2n/d - - C ~ ( 2 4  * 2n/2d 
2n d i n  2n z d ( n  = HD(q(t + k - l), q(t - 1)). 

[21], where 9 denotes the Euler function. Similar to an 
LFSR, the behavior of a Johnson counter can be described 

By induction it follows that any two patterns with the same 
cycle distance d~ = k have the Same Hamming distance. 

H 
Example: For the case n = 2, there is only one cycle 

00 -, 10 + 11 --t 01 --* 00 containing all the 2-bit pat- 
terns, Z(2) = 1. The cycle distance of code 00 and 10 is 
1, the cycle distance of 00 and 11 is 2. All the codes with 
a cycle distance of 1 have a Hamming distance of 1, all 
the codes with a cycle distance of 2 have a Hamming dis- 
tance of 2. 

by a recurrence equation q(t + 1) = J - q(t) Q e ,  where 

is a cyclic shift operator and e = (0 0 1)' performs 
the complementation of the feedback signal. 

Let HD(i ,  j )  be the Hamming distance of two codes i 
and j and let w(q) denote the weight of a vector q ,  i.e., 
the number of 1 ' s  in this vector. The Hamming distance 
of two codes i a n d j  is HD(i ,  j )  = w(i Q j ) ,  and rotating 
a vector does not change its weight, w(J 

Dejinition 8: The cycle distance, d,(i, j ) ,  of two codes 
i a n d j  belonging to the same Johnson counter cycle, c is 
the number of transitions necessary to get from i t o j .  

7'heorem 3: The Hamming distance of all the patterns 
of a cycle c with the same cycle distance is identical, 
d,(i, j )  = d,(k, 1 )  * HD(i ,  j )  = HD(k ,  1 ) .  

Proof: From the recurrence equation we get q(t + 
k )  = J k  q(t) e J' e .  Then we can derive the 
following result for the Hamming distance of two patterns 

q)  = w(q) .  

Corollary: There always exists a Johnson counter cycle 
in which all consecutive codes are adjacent. It includes 
the all-zero code q(ro) = 0. 

Proof: 

d,(q(t + I), 

= dc(q(t0 + 11, q( t0) )  [= 11 * 
HD(q(t + 11, q(0) 

= HD(qO0 + I), q(t0)) 

= w((J - q(to) Q e)  Q q(ro)) = w(e)  = 1. H 
The satisfaction of adjacency constraints in [2] mainly 

depends on this corollary. Because of Theorem 3, first 
determining the Johnson counter transitions and after- 
wards trying to embed these state chains in the Johnson 
counter cycles such that as many adjacency constraints as 
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possible are satisfied is not a very good strategy. The 
number of satisfiable adjacency constraints between the 
different states of a Johnson counter cycle is independent 
of the placement of states within this cycle; it depends 
only on the SSR transitions chosen and the Johnson 
counter cycle to which the states are assigned. In our al- 
gorithm we therefore choose the SSR transitions concur- 
rently with satisfying the adjacency constraints. 

IV. ANALYSIS OF THE SOLUTION 
A. Testability 

Consider the modified self-test structure of Fig. 3.  The 
additional control signal Mode is included in the signature 
analysis process to detect faults in the logic producing this 
signal. If the Mode signal is produced correctly, there are 
two more reasons why the circuit might not work as re- 
quired. Either the Mode line to the pattern generator con- 
trol logic can be stuck at O /  1 or the control logic itself is 
faulty. Both faults can be detected by switching the pat- 
tern generator to system mode and applying two test pat- 
terns that produce signals satisfying the condition 

Mode = 1, A(i, s) # SSR+(s) 

and 

Mode = 0, A(i, s) # SSR+(s). 

For outputs with these properties a faulty next state is 
reached. The existence of test patterns causing such out- 
puts is guaranteed by Theorem 4. To be able to distin- 
guish the faulty state, s f ( t  + I), from the correct state, 
s(t + l), there has to be some input pattern, i, for which 
the output, o(t + I ) ,  or the next state, s(t + 2), is differ- 
ent. A sufficient condition is that s(t + 1) and s f ( t  + 1) 
not be equivalent. But that is not strictly necessary: I f s  
and s are equivalent and there exists an input i such that 
f,(i, s) and h(i, s f )  have different state codes (i.e., the 
two states are not 1-equivalent), the fault also manifests 
itself in a wrong signature. 

Theorem 4: The additional hardware of the modified 
self-test structure is testable for all single stuck-at faults 
if the FSM does not contain 1-equivalent states. 

Pro05 Assume that for one of the Mode values no 
input combination withf,(i, s) # SSR+(s) exists. Then 
the next state of the FSM is always identical to the next 
state of the SSR in this Mode. If this happended for Mode 
= 1 (D-flip-flop mode), the FSM under consideration 
could be implemented by the pattern generation register 
without additional hardware. Then the D-flip-flop mode 
is redundant and would be eliminated in the synthesis pro- 
cess. If the problem occurs for Mode = 0 (SSR mode), 
being able to switch to SSR mode does not help in mini- 
mizing the combinational logic of the FSM. Mode signal 
and additional control logic are redundant and are elimi- 

1 
Test patterns with the required properties are contained 

in the normal pattem generator sequence with a high 

nated in the synthesis process. 

probability, so that no additional effort is needed to gen- 
erate them besides switching to system mode for one clock 
cycle each. 

Consider the modified scan path structure of Fig. 4. 
The control signal Mode is not directly observable and 
should be stored in an additional flip-flop in the scan 
chain. Thus, the combinational logic producing this sig- 
nal can be checked. Apart from faults in the additional 
control logic, which can be treated as in the last section, 
the Johnson counter feedback and the multiplexer for 
SDI/SDO might not work properly. It is easy to test these 
additional gates for stuck-at faults. The output of the mul- 
tiplexer is observable via the first flip-flop of the scan 
chain. The inputs are controllable by shifting in appro- 
priate signals into the scan chain, because if it were not 
possible to set the inputs to values such that an input or 
output stuck-at fault became visible, the corresponding 
signal could be replaced by the pertinent constant, which 
in turn would reduce the amount of combinational logic 
needed. In other words: The additional gates, if not re- 
dundant, can be tested together with the rest of the com- 
binational logic of the FSM. 

B. Experimental Results 
The complete logic synthesis process for scan path test- 

able and self-testable FSM’s is summarized in Fig. 12. 
Starting from a behavioral description, the coding con- 
straints are generated either by symbolic minimization (for 
two-level combinational logic) or by an approach similar 
to [13] (for multilevel logic). They are analyzed and 
translated into the matrices A ,  D, S, C, and T. Matrix P 
is computed for a first default SSR belonging to the pre- 
determined test strategy (scan path, self-test). These ma- 
trices are then used by the quadratic assignment algo- 
rithm. The resulting cost function value can be compared 
for different SSR’s to determine the SSR with the lowest 
cost. Logic minimization (either two-level or multilevel) 
is then performed and a layout for the self-testable FSM 
is generated. 

We performed various experiments by running FSM 
benchmark examples from the MCNC Workshop on Logic 
Synthesis [27] through a preliminary implementation of 
the algorithms presented. First, the machines were en- 
coded and optimized disregarding the pattem generation 
capability of the state memory. We used the programs 
NOVA4 (two-level logic [32]) and MUSTANG’ (multi- 
level logic [ 131) from the Octools distribution of the Uni- 
versity of California at Berkeley [30]. We then used our 
approach for self-testable FSM’s with LFSR’s as pattern 
generators   KOALA^). 

4More exactly, the encoding option “ihybrid” was used to obtain a fair 
comparison, because our algorithm performs disjoint minimization instead 
of symbolic minimization until now. 

’Both, the fan-in-oriented algorithm and the fan-out-oriented algorithm 
were run. The best result was taken. 

‘Karlsruhe’s optimized assignment for testable automata. The results in 
thistable were obtained w:th the parameters k,‘=-k, = 1 in cost function 
(1). 
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generation of 
coding conditions 

A 

- 
state assignment design 

‘-7 logic minimization( I 
I I II 

to layout generation 
Fig. 12. Overview over the synthesis program for testable FSM’s. 

TABLE I 
SUMMARY OF BENCHMARK RESULTS 

Characteristics of Two-Level Results Multilevel Results 
Example (# Product Terms) (# Literals) 

SSR 
Name i / o / s  NOVA KOALA Trans. MUSTANG KOALA 

scf 21/56/ 121 
planet 1 /19 /48  
tbk 6 /3 /32  
styr 9 /10 /30  
dk16 2 /3  /21 
donfile 2 /1 /24  
ex  1 9/19/20 
s l  8 /6 /20  
s l a  8 /6 /20  
ex2 2 /2 /19  
kirkman 12/6/16 
bbsse 1 / 1 / 1 6  
mark1 5/16/15 
dk512 1 / 3 /  I 5  
ex4 6 /9 /14  
modulo12 1/1/12 

146 
91 

149 
94 
59 
29 
48 
80 
16 
29 
64 
30 
20 
18 
19 
13 

136 
83 
59 
93 
51  
28 
44 
81 
65 
27 
54 
27 
17 
17 
16 
9 

30 
33 
4 
6 
4 
5 
7 

1 1  
23 

1 
2 
1 
4 
5 

11 
8 

822 
518 
547 
594 
270 
160 
280 
35 1 
248 
149 
176 
121 
108 
10 
77 
35 

773 
569 
496 
512 
24 1 
14 

253 
236 
171 
132 
146 
134 
94 
48 
70 
29 

The column i / o / s  gives the number of input variables, output variables, and states, respectively. The 
column “SSR Trans.” gives the number of FSM transitions realized by using the SSR as pattern generator. 

The combinational logic was optimized using an iden- 
tical logic minimization procedure for the two ap- 
proaches. This is particularly important for comparing 
multilevel logic results, since multilevel minimizers are 
generally interactive and it would be impossible to distin- 
guish between improvements owing to a modified circuit 
structure/state assignment on the one hand and a more in- 
tensive logic minimization on the other. Therefore it does 
not make much sense to compare results for different mul- 
tilevel state assignments unless a common sequence of 
minimization steps is used. We used the standard misII 
[30] script for multilevel minimization. Some of our re- 
sults are summarized in Table 1 .  For the two-level imple- 
mentations of the combinational logic the number of PLA 
product terms is given; for multilevel logic the number of 
literals is given. Compared with a conventional self-test 
solution, the area for implementing the state registers stays 

the same. CPU time for the state assignment was in the 
range of minutes on a SUN 3/60, which was usually less 
than in the time needed for logic minimization, particu- 
larly for a multilevel nonredundant implementation. It 
should be noted, however, that the number of states grows 
exponentially with the number of flip-flops, such that this 
approach is not suitable for circuits such as data paths. 

For many examples, significant savings over a conven- 
tional self-test solution are possible; however, because of 
output incompatibilities, not all the transitions realized 
with the SSR can be saved. An excellent illustration of 
this effect can be found in Table I: the only difference 
between the examples sl and sla is that for sla all the 
outputs are “0” (actually rendering this FSM useless ex- 
cept for benchmarking purposes), so output incompatibil- 
ities do not play a role, in contrast to sl.  The problem is 
particularly important for two-level combinational logic; 
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it could be alleviated by separating the next state logic 
and the output logic. Sometimes there is a trade-off be- 
tween satisfying adjacency constraints and utilizing SSR 
transitions. Since it is unlikely that there exists a cost 
function accurately modeling this effect without requiring 
exponential effort, it may happen that utilizing SSR tran- 
sitions actually increases the amount of hardware needed 
(cf. sl). In this case experimenting with different weight- 
ing factors k l ,  kZ, and k3 in cost function (1) can help. 

Results for scan designs have previously been pre- 
sented [ 161. In the case where scan path registers are used, 
for all combinational fault models 100% fault coverage 
can be achieved (cf. subsection IV-A) provided that the 
minimizer generates irredundant combinational logic. As 
with all scan path approaches, the length of an input se- 
quence to detect a fault increases linearly with the number 
of flip-flops. 

Since an SSR can only produce one next state for each 
present state code, the approach is especially suited to 
FSM’s with sparse state transition graphs, i.e., few tran- 
sitions per state, because then a large percentage of the 
transitions can be mapped to SSR transitions. Larger in- 
dustrial controllers typically exhibit this structure (cf. 
[26] ) .  For the smaller benchmark examples not listed in 
Table I, which have strongly connected state transition 
graphs, in general only slight improvements are achiev- 
able. 

V.  CONCLUSIONS 
To be able to test nontrivial sequential circuits at a rea- 

sonable cost, a pertinent design approach has to be cho- 
sen. Integrating design for testability into the synthesis 
process, instead of modifying the circuit after its func- 
tional design is completed, offers several advantages. The 
amount of additional hardware can be reduced by utilizing 
the test circuitry in system mode. The barriers to design- 
ing testable circuits are lowered, because the test circuitry 
is no longer considered a postdesign overhead. 

Circuits with scan paths or self-testable circuits can 
provide a satisfactory solution to the problem of testing 
sequential circuits. In this paper we have presented a syn- 
thesis method which utilizes the increased functionality 
of the storage elements of such circuits in  the design of 
finite state machines. Both scan paths and self-test regis- 
ters can be interpreted as “smart” state registers, capable 
of producing certain state transitions on their own. To 
make the best use of such registers we have proposed a 
state encoding strategy. An analytic formulation of the 
state assignment problem facilitates the use of several al- 
ternative coding conditions. It provides a unified frame- 
work for both two-level (PLA) and multilevel implemen- 
tations. Choosing an appropriate feedback polynomial for 
LFSR pattern generators makes it possible to exploit a 
new minimization potential for self-testable FSM’s. The 
approach was applied to a collection of benchmark FSM’s. 
Compared with conventional FSM implementations with 
scan paths or self-test registers, significant savings can be 
achieved. In its current form the approach, however, is 

not applicable to the synthesis of sequential circuits with 
a large number of storage elements such as data paths. 
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