
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I , NO. 3, MARCH 1992 30 I

Optimized Synthesis Techniques for Testable
Sequential Circuits

Bernhard Eschermann and Hans-Joachim Wunderlich, Associate Member, IEEE

Abstract-Innovative synthesis for testability strategies aim
at considering testability while synthesizing a circuit, whereas
conventional design for testability methods modify the design
after the circuit structure is synthesized. We describe a synthe-
sis approach that maps a behavioral FSM description into a
testable gate-level structure. The term “testable” in this con-
text, besides implying the existence of tests, also means that the
application of test patterns is facilitated. Depending on the test
strategy, the state registers of the FSM are modified e.g. as
scan path or self-test registers. The additional functionality of
these state registers is utilized in system mode by interpreting
them as “smart” state registers, capable of producing certain
state transitions on their own. To make the best use of such
registers, we propose a novel state encoding strategy based on
an analytic formulation of the coding constraint satisfaction
problem as a quadratic assignment problem. An additional
minimization potential can be exploited by appropriately
choosing the pattern generator for self-testable designs. Exper-
imental results indicate that, compared with conventional de-
sign for testability approaches, significant savings are possible
this way.

I. INTRODUCTION
ONVENTIONAL design for testability methods C commonly require circuit modifications after the

functional design is finished. Supplementary hardware
used only for testing purposes has to be added (e.g. [15],
[25], [35]). Testability can also be taken into account dur-
ing the synthesis of the circuit (“synthesis for testabil-
ity”). The test strategy is determined in advance, based
on considerations such as test generation complexity, re-
quired test equipment, test application effort, tolerable
hardware overhead, and fault coverage. The advantages
of this approach are twofold. First, the circuit is designed
for a specific test strategy; logic design decisions can be
targeted toward obtaining circuits which are easily test-
able “by construction” (cf. [l] , [14], [16], and [17]).
Second, test hardware, which has to be implemented any-
way, can be utilized in system mode instead of being su-
perfluous after the test is finished, thus reducing the
amount of logic needed to implement the system func-
tionality.

Manuscript received April 3, 1990; revised September 24, 1990. This
paper was recommended by Associate Editor K. Keutzer.

The authors were with the Institut fur Rechnerentwurf und Fehler-
toleranz, Fakultat fur Informatik, Universitat Karlsruhe, Zirkel 2, 7500
Karlsruhe, Germany. They are now with the Department of Electrical
Engineering and Computer Science, University of Siegen, 5900 Siegen,
Germany.

IEEE Log Number 9102368.

This paper describes an approach for transforming a be-
havioral finite state machine (FSM) description into a
structural description supporting a given test strategy. We
focus on the synthesis of FSM’s with state registers mod-
ified to enhance testability, e.g. scan path or self-test reg-
isters, called smart state registers in the sequel. For an
external test a scan path often stays necessary even if the
circuit is sequentially irredundant (cf. [14] for a defini-
tion), since the worst-case length of an input sequence to
detect a fault otherwise increases exponentially with the
number of storage elements [29]. This is particularly crit-
ical if the FSM is embedded in a larger circuit such that
its inputs and outputs are not directly accessible. The ap-
plication of test patterns is further facilitated by including
pattern generators for implementing a self-test.

The main idea is that in test mode the above-mentioned
storage elements cycle through a sequence of states. If the
encodings of the present and the next state of the FSM are
consecutive elements in this cycle, the state transition does
not have to be implemented by additional logic, and the
next state can be generated by using the test mode. By
utilizing the test logic for implementing a part of the sys-
tem functionality, hardware overheads of testing can be
reduced.

In the sequel we first review some design for testability
strategies for FSM’s and summarize their properties in an
abstract model. In Section I11 we give a synthesis proce-
dure that utilizes these properties to reduce the amount of
combinational logic needed to implement FSM’s. Section
IV analyzes the solution in terms of testability and area
consumption. The main results are summarized in Section
V.

11. BASIC PRINCIPLES
A . Finite State Machines

The behavior of a synchronous sequential circuit can
be modeled with an FSM description (e.g. a state transi-
tion diagram), its srructure by an interconnection of com-
binational logic and storage elements (see Fig. 1). In in-
tegrated circuits these storage elements are generally
realized with D-type latches or flip-flops. We assume a
general Mealy machine

9lz = (1, s, 0, fs, f”>
with the input set I , the state set S, the output set 0, and
the next. state and output functions

0278-0070/92$03.00 0 1992 IEEE

302 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I , NO. 3. MARCH 1992

I combinational lofzic I
i 0

I statememorv I
storage 1-k elements

c I

Fig. 1 . Finite state machine model

f,: I x S -+ S, f , (i , s) = ss

fo: I x S -+ 0, fo(i, s) = 0.

The FSM model is particularly useful for circuits with
irregular combinational logic and a relatively small num-
ber of storage elements.

B. Test Strategies and Test Equipment
One of the most widely used design for testability

methodologies is to incorporate a scan path, in which all
the flip-flops are connected as a serial shift register in test
mode. Test patterns thus can be shifted into the flip-flops;
test responses can be shifted out. Examples of this test
methodology can be found in [151 (LSSD) and [35] (edge-
triggered scan design, ETSD).

Self-testable circuits contain test pattern generators as
well as response analyzers on chip. Depending on the test
strategy, the pattern generator may be a linear feedback
shift register (LFSR) [25], a cellular automaton [22], or
a nonlinear feedback shift register [lo] . In all these cases
the memory elements work as D flip-flops in system mode,
whereas in test mode a complex specialized behavior is
desired. Although in some cases the same register may be
used for pattern generation and response analysis [24], in
the circuits typically modeled as FSM’s this is more dif-
ficult [9]. An architecture for FSM’s in which the system
flip-flops can be configured as pattern generator and the
responses are compacted in a separate multiple-input
LFSR (MISR) was proposed in [4] and [33] (see Fig. 2) . ’
The MISR may be saved if the observability of state
variables is secured by other means (cf. e.g. [20]).

C. Target Structure of the Synthesis Process
Both scan designs and self-testable designs demand

more area than designs without test aids. The additional
area is required to modify the storage elements. At least
two modes of operation are needed. In system mode the
storage elements merely load the outputs of the combi-
national logic, whereas in test mode some provision is
made to apply test patterns or to capture test responses.
Since a fair amount of hardware is spent to enable the

‘Pattern generation and response analysis for the primary inputs and out-
puts are not shown.

I combinational logic]

m o d e
I -
I i

Fig. 2 . Architecture o f self-testable FSM’s.

storage elements to perform these additional tasks, it
would be desirable to utilize this increased functionality
during normal system operation as well.

Pattern generators for self-testable designs in autono-
mous mode cycle through a fixed sequence of states to
stimulate the circuit. This property can also be used in
system mode if the encodings of the present and the next
state are consecutive elements in this cycle. Whenever the
next state code is produced by the pattern generation reg-
ister, which has to be implemented for testing purposes
anyway, it is not necessary to generate it in the next state
logic. Replacing the next state entries with don’t cares for
all such transitions greatly increases the potential for logic
optimization of the combinational logic. Fig. 3 illustrates
a possible realization of this idea [161. An additional out-
put signal “Mode” determines whether the state machine
flip-flops behave like ordinary D flip-flops or work as a
pattern generator. In the second case the state register is
“smart” enough to generate the next state on its own, so
the next state signals generated by the combinational logic
can be set to arbitrary values.

A similar result can be obtained for scan paths by feed-
ing back the contents of the last storage element into the
first element of the chain. Depending on whether or not
the feedback is inverted, the resulting state memory be-
comes a loadable Johnson counter or ring counter. Such
a “counter” is not mandatory-it is possible to choose
any other feedback structure as well-but these simple
feedback structures minimize the necessary overhead.
There are three modes: a test mode (scan mode), a normal
system mode, in which the storage elements work as D .
flip-flops, and a feedback mode, in which the next state
is produced by operating the storage elements as a counter.
The feedback mode and the test mode are actually equiv-
alent for all flip-flops in the scan chain (see Fig. 4). A
special case, PLA-based FSM’s implemented with load-
able Johnson counters as state memories, was previously
investigated and found to be quite effective [2]. However,
the synthesis procedure presented there is not general
enough for the majority of test registers.

Both approaches can be generalized in that there is a
“smart” state register (in the sequel abbreviated SSR) that
is capable of generating a number of state transitions on
its own. This characteristic can be utilized to reduce the
combinational logic of the FSM. The price to be paid is
that an additional output signal must be produced by the
combinational logic to control the state register mode. Ex-

ESCHERMANN AND WUNDERLICH: OPTIMIZED SYNTHESIS TECHNIQUES

1 combinational logic I
i

Fig, 3. Self-testable FSM with “smart” state memory.

combinational logic

isj==4mbo
m o d e
SDI

Fig. 4. FSM with scan path and “smart” state memory.

perimental evidence indicates that this expense is small
compared with the possible savings.

The main problem is to find a state assignment that will
reduce the combinational logic required to implement the
modified FSM. Conventional state assignment algorithms
are not suitable for this purpose because the pattern gen-
eration capability of the state memory cannot be taken
into account until after the state assignment. On the other
hand, it is not necessarily advantageous to maximize the
number of state transitions generated by the SSR, since it
may be impossible to further minimize the combinational
network for the remaining state transitions. Both aspects,
minimization by replacing next state entries with don’t
cares and minimization by conventional logic optimiza-
tion techniques, must be regarded concurrently during
state assignment.

D. State Assignment Methods
Many recent state assignment algorithms for PLA-based

FSM’s2 are based on the work of DeMicheli et al. [111,
[12]. After a “symbolic minimization’’ of the FSM, in
which a symbolic cover (3 with certain coding constraints
is created, the task of the state assignment algorithm is to
satisfy as many of these coding constraints as possible.

An adjacency constraint requires a set of states to be
encoded in a Boolean subspace not containing any
other states [1 11.
A covering constraint between a pair of states re-
quires that each state variable which is “1” in the
state to be covered has a correspond to a “1” in the
other state [121.

The process is illustrated with the example in Fig. 5, in
which the state groups Z, U Z2 and Z, U Z3 correspond

’Multilevel logic is treated in subsection 111-D.

n.state output

303

a 01 10 00

Fig. 5. Symbolic minimization and satisfaction of coding constraints.

I LFSR 1+x+x2 *mode
Fig. 6. PLA realization of the modified self-test structure.

to the adjacency constraints and Z, G Z, and Z3 C Z, to
the covering constraints. Since the first and the third line
in the minimized table of Fig. 5 completely cover the sec-
ond line, the outputs in that line can be left unspecified.
The state assignment 2,: 11, 2,: 01, 5: 10 satisfies all
these constraints and the number of PLA product terms is
reduced to 7.

For four of the symbolic implicants no reduction is pos-
sible, because they do not give rise to any constraints and,
therefore, are not considered in the encoding process.
They can, however, be completely saved if the ideas of
subsection 11-C are applied. A self-test register based on
an LFSR with a feedback polynomial p (x) = 1 + x + x 2
can produce the state transitions 00 3 00, 11 -+ 01,
01 -+ 10, and 10 -+ 11 on its own. With Mode = 0 caus-
ing the SSR to switch to LFSR mode, only three product
terms are needed for the combinational logic of the FSM
(Fig. 6).

111. SYNTHESIS PROCEDURE
A . Problem Formulation

To incorporate the ideas of subsections 11-C and 11-D
into a synthesis procedure for PLA-based FSM’s, three
different mechanisms of reducing the number of product
terms should be taken into account: adjacency relations,
covering relations, and transitions realizable with the SSR.
Our approach is based on the analytical formulation of a
cost function for the state assignment problem, in which
the SSR transitions can be easily incorporated. Let s be
the number of states of the FSM, and n the number of bits
used for the encoding of these states. We use the minimal
number of state bits, no = [log2 s1 , since choosing a
number n > no only rarely decreases the PLA area [23],
[32], particularly if the area of the additional flip-flops is
also considered.

Dejinition I : The adjacency matrix, A , of a minimized

304 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 1 1 . NO. 3. MARCH 1992

symbolic cover C? is an s X s matrix of nonnegative in-
teger entries aij. For i # j the value aij corresponds to the
number of adjacency constraints of e to which states i and
j both belong; the diagonal entries ai; are set to 0.

Definition 2: The distance matrix, D , is a 2" x 2" ma-
trix with Boolean entries d , E (0, l } , where di, = 0 if the
Hamming distance of codes i a n d j is less than or equal
to 1, and dij = 1 otherwise.

Similar adjacency and Hamming distance values have
been used in other state assignment algorithms (see [3]
for one of the first references). In a good assignment, state
pairs appearing together in many symbolic implicants are
assigned to codes with small Hamming distances, pref-
erably to adjacent codes. Let

4: (SI * * s,} ((4: - - qk,)(k E (1 * * - s}}
be an injective mapping, which assigns a unique code
(q: * * * qk,) to each state sk. Then a partial cost of

a(i, j , 4) := i * aij d(i)(j)
is incurred by the assignment of a pair of nonadjacent

appearing together in symbolic implicants of e (aii = aji
> 0). The factor 4 takes the symmetry of the matrices A
and D into account. Matrix A collects the information
about pairs of states from the minimized symbolic cover;
matrix D contains the information about pairs of codes
necessary for the encoding process. To include the cov-
ering conditions, two additional matrices are necessary.

Definition 3: The state covering matrix,' S , of a min-
imized symbolic cover C? is an s x s matrix of nonnega-
tive integer entries si, where sij corresponds to the num-
ber of implicants of C? that require covering state j with
state i .

Definition 4: The code covering matrix, C, of an r-bit
code is a 2" x 2" matrix with Boolean entries cij E (0, I } ,
where cij = 0 if code i covers codej , and cl,, = 1 other-
wise.

A cost function similar to a(i, j , 4) can be formulated
for the covering constraints. A partial cost of

x (i , j , 4) := sij * C + (i) $ (j)

is incurred if state i should cover statej (sij > 0) and code
+ (i) does not cover code ~ $ (j) (c ~ (;) ~ (,) > 0). To describe
the effect of the SSR transitions, two more matrices are
introduced.

Definition 5: The transition matrix, T , of a minimized
symbolic cover C? is an s X s matrix of nonnegative in-
teger entries tij , where tu is the number of implicants with
a present state i and next statej, which do not belong to
an adjacency or covering constraint of e.

Definition 6: The pattern matrix, P , of an r-bit pattern
generator is a 2" x 2" matrix with entries pij E (0, l} ,
where pii = 0 if code j is the successor of code i in the
sequence generated by the autonomous SSR, and pi j = 1
otherwise.

codes 4(i) and 4 (j) (d(i)(j) - - d $ (j) G (i) > 0) to states

'Note that this matrix is a simple extension of the matrix termed adja-
cency matrix in [12]. In spite of the naming, it does not correspond to the
matrix introduced in Definition 1 of this paper.

0 1 1 1 .;I 0 1 0 ; :] ; ; 0'1
1 0 1 1

Fig. 7 . Example matrices for the FSM of Fig. 5 .

If transitions not minimizable with the help of adja-
cency or covering constraints (tIJ > 0) cannot be realized
with the help of SSR transitions (P d (r) m (J) > 0), this cor-
responds to a cost function value of

7 (i 9 j9 4) := tIJ * P(I)(J)*
Example: For the cover of Fig. 5, the matrices in Fig.

7 are obtained. In matrices A , S, and T the ith row/column
corresponds to state Z,. The order of entries in matrices
D , C, and P corresponds to the codes 00, 01, 10, and 11
in that sequence. For matrix P , an LFSR with a feedback
polynomial p(x) = 1 + x + x 2 was used. Note that A and
D are symmetric matrices, whereas S, C, T , and P are not.

Finding an appropriate assignment 4 such that as many
adjacency and covering constraints as possible are satis-
fied and that the remaining state transitions are preferably
produced by the SSR can then be formulated as a combi-
natorial optimization problem:

min (4): V(4) = [k , * a(i, j , 4) + k2 * x (i , j , 4)
1 . J

+ k3 . ~ (i , j , 4)l
= V,(4> + VJ4) + V,(4)

with certain weighting factors k l , k 2 , k3 I 0. The com-
plete cost function consists of three terms, one for the
violation of adjacency constraints, a second for the vio-
lation of covering constraints, and a third for the remain-
ing transitions not realizable with the help of the SSR.

Dejnition 7: The assignment matrix, X , of a state as-
signment 4 is an s x 2" matrix with Boolean entries x,k E
(0, l}, where x,k = 1 if k = + (i) and x,k = 0 otherwise.

Using this matrix, the problem can be formulated as a
0-1 integer program in which the product xlk * xJl selects
all those cost values belonging to the current assignment:

min (X): V (X) = c [k , i * a, dkl + k 2 srJ * ckl
f , J . k , l

+ k3 ' P k l l x i k * X j l

(1)
= VIJkl x i k x ~ l

I , J . k , [

ESCHERMANN AND WUNDERLICH: OPTIMIZED SYNTHESIS TECHNIQUES 305

Xik E (0 , 1} v i , k . (4)

The s + 2" linear constraints (2) and (3) ensure that X
indeed represents an injective mapping 4, i . e . , that each
state is assigned exactly one code and each code is as-
signed to at most one state.

Example: For the example of Fig. 6 the assignment
matrix, X , is

and the minimal cost value V (X) = 0 is obtained. Both
adjacency constraints are satisfied (V , (X) = O) , since the
state groups {Z, , 2,) and {Zl , Z 3 } are both coded with a
Hamming distance of 1. The code for ZI covers the code
for Z2 and Z3 (V,(X) = 0) and all the remaining transitions
are realized with the help of SSR transitions (V , (X) = 0).

The problem comprising (1)-(4) is a well-known coml
binatorial optimization problem, the quadratic assign-
ment problem [191. It was proven to be NP-complete [181,
but because of its relevance for many applications much
effort was spent in developing feasible solution methods
(see [7] for an overview). We use an exact algorithm using
implicit enumeration techniques from [5] for FSM's with
up to eight states. For larger machines, at least 16 state
codes have to be considered and the exact algorithm be-
comes quite slow. In these cases, we use heuristic algo-
rithms [6], [8]. Since state assignment is an NP-hard
problem [34], the use of heuristics is inevitable. How-
ever, by representing the state assignment problem as a
quadratic assignment problem, a very general problem
formulation and solution method are obtained, allowing
different types of coding constraints and arbitrary SSR's.

B. Adequacy of the Formulation
In the above framework, only pairwise adjacency re-

lations can be represented. A group of m states to be en-
coded in a minimal subspace of Boolean r-space is split
into m (m - 1) state pairs. The minimization (1) at-
tempts to code all these state pairs with a Hamming dis-
tance of 1, which is obviously not possible (for m > 2) .

Within a single state group, the minimization of C & aij
d $ (i) $ (j) can be reduced to a minimization of C d $ (j) 4 (,)

over all admissible code pairs 4(i), c$(j), because aii is
constant within this state group. Alternatively, E (1 -
d 4 (j) 4 (j J can be maximized; i.e., the maximum number
of adjacent codes is sought. Situations with isolated state
codes, i.e., state codes not adjacent to any other state
code, are obviously not optimal; the number of adjacen-
cies could simply be increased by encoding the isolated

3 adjacencies 4 adjacencies
Fig. 8. Encoding possibilities for a state group with in = 4 states

state with any unused code adjacent to one of the other
state codes. The remaining possibilities for m = 4 are
illustrated in Fig. 8.

In what follows we prove that maximizing the number
of adjacent code pairs guarantees not only that pairs of
symbolic implicants can be merged, but also that adja-
cency groups S with an arbitrary number of states m =
IS1 are encoded in a minimal subspace of dimension
[log, ml . As a consequence, for m = 2" all correspond-

ing transitions can indeed be merged into one. Let
k

m = C c , ~ , c, E {o, I}, ck = 1 and
, = O

I{c,Ic, = 1}1 = #c.

Theorem 1: Encoding the elements of an adjacency
group S in a Boolean subspace of minimal dimension
[log, 1 S 1 1 such that #c subsets of states with cardinality

2' (corresponding to the values c, = 1) are encoded in
cubes of dimension i, maximizes the number of pairwise
adjacencies.

Proofi Theorem 1 is proven by induction on k . Let
A (S) be the maximal number of pairwise state adjacencies
within a state group S and let A(S , , S,) be the maximal
number of adjacencies between states of different groups
SI and S, .

1) k = 1, m E (1, 2 , 3}, trivial.
2) Assume that Theorem 1 is valid for m = CfZd c, 2'.
3) Prove that Theorem 1 is valid for m' =

For m' = 2k, the number of edges in a hypercube
of dimension k is m 'k. Having encoded the states
in a hypercube of dimension k , there exists a state
variable ql that partitions S into two disjoint subsets
SA = {s E S l q , = 0} and SE = {s E S lq , = l}.
Both subsets (dimension I SA I = I SE I = m ' / 2 =
2 k - ') are encoded in disjoint hypercubes of dimen-
sion k - 1. Because of 2) the number of adjacencies
within the subsets is maximized by this encoding,

~ ' 2 ' .

L L

The number of adjacencies between the disjoint hy-
percubes SA and SE is bounded by

306 IEEE TR

1.4

1.2-

.ANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I . NO. 3, MARCH 1992

* *
* * * 0

..
0 . .

*.
2.0 .* * * *

0

So we have

1 m’ m‘ 1
2 2 2 2

(k - 1) + - = - m‘k. 5 2 - -

Therefore, m‘k is an upper bound for A (S) . By
encoding the states in a hypercube of dimension k ,
this upper bound is reached; i.e., the number of ad-
jencies is maximized. The case m’ > 2k can be
treated analogously by using a state variable to par-
tition S into two disjoint subsets SA, I SAl = 2k and
S E , ISBI < 2k.

In experiments it turned out that changing the entries
of the distance matrix, D, from Boolean values dii E
(0, l } to nonnegative integer values dij equal to the Ham-
ming distance of codes i and j improved the results for
two-level state assignment. The reason seems to be that
more information is provided by this modified matrix D,
although the optimality proof given is no longer valid in
this case.

If m is not a power of 2 and the total number, s, of
states is smaller than the number 2” of available state
codes, it may still be possible to merge all the correspond-
ing m transitions: Some codes in the Boolean subspace
determined by these transitions can be left unused by en-
coding the other states outside of that subspace. The cost
function value obtained for (1) does not reflect this pos-
sibility. If a small negative value is assigned to all the aii
previously set to 0, i.e., those state pairs not to be en-
coded in a Boolean subspace, the cost value decreases if
states i and j are assigned to codes with a large Hamming
distance; hence nonadjacent states are kept apart from
each other. In what follows this modified cost function is
denoted v u (X) .

C . Experimental Validation
Deciding whether a Boolean function can be imple-

mented in two-level form with some number, K , of prod-
uct terms belongs to the class of NP-complete problems
[18]. Therefore, we cannot expect to find a cost function
for a given state assignment accurately predicting the
complexity of the resulting combinational logic, which
can be computed in polynomial time. To be useful as a
heuristic, the cost function should, however, be able to
distinguish between good and bad state assignments with
a high probability. Another problem is that exact logic
minimization is infeasible for larger Boolean functions.
Even if the optimal state assignment were known, it might
not yield the best implementation obtainable in practice.
Hence the only possibility of testing the quality of the cost
function is to validate it experimentally.

For several FSM examples were generated a series of
random state assignments. For each state assignment we
evaluated the cost function v u (X) and v u (X) + V,(X) and
minimized the resulting combinational logic. Comparing
the cost function value and the actual implementation cost

of product terms
min # of product terms

I
1.4 -.

1.2-0
.

0

.
o o o o

0

of product terms
min # of product terms

4 .

1 1 - V(X)
min V(X) 1 2 3 4 5 6 7 8

(b)
Fig. 9. Predictive value of the cost function.

should indicate how good the cost function estimate is.
Results for a typical example are illustrated in Fig. 9. It
turns out that the cost function v u (X) alone gives a me-
diocre prediction for the ranking of different state assign-
ments with respect to the complexity of the combinational
logic (see Fig. 9(a)). The correlation coefficient, r , of a
linear regression in Fig. 9(a) is r = 0.64; Spearman’s
rank correlation coefficient rs = 0.62. Unfavorable re-
sults particularly have to be expected when only a small
number of adjacency constraints can be derived: In this
case the minimization potential is mainly due to covering
relations and other effects not modeled in the cost func-
tion. By utilizing the SSR transitions, the FSM transitions
not included in adjacency constraints can also be mini-
mized. This is considered in the composite cost function
V(X) = v u (X) + V,(X), which gives reasonably accurate
estimates for the resulting logic (see Fig. 9(b) for the FSM
example of Fig. 9(a)). The correlation coefficient of a lin-
ear regression, r , in Fig. 9(b) is r = 0.81; Spearman’s
rank correlation coefficient r, = 0.77.

D. Multilevel Logic
Multilevel logic synthesis programs differ from two-

level programs in that expressions can be factored and
common subexpressions can be extracted. The multilevel
state assignment algorithm developed by Devadas et al.
[13] seeks to create common cubes. Two approaches can
be distinguished: one maximizes the size of common
cubes (“fan-out oriented”), while the other maximizes
the frequency with which common cubes occur (“fan-in-
oriented”). In either case, a heuristic cost function is
minimized. Using the assignment matrix, X , for repre-

307 ESCHERMANN AND WUNDERLICH: OPTIMIZED SYNTHESIS TECHNIQUES

senting the resulting state assignment, the cost function
can be written as

where dkl represents the Hamming distance of codes k and
1. Since this cost function has the same mathematical
structure as the cost function for two-level logic, SSR
transitions can be taken into account in exactly the same
way. The values aij are not derived by symbolic mini-
mization but by estimating the number of common cubes
that can be extracted from the resulting combinational
network. The coefficients aij now represent the impor-
tance of encoding states i and j with a small Hamming
distance. The adjacency values aij in our algorithm are
generated in a way similar to that in [131, except that we
count multiple edges in the state transition graph only
once, since the creation of common cubes caused by the
state encoding does not depend on the multiplicity of
edges.

Thus, a unified framework for both two-level and mul-
tilevel state assignment is obtained. Design style specific
knowledge enters into the coding constraint generation
step, whereas the solution algorithm for the mathematical
optimization problem can be kept generic.

E. Implications of the SSR Structure
Until now the characteristics of the SSR were needed

only to determine the pattern matrix, P. Therefore, any
SSR described by such a matrix can be accommodated:
Johnson counters, ring counters, LFSR's, nonlinear feed-
back shift registers, cellular automata, etc. For self-test-
able designs the choice is based on the required fault cov-
erage and the hardware overhead. LFSR's with primitive
feedback polynomials can be used to obtain a maximum
length test sequence. In general one such polynomial is
taken from a table listing primitive polynomials over
GF(2), e.g. [31]. In order to minimize LFSR area, i.e.,
to reduce the number of XOR'S, minimum weight poly-
nomials are often preferred.

In the synthesis method presented in this paper, the state
assignment depends on the feedback polynomial and so
does the complexity of the resulting combinational logic.
The optimal solution requires an LFSR structure that is
best suited to the FSM under consideration. Choosing the
feedback polynomial of the LFSR by minimizing the cost
function presented earlier over all pertinent polynomials
p (x) , i.e., all pattern matrices P , thus provides an addi-
tional degree of freedom. Although the number of poly-
nomials which have to be considered grows exponentially
with the number of flip-flops, it is still small for typical
FSM's, such that encoding the states for all polynomials
to choose the best solution is feasible. An interesting fact
is that it does not matter whether a standard implemen-
tation or a modular implementation [28] of the LFSR is
chosen as long as a minimum weight polynomial of the
f o r m p (x) = 1 + X ' + x-'!, 1 I i < n, is used. The reason
is that in this case the two implementations differ only in

standard implementation

modular implementation

Fig. 10. Standard and modular LFSR with p (x) = 1 + x ' + x "

the sequence of flip-flops (see Fig. lo), which is irrele-
vant to state assignment and logic minimization. Matrix
D remains unchanged, because the permutation of coding
columns does not influence the Hamming distance of
codes.

go = g, = 1, be the LFSR feedback polynomial. The
contents of the n LFSR states q = (qo * * q, - I)T can be
described by the recurrence equation q(t + 1) = G q(t)

Let p (x) = go + g,x + * + g , - l x n - l + gnxn ,

with

G =

0 1 0 * * * 0

. .
. . . .

The reciprocal polynomial of g(x) is p'(x) = 1 + g, - I x
+ . . .

Theorem 2: An LFSR with feedback polynomial p (x)
produces a code sequence which, when reversed, is equal
to the sequence produced by the reciprocal feedback poly-
nomial p ' (~) .

Proof: The recurrence equation for the LFSR with
the reciprocal feedback polynomial p'(x) is r (t + 1) =
H r (t) , where

+ g l x n - l + X t 1 .

gl go

H = i':Ig;: ; o

. . .
It can be easily verified that for go = g, = 1 G * H = I , ,
the n X n identity matrix. The recurrence equations for k
time steps are

q(t + k) = Gk * q(t) ,

r (t + k) = H~ r (t) e r (t) = H~ r (t - k) .

308 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I . NO. 3. MARCH 1992

If we start with the same register contents in both cases,
r(to) = q(to) for some time to, using the above equations
we get

q(to + k) = Gk q(t0) = Gk * r(to)

= Gk H k r(to - k)
- - Gk-1 . G . H . Hk-1 .

& Fig. 1 1 . Johnson counter.

with the cycle distance d, = k:

= r(to - k) .

= w (J ~ e I,> * q(t) CB C J' e
r = o

k - I
()

)
(
(r = l

([I)
1 1 (h - l r = o)

k - l Thus the contents q(to + k) of an LFSR k time steps after
to are equal to the contents r(to - k) of the LFSR with
reciprocal feedback polynomial k steps back in time. Since

derivation is also valid for k e 0. H = w (J ~ e I,> (J q(t - 1) e e) e C J'
G and H are nonsingular matrices for go = g , = 1, the

Because of this, the pattern matrix, P', obtained for
p'(x) is equal to the transpose of the pattern matrix P for
P (4 .

Some worthwhile theoretical results can be derived for
Johnson counters (Fig. 11). Each pattern has a unique
successor and predecessor in Johnson counter mode. The
number of cycles is

r = O

k

= w J (J ~ e I,> * q(r - 1) CB C J'

= w J (J ~ e I,)

= w (J ~ e I,) - q(r - 1) e C J' - e

e

q(r - 1) Q C J' e
I = o

k - l

z(n) = - * C ~ (d) 2n/d - - C ~ (2 4 * 2n/2d
2n d i n 2n z d (n = HD(q(t + k - l), q(t - 1)).

[21], where 9 denotes the Euler function. Similar to an
LFSR, the behavior of a Johnson counter can be described

By induction it follows that any two patterns with the same
cycle distance d~ = k have the Same Hamming distance.

H
Example: For the case n = 2, there is only one cycle

00 -, 10 + 11 --t 01 --* 00 containing all the 2-bit pat-
terns, Z(2) = 1. The cycle distance of code 00 and 10 is
1, the cycle distance of 00 and 11 is 2. All the codes with
a cycle distance of 1 have a Hamming distance of 1, all
the codes with a cycle distance of 2 have a Hamming dis-
tance of 2.

by a recurrence equation q(t + 1) = J - q(t) Q e , where

is a cyclic shift operator and e = (0 0 1)' performs
the complementation of the feedback signal.

Let HD(i , j) be the Hamming distance of two codes i
and j and let w(q) denote the weight of a vector q , i.e.,
the number of 1 ' s in this vector. The Hamming distance
of two codes i a n d j is HD(i , j) = w(i Q j) , and rotating
a vector does not change its weight, w(J

Dejinition 8: The cycle distance, d,(i, j) , of two codes
i a n d j belonging to the same Johnson counter cycle, c is
the number of transitions necessary to get from i t o j .

7'heorem 3: The Hamming distance of all the patterns
of a cycle c with the same cycle distance is identical,
d,(i, j) = d,(k, 1) * HD(i , j) = HD(k , 1) .

Proof: From the recurrence equation we get q(t +
k) = J k q(t) e J' e . Then we can derive the
following result for the Hamming distance of two patterns

q) = w(q) .

Corollary: There always exists a Johnson counter cycle
in which all consecutive codes are adjacent. It includes
the all-zero code q(ro) = 0.

Proof:

d,(q(t + I),

= dc(q(t0 + 11, q(t0)) [= 11 *
HD(q(t + 11, q(0)

= HD(qO0 + I), q(t0))

= w((J - q(to) Q e) Q q(ro)) = w(e) = 1. H
The satisfaction of adjacency constraints in [2] mainly

depends on this corollary. Because of Theorem 3, first
determining the Johnson counter transitions and after-
wards trying to embed these state chains in the Johnson
counter cycles such that as many adjacency constraints as

309 ESCHERMANN AND WUNDERLICH: OPTIMIZED SYNTHESIS TECHNIQUES

possible are satisfied is not a very good strategy. The
number of satisfiable adjacency constraints between the
different states of a Johnson counter cycle is independent
of the placement of states within this cycle; it depends
only on the SSR transitions chosen and the Johnson
counter cycle to which the states are assigned. In our al-
gorithm we therefore choose the SSR transitions concur-
rently with satisfying the adjacency constraints.

IV. ANALYSIS OF THE SOLUTION
A. Testability

Consider the modified self-test structure of Fig. 3. The
additional control signal Mode is included in the signature
analysis process to detect faults in the logic producing this
signal. If the Mode signal is produced correctly, there are
two more reasons why the circuit might not work as re-
quired. Either the Mode line to the pattern generator con-
trol logic can be stuck at O / 1 or the control logic itself is
faulty. Both faults can be detected by switching the pat-
tern generator to system mode and applying two test pat-
terns that produce signals satisfying the condition

Mode = 1, A(i, s) # SSR+(s)

and

Mode = 0, A(i, s) # SSR+(s).

For outputs with these properties a faulty next state is
reached. The existence of test patterns causing such out-
puts is guaranteed by Theorem 4. To be able to distin-
guish the faulty state, s f (t + I), from the correct state,
s(t + l), there has to be some input pattern, i, for which
the output, o(t + I) , or the next state, s(t + 2), is differ-
ent. A sufficient condition is that s(t + 1) and s f (t + 1)
not be equivalent. But that is not strictly necessary: I f s
and s are equivalent and there exists an input i such that
f,(i, s) and h(i, s f) have different state codes (i.e., the
two states are not 1-equivalent), the fault also manifests
itself in a wrong signature.

Theorem 4: The additional hardware of the modified
self-test structure is testable for all single stuck-at faults
if the FSM does not contain 1-equivalent states.

Pro05 Assume that for one of the Mode values no
input combination withf,(i, s) # SSR+(s) exists. Then
the next state of the FSM is always identical to the next
state of the SSR in this Mode. If this happended for Mode
= 1 (D-flip-flop mode), the FSM under consideration
could be implemented by the pattern generation register
without additional hardware. Then the D-flip-flop mode
is redundant and would be eliminated in the synthesis pro-
cess. If the problem occurs for Mode = 0 (SSR mode),
being able to switch to SSR mode does not help in mini-
mizing the combinational logic of the FSM. Mode signal
and additional control logic are redundant and are elimi-

1
Test patterns with the required properties are contained

in the normal pattem generator sequence with a high

nated in the synthesis process.

probability, so that no additional effort is needed to gen-
erate them besides switching to system mode for one clock
cycle each.

Consider the modified scan path structure of Fig. 4.
The control signal Mode is not directly observable and
should be stored in an additional flip-flop in the scan
chain. Thus, the combinational logic producing this sig-
nal can be checked. Apart from faults in the additional
control logic, which can be treated as in the last section,
the Johnson counter feedback and the multiplexer for
SDI/SDO might not work properly. It is easy to test these
additional gates for stuck-at faults. The output of the mul-
tiplexer is observable via the first flip-flop of the scan
chain. The inputs are controllable by shifting in appro-
priate signals into the scan chain, because if it were not
possible to set the inputs to values such that an input or
output stuck-at fault became visible, the corresponding
signal could be replaced by the pertinent constant, which
in turn would reduce the amount of combinational logic
needed. In other words: The additional gates, if not re-
dundant, can be tested together with the rest of the com-
binational logic of the FSM.

B. Experimental Results
The complete logic synthesis process for scan path test-

able and self-testable FSM’s is summarized in Fig. 12.
Starting from a behavioral description, the coding con-
straints are generated either by symbolic minimization (for
two-level combinational logic) or by an approach similar
to [13] (for multilevel logic). They are analyzed and
translated into the matrices A , D, S, C, and T. Matrix P
is computed for a first default SSR belonging to the pre-
determined test strategy (scan path, self-test). These ma-
trices are then used by the quadratic assignment algo-
rithm. The resulting cost function value can be compared
for different SSR’s to determine the SSR with the lowest
cost. Logic minimization (either two-level or multilevel)
is then performed and a layout for the self-testable FSM
is generated.

We performed various experiments by running FSM
benchmark examples from the MCNC Workshop on Logic
Synthesis [27] through a preliminary implementation of
the algorithms presented. First, the machines were en-
coded and optimized disregarding the pattem generation
capability of the state memory. We used the programs
NOVA4 (two-level logic [32]) and MUSTANG’ (multi-
level logic [131) from the Octools distribution of the Uni-
versity of California at Berkeley [30]. We then used our
approach for self-testable FSM’s with LFSR’s as pattern
generators KOALA^).

4More exactly, the encoding option “ihybrid” was used to obtain a fair
comparison, because our algorithm performs disjoint minimization instead
of symbolic minimization until now.

’Both, the fan-in-oriented algorithm and the fan-out-oriented algorithm
were run. The best result was taken.

‘Karlsruhe’s optimized assignment for testable automata. The results in
thistable were obtained w:th the parameters k,‘=-k, = 1 in cost function
(1).

310 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I . NO. 3, MARCH 1992

generation of
coding conditions

A

-
state assignment design

‘-7 logic minimization(I
I I II

to layout generation
Fig. 12. Overview over the synthesis program for testable FSM’s.

TABLE I
SUMMARY OF BENCHMARK RESULTS

Characteristics of Two-Level Results Multilevel Results
Example (# Product Terms) (# Literals)

SSR
Name i / o / s NOVA KOALA Trans. MUSTANG KOALA

scf 21/56/ 121
planet 1 /19 /48
tbk 6 /3 /32
styr 9 /10 /30
dk16 2 /3 /21
donfile 2 /1 /24
ex 1 9/19/20
s l 8 /6 /20
s l a 8 /6 /20
ex2 2 /2 /19
kirkman 12/6/16
bbsse 1 / 1 / 1 6
mark1 5/16/15
dk512 1 / 3 / I 5
ex4 6 /9 /14
modulo12 1/1/12

146
91

149
94
59
29
48
80
16
29
64
30
20
18
19
13

136
83
59
93
51
28
44
81
65
27
54
27
17
17
16
9

30
33
4
6
4
5
7

1 1
23

1
2
1
4
5

11
8

822
518
547
594
270
160
280
35 1
248
149
176
121
108
10
77
35

773
569
496
512
24 1
14

253
236
171
132
146
134
94
48
70
29

The column i / o / s gives the number of input variables, output variables, and states, respectively. The
column “SSR Trans.” gives the number of FSM transitions realized by using the SSR as pattern generator.

The combinational logic was optimized using an iden-
tical logic minimization procedure for the two ap-
proaches. This is particularly important for comparing
multilevel logic results, since multilevel minimizers are
generally interactive and it would be impossible to distin-
guish between improvements owing to a modified circuit
structure/state assignment on the one hand and a more in-
tensive logic minimization on the other. Therefore it does
not make much sense to compare results for different mul-
tilevel state assignments unless a common sequence of
minimization steps is used. We used the standard misII
[30] script for multilevel minimization. Some of our re-
sults are summarized in Table 1 . For the two-level imple-
mentations of the combinational logic the number of PLA
product terms is given; for multilevel logic the number of
literals is given. Compared with a conventional self-test
solution, the area for implementing the state registers stays

the same. CPU time for the state assignment was in the
range of minutes on a SUN 3/60, which was usually less
than in the time needed for logic minimization, particu-
larly for a multilevel nonredundant implementation. It
should be noted, however, that the number of states grows
exponentially with the number of flip-flops, such that this
approach is not suitable for circuits such as data paths.

For many examples, significant savings over a conven-
tional self-test solution are possible; however, because of
output incompatibilities, not all the transitions realized
with the SSR can be saved. An excellent illustration of
this effect can be found in Table I: the only difference
between the examples sl and sla is that for sla all the
outputs are “0” (actually rendering this FSM useless ex-
cept for benchmarking purposes), so output incompatibil-
ities do not play a role, in contrast to sl. The problem is
particularly important for two-level combinational logic;

ESCHERMANN AND WUNDERLICH: OPTIMIZED SYNTHESIS TECHNIQUES 311

it could be alleviated by separating the next state logic
and the output logic. Sometimes there is a trade-off be-
tween satisfying adjacency constraints and utilizing SSR
transitions. Since it is unlikely that there exists a cost
function accurately modeling this effect without requiring
exponential effort, it may happen that utilizing SSR tran-
sitions actually increases the amount of hardware needed
(cf. sl). In this case experimenting with different weight-
ing factors k l , kZ, and k3 in cost function (1) can help.

Results for scan designs have previously been pre-
sented [161. In the case where scan path registers are used,
for all combinational fault models 100% fault coverage
can be achieved (cf. subsection IV-A) provided that the
minimizer generates irredundant combinational logic. As
with all scan path approaches, the length of an input se-
quence to detect a fault increases linearly with the number
of flip-flops.

Since an SSR can only produce one next state for each
present state code, the approach is especially suited to
FSM’s with sparse state transition graphs, i.e., few tran-
sitions per state, because then a large percentage of the
transitions can be mapped to SSR transitions. Larger in-
dustrial controllers typically exhibit this structure (cf.
[26]) . For the smaller benchmark examples not listed in
Table I, which have strongly connected state transition
graphs, in general only slight improvements are achiev-
able.

V. CONCLUSIONS
To be able to test nontrivial sequential circuits at a rea-

sonable cost, a pertinent design approach has to be cho-
sen. Integrating design for testability into the synthesis
process, instead of modifying the circuit after its func-
tional design is completed, offers several advantages. The
amount of additional hardware can be reduced by utilizing
the test circuitry in system mode. The barriers to design-
ing testable circuits are lowered, because the test circuitry
is no longer considered a postdesign overhead.

Circuits with scan paths or self-testable circuits can
provide a satisfactory solution to the problem of testing
sequential circuits. In this paper we have presented a syn-
thesis method which utilizes the increased functionality
of the storage elements of such circuits in the design of
finite state machines. Both scan paths and self-test regis-
ters can be interpreted as “smart” state registers, capable
of producing certain state transitions on their own. To
make the best use of such registers we have proposed a
state encoding strategy. An analytic formulation of the
state assignment problem facilitates the use of several al-
ternative coding conditions. It provides a unified frame-
work for both two-level (PLA) and multilevel implemen-
tations. Choosing an appropriate feedback polynomial for
LFSR pattern generators makes it possible to exploit a
new minimization potential for self-testable FSM’s. The
approach was applied to a collection of benchmark FSM’s.
Compared with conventional FSM implementations with
scan paths or self-test registers, significant savings can be
achieved. In its current form the approach, however, is

not applicable to the synthesis of sequential circuits with
a large number of storage elements such as data paths.

ACKNOWLEDGMENT
The authors are indebted to Prof. Dr. D. Schmid for his

continuous support and encouragement. The help of Prof.
Burkard and Dr. Rendl of the Technical University of
Graz (Austria), who provided standard programs for
quadratic assignment, is gratefully acknowledged. Fi-
nally the authors would like to thank the reviewers, par-
ticularly reviewer #1, whose detailed comments helped to
improve the presentation.

REFERENCES
[I] V. D. Agrawal and K.-T. Cheng, “Test function specification in syn-

thesis,” in Proc. 27th Design Automat. Conf., 1990, pp. 235-240.
[2] R. Amann, B. Eschermann, and U. G. Baitinger, “PLA based finite

state machines using Johnson counters as state memories,” in Proc.
IEEE Int. Conf. Computer Design, 1988, pp. 267-270.

[3] D. Armstrong, “A programmed algorithm for assigning internal codes
to sequential machines,” IRE Truns. Electronic Computers, vol. EC-

[4] R. Bennetts, Design of Testable Logic Circuits. Reading, MA: Ad-
dison-Wesley, 1984.

[SI R. Burkhard and U. Derigs, Assignment and Matching Problems.
New York: Springer, 1980.

161 R. Burkhard and T. Bonniger. “A heuristic for quadratic Boolean
programs with applications to quadratic assignment problems,”
European J . Operational Res. , vol. 13, pp. 374-386, 1983.

[7] R. Burkard, “Quadratic assignment problems,” European. J . Oper-
arional Res. , vol. 15, pp. 283-289, 1984.

181 R. Burkard and F. Rendl, “A thermodynamically motivated simu-
lated procedure for combinatorial optimization problems,” European
J . Operational Res. , vol. 17, pp. 169-174. 1984.

[9] C. Chuang and A. Gupta, “The analysis of parallel BlST by the com-
bined Markov chain (CMC) model,’’ in Proc. Int. Test Conf., 1989,

[IO] W. Daehn, “Deterministische Testmustergenerierung fur den ein-
gebauten Selbsttest von integrierten Schaltungen,” NTG-Fachbe-
richte 82, pp. 16-19, 1983.

[I I] G . DeMicheli, R. Brayton, and A. Sangiovanni-Vincentelli, “Opti-
mal state assignment for finite state machines,” IEEE Trans. Com-
puter-Aided Design, vol. CAD-4, no. 3, pp, 269-285, 1985.

[121 G . DeMicheli, “Symbolic design of combinational and sequential
logic circuits implemented by two-level logic macros,” IEEE Trans.
Computer-Aided Design, vol. CAD-5, pp. 597-616, 1986.

[I31 S . Devadas, H. Ma, R. Newton, and A. Sangiovanni-Vincentelli,
“MUSTANG: State assignment of finite state machines targeting
multilevel logic implementations,” IEEE Trans. Computer-Aided
Design, vol. 7, pp. 1290-1300, 1988.

141 S . Devadas. H. Ma, R. Newton, and A. Sangiovanni-Vincentelli,
“Irredundant sequential machines via optimal logic synthesis,” IEEE
Tram. Computer-Aided Design. vol. 9 , pp, 8-18, 1990.

15) E. Eichelberger and T. Williams, “A logic design structure for LSI
testability,” in Proc. 14th Design Automat. Con$, 1977, pp. 462-
468.

161 B. Eschermann and H. Wunderlich. “A synthesis method to reduce
scan design overhead,” in Proc. 1st European Design Automat. Con$,
1990, p. 671.

171 B. Eschermann and H. Wunderlich, “Optimized synthesis of self-
testable finite state machines,” in Dig. 20th Znt. Symp. Fault-Toler-
ant Comput., 1990, pp. 390-397.

(181 M. Garey and D. Johnson, Computers and Intractability. New York:
Freeman, 1979.

[191 R. Garfinkel and G. Nemhauser, Integer Programming. New York:
Wiley, 1972.

[20] T. Gheewala, “CrossCheck: A cell based VLSI testability solution,”
in Proc. 26th Design Automat. Conf., 1989, pp. 706-709.

1211 S . Golomb, Shift Register Sequences. Oakland, CA: Holden-Day,
1967.

I I , pp. 466-472, 1962.

pp. 337-343.

312 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. I I . NO. 3, MARCH 1992

[22] P. Hortensius et al . , “Cellular automata-based pseudorandom num-
ber generators for built-in self-test,” IEEE Trans. Computer-Aided
Design, vol. 8, pp. 842-859, 1989.

[23] J . Huertas and J . Quintana, “A new method for the efficient state-
assignment of PLA-based sequential machines,” Dig. Inr. Conf.
Computer-Aided Design, 1988, pp. 156-159.

[24] K. Kim, D. Ha, and J . Tront, “On using signature registers as pseu-
dorandom pattern generators in built-in self-testing,” IEEE Trans.
Computer-Aided Design, vol. 7, pp. 919-928, Aug. 1988.

[2S] B. Konemann, J . Mucha, and G. Zwiehoff, “Built-in logic block ob-
servation techniques,” in Proc. Inr. Tesr Conf., 1979, pp. 37-41.

[26] R. Leveugle and G. Saucier, “Optimized synthesis of concurrently
checked controllers,” IEEE Trans. Compur., vol. 39. pp. 419-425,
1990.

[27] R. Lisanke, Logic Synthesis and Oprimizarion Benchmarks, Version
2.0; MCNC, 1988.

[28] E. McCluskey, Logic Design Principles. Englewood Cliffs. NJ:
Prentice-Hall, 1986.

[29] A. Miczo, “The sequential ATPG: A theoretical limit,” in Proc. h r .
Test Conf., 1983, pp. 143-147.

[30] Octtools Distribution 3.3, Electronics Research Laboratory, Univer-
sity of California, Berkeley, 1989.

13 I] W. Peterson and E. Weldon, Error-Correcting Codes. Cambridge,
MA: MIT Press, 1972.

1321 T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State assignment
of finite state machines for optimal two-level logic implementations,”
in Proc. 26th Design Automat. Conf., 1989, pp. 327-332.

[33] L. Wang and E. McCluskey, “Built-in self-test for sequential ma-
chines,” in Proc. Inr. Tesr Conf., 1987, pp. 334-341.

[34] W. Wolf, K. Keutzer, and J . Akella, “A kernel-finding state assign-
ment algorithm for multi-level logic,” in Proc. 25th Design Automat.
Conf., 1988, pp. 433-438.

[3S] M. Williams and J . Angell, “Enhancing testability of large-scale in-
tegrated circuits,” IEEE Trans. Comput., vol. C-22, pp. 46-60, 1973.

Bernhard Eschermann was bom in 1963. He re-
ceived the Dipl.-Ing. degree in electrical engi-
neering from the University of Karlsruhe, Ger-
many, in 1987, the M.S. degree in electrical
engineering and computer sciences from the Uni-
versity of Califomia at Berkeley in 1988, and the
Dr. rer. nat. (Ph. D.) degree in computer science
from the University of Karlsruhe in 1991.

In 1987 he was a summer associate with Sie-
mens AG, Munich, and McKinsey & Comp., Inc.,
Dusseldorf. From 1988 to 1991 he worked at the

Institut fur Rechnerentwurf und Fehlertoleranz, University of Karlsruhe,
and at the Computer Science Research Center (FZI) in Karlsruhe, where
he headed the Automation of Circuit Design group in 1991. Recently he
joined the University of Siegen, Germany. His present research interests
include logic and high-level synthesis, design for testability and fault-tol-
erant design.

Hans-Joachim Wunderlich (A’86) received the
Dipl.-Math. degree in mathematics from the Uni-
versity of Freiburg, Germany, in 1981, and the
Dr.rer.nat. (Ph.D.) degree in computer science
from the University of Karlsruhe in 1986.

In 1982 he was a consultant at the Fraunhofer
Institute of Industrial Engineering, Stuttgart,
where he worked in the field of operations re-
search. In 1983 he joined the Institut fur Rechner-
entwurf und Fehlertoleranz, University of Karls-
ruhe, where he headed a research group on the

automation of circuit design and test since 1986. Currently Dr. Wunderlich
is a full professor at the University of Siegen, Germany. His research in-
terests include computer-aided design for testability, test generation, and
digital simulation.

