
Proceedings IEEE International Test Conference, Baltimore, Maryland, 1992

*) now with the University of Siegen, Germany
**) now with Max-Planck-Society, Fault Tolerant

Computing Group, Berlin, Germany
***) on sabbatical leave from McGill University,

Montréal, Canada

GENERATION OF VECTOR PATTERNS THROUGH RESEEDING OF
MULTIPLE-POLYNOMIAL LINEAR FEEDBACK SHIFT REGISTERS

Sybille Hellebrand*, Steffen Tarnick**, Janusz Rajski***
and Bernard Courtois

TIM3/IMAG
46, avenue Félix Viallet

38031 GRENOBLE CEDEX, France

Abstract. In this paper we perform a comparative anal-
ysis of the encoding efficiency of BIST schemes based on
reseeding of single polynomial LFSR's as well as LFSR's
with fully programmable polynomials. Full programma-
bility gives much better encoding efficiency. For a test-
cube with s carebits we need only s+4 bits in contrast to
s+19 bits for reseeding of single polynomials, but since it
involves solving systems of nonlinear equations it is not
applicable to realistic cases. We propose a new BIST
scheme where the generator can operate according to a
number of primitive polynomials. The testcubes are en-
coded as the polynomial identifier and a seed. We present
models of the encoding efficiency of this scheme and de-
monstrate, both theoretically and through extensive simu-
lations, that such a scheme with 16 polynomials ap-
proaches the efficiency of the scheme based on full poly-
nomial programmability, essentially preserving the com-
putational simplicity of single reseeding.

1. Introduction
One of the necessary properties that a Built-In Self Test
(BIST) scheme must satisfy in order to guarantee a high
quality of testing is high fault coverage. Complete, or
very high fault coverage is expected to be produced by a
simple vector generator in an acceptable number of pat-
terns. To address this problem a number of techniques
have been developed assuming varying amount of struc-
tural information about the circuit, different fault models,
different techniques to characterize compact test sets, and
various Design For Testability (DFT) methodologies.
These techniques can be classified in three major groups:
exhaustive testing, weighted random testing and mixed-
mode vector pattern generation.

In exhaustive testing the main objective is to generate all
combinations of vectors for every output [6, 5, 15, 16,
19]. Although this strategy yields the coverage of all com-
binational faults, it is not always possible to achieve; spe-
cifically it is not possible to generate all combinations of
inputs in circuits with outputs driven by a large number
of inputs.

The approach based on weighted random patterns character-
izes complete test sets in a compact form by signal proba-
bilities for every input of the circuit [3, 17, 7]. Pseudo-
random patterns biased to these probabilities maximize the
coverage of hard to test faults, reducing the length of the
test. Different faults may require different, conflicting
values of signal probabilities [18]. This, combined with
the objective to keep the length of the test set within rea-
sonable limits, makes the use of multiple sets of weights
necessary, and thus leads to a large volume of test data
that has to be stored and manipulated [12].

The other group of methods uses mixed-mode generation
of vector patterns. Linear feedback shift registers
(LFSR's), or other generators, are used as a source of
pseudorandom vectors which cover a large percentage of
easily testable faults. Automatic test pattern generation is
used to target random pattern resistant faults. In this way
partially specified test patterns are generated. The second
part of the testing experiment is then designed to cover
those hard to test faults. There have been a number of
techniques developed to generate deterministic sequences of
vectors [1, 9, 2, 10, 13]. Most of these techniques do not
take advantage of the fact that the test vectors are given in
the form of testcubes with many unspecified inputs. They
are therefore not suitable for scan design.

Reseeding of LFSR's has been proposed as a technique
that is compatible with scan design. The same LFSR used
to generate pseudorandom patterns, is loaded with seeds
from which it produces vectors that cover the testcubes of
difficult to test faults. Although the number of bits
required to encode a testcube in this way is much smaller

2

than the length of the scan chain, it was estimated based
on the analysis of linear dependences in LFSR sequences
that the LFSR should have the length of s+20 bits in
order to reduce the probability of not finding a seed for a
testcube with s specified bits to less than 10-6 [12, 8].

The objective of this paper is to examine the effectiveness
of encoding for schemes based on reseeding and poly-
nomial programming, and to find a scheme that offers the
best encoding efficiency with the lowest computational
complexity.

In the scheme based on reseeding we assume that one char-
acteristic polynomial is used to control the operation of
the LFSR. The seeds can be easily computed by solving
systems of linear equations selected by the "care", or
specified bits of testcubes. The scheme has the lowest
computational complexity. However, the encoding
efficiency of this scheme is strongly reduced by linear
dependences that exist between some positions of LFSR
sequences. As a result we require s+19 bits to encode a
testcube with s specified bits with probability 1 - 10-6.

An alternative approach is to use a fully programmable
LFSR loaded initially with a unique single seed. In this
case we can achieve the same probability of successful en-
coding using only an (s+4)-bit LFSR. This is the most
efficient encoding but the scheme is also computationally
the most complex as it involves solving systems of non-
linear equations. In fact, the process of finding the poly-
nomials is computationally so complex that it makes this
scheme inapplicable to practical cases.

Therefore we propose to use a scheme based on reseeding
and multiple primitive polynomials. In this scheme the
LFSR can operate according to one out of many primitive
polynomials. The testcube is encoded as the polynomial
identifier and the initial seed. We demonstrate that with 16
polynomials, which require 4 bits to encode the choice,
this scheme achieves the same probability of finding the
encoding as the scheme with full polynomial programma-
bility. Encoding a given testcube involves solving sys-
tems of linear equations for the polynomials. Although
we have 16 polynomials the process stops when we find
the first encoding. In practice the average number of poly-
nomials that are analyzed is only slightly greater than one.

The paper introduces the schemes, presents the theoretical
models of their efficiency as well as the experimental vali-
dation of the models. The organization of the paper will
be as follows. After this introductory section the proposed
scheme will be presented in section 2, which also provides
the notation used throughout this paper and some basic
properties of LFSR sequences. Section 2 will be con-
cluded with the precise problem statement. Subsequently
the schemes based on full polynomial programmability,

single reseeding and reseeding for multiple polynomials
will be examined in sections 3 through 5. Each section
will provide a probabilistic model for the respective
scheme and a detailed analysis of the encoding efficiency
and computational complexity. Finally section 6 shortly
describes the experimental validation of our results.

2. The BIST Scheme and Problem Statement
2 . 1 . General Structure of the BIST Scheme

The basic structure of the BIST scheme analyzed in this
paper is shown in Figure 1. We assume that a scan based
design for testability technique is used. The approach
relies on pseudorandom patterns that cover most of the
faults in the Circuit Under Test (CUT). For the remaining
c hard to test faults m-bit testcubes are determined by
automatic test pattern generation. Each of the testcubes is
then encoded in an n-bit word that controls the operation
of the vector generator. A part of the n-bit word is used to
provide the seed, the remaining bits encode the polyno-
mial. In order to generate one test vector corresponding to
one testcube the generator selects the successive word
from the memory, loads the seed into the LFSR, and
establishes the feedback links. Subsequently, in m clock
cycles it produces serially the bits of the test vector which
are shifted into the scan chain. The test vector is then
applied to the CUT, the responses are loaded back into the
scan register and shifted out for compaction into the
signature register SR.

... ...

.

.

.

.

.

.

Poly. Id Seeds

c

m

n

... Scan Chain

CUT

...

&
...

...

& &

+

D
ec

od
in

g
Lo

gi
c

SR

+

Figure 1. The general structure of the BIST scheme.

The main problem addressed in this paper is how to
encode the testcubes into seeds and polynomials to achieve
the best encoding efficiency with the least computational
complexity. Before we precisely formulate the problem,
let us introduce some basic notions and properties of
LFSR sequences.

3

2 . 2 . Testcubes and LFSR's - Basic Definitions

In this section the problem of generating a given testcube
by a k-stage LFSR is characterized by a set of equations,
and the classical approaches to solve these equations are
discussed. First, we introduce the notation used through-
out this paper and repeat some basic properties of LFSR
sequences.

An LFSR as shown in Figure 2 is represented by its feed-

back polynomial h(X) := Xk+ ∑
k-1

i=0
hiXi.

ak-1

hk-1

+

h 0

a0a1

h1

+

Figure 2. Linear feedback shift register (LFSR).

The output sequence will be denoted by a := (ai)i≥0. It is
completely determined by the feedback polynomial h(X)
and the seed a(0) := (a0,…,ak-1). The t-th state vector
a(t) := (at,…,at+k-1) can be obtained from the seed by

a(t) = a(0) · Mt , (I)

where M :=

0 … 0 h0
1 0 … 0 h1

0 … 0 1 hk-1

 is the companion matrix

of the polynomial h(X).

A testcube is respresented by a vector C := (c0,…,cm-1) ∈
{0,1,x}m. S(C) := {i | ci ≠ x} denotes the set of specified
bits and s(C) := | S(C) | the number of specified bits in the
testcube. A k-stage LFSR can generate a given testcube, if
its output sequence is "consistent" with the testcube.

Definition 1: Let C = (c0,…,cm-1) ∈ {0,1,x}m be a test-
cube and a = (ai)i≥0 be a sequence of elements of GF(2). If
ci = ai holds for all i ∈ S(C) then a is called consistent
with C.

To design LFSR sequences which are consistent with a
given testcube, equation (I) can be used to derive a set of
equations for the feedback coefficients and the initial con-
tents of the LFSR.

Observation 1: Let C = (c0,…,cm-1) ∈ {0,1,x}m be a
testcube. The output sequence (ai)i≥0 produced by an
LFSR with feedback polynomial h(X), companion matrix
M and seed a(0) is consistent with C, if and only if

ci = ai = (a(0)·Mi)1 = (a(0)·Mi-k+1)k (II)
holds for all i ∈ S(C), where (a(0)·Mi)r denotes the r-th
component of a(0)·Mi.
It is easily verified that the equations (II) provide a system

of s(C) nonlinear equations in the variables a0,…,ak-1 and
h0, …, hk-1. Basically there are two approaches possible
to reduce the number of variables involved in this system
of equations. The first is to assume a fixed seed and to
determine the feedback polynomial. The second approach
is to calculate suitable seeds for a fixed feedback polyno-
mial ("reseeding") [12]. Both approaches can be realized in
the general structure of the BIST scheme introduced in the
paper. There are, however, considerable differences be-
tween both approaches with respect to the computational
effort required. For a fixed seed, the resulting equations in
the variables h0 ,…, hk-1 are still nonlinear, whereas for a
fixed feedback polynomial a system of linear equations in
the variables a0, …, ak-1 is obtained.

Example 1: A testcube C := (x,x,1,0,x,0,x) ∈ {0,1,x}7
is to be generated by a 3-stage LFSR. The output
sequence depends on the seed a(0) = (a0,a1,a2) and the
feedback polynomial h(X) = X3+ h2X2 + h1X + h0. The

companion matrix of h(X) is M =

0 0 h0
1 0 h1
0 1 h2

 . To obtain

the equations for ai, i ∈ S(C) = {2,3,5}, the matrices

M2 =

0 h0 h0·h2
0 h1 h0+h1·h2
1 h2 h1+h2

 and

M3 =

h0 h0·h2 h0·h1+h0·h2
h1 h0+h1·h2 h1+h0·h2+h1·h2
h2 h1+h2 h0+h2

 are computed.

The resulting system of equations is:
(i) 1 = a2,
(ii) 0 = a0·h0 + a1·h1 + a2·h2,
(iii) 0 = a0·(h0·h1+h0·h2) + a1·(h1+h0·h2+h1·h2) +

a2·(h0+h2).

A fixed seed a(0) = (1,1,1) provides a system of equations
(i) 1 = a2,
(ii) 0 = h0 + h1 + h2,
(iii) 0 = h0·h1 + h1 + h1·h2 + h0+h2 = h0·h1 + h1·h2,
which has two solutions (h0,h1,h2) = (0,0,0) and
(h0,h1,h2) = (1,0,1).

In contrast, a fixed feedback polynomial h(X) = X3+ X+ 1
yields a system of linear equations
(i) 1 = a2,
(ii) 0 = a0 + a1,
(iii) 0 = a0 + a1 + a2,

which has no solution. This is due to the fact that the
equations are linearly dependent and demand contradictory
values. In general, linear independence of the equations is
a sufficient but not a necessary condition for the existence
of

4

a solution. For example the same system of linearly de-
pendent equations has a solution for a2 = 1, a3 = 1, a5 = 0.

Summarizing we can state that the computational effort
required for the reseeding technique is considerably less
than the computational effort required for calculating a
feedback polynomial. But on the other hand calculating
the feedback polynomial seems to offer better chances of
finding a solution and therefore possibly a higher effi-
ciency of encoding. For a more exact comparison of both
schemes we need a technique to evaluate their properties
concerning the efficiency of encoding and the computa-
tional complexity. We will develop such a technique for
the more general scheme which is presented in the next
section.

2 . 3 . Generalized Reseeding Based on Multiple
Polynomials

In the following we present a generalized encoding scheme
which offers a wide range of trade-offs between single re-
seeding and full polynomial programmability. The basic
idea is to consider not one, but a number of primitive
polynomials when calculating seeds. Moreover, for a part
of the seed fixed values can be assumed. Then the compu-
tational effort is determined by the number of poly-
nomials: in the worst case for each polynomial a system
of linear equations has to be solved. And, as it will be
shown later, the efficiency of encoding can be considerably
increased already for a relatively small number of poly-
nomials taken into account.

A generalized BIST scheme based on reseeding of multiple
polynomials is shown in Figure 3.

&

Seeds

...

...

D
ec

od
in

g
Lo

gi
c

Poly. Id

...

'0'

n-qq

'0' '0'

& & &

+ + +

Figure 3. Generalized BIST scheme based on reseeding of
multiple polynomials

The testcubes are encoded into n bits of information,
where q bits are used to select one out of 2q (primitive)
polynomials of degree k ≥ max(n - q,q), and n-q bits to

store the programmable part of the seed.

Example 2: Consider the case from Example 1. Now it
is assumed that the seed has one fixed bit a2 = 1 and the
testcube C = (x,x,1,0,x,0,x) is to be generated either by
the polynomial h1(X) := X3+ X + 1 or by h2(X) := X3+
X2 + 1. Thus we have n = k = 3 and q = 1. As demon-
strated in Example 1 the system of equations correspond-
ing to h1(X) has no solution. But for h2(X) the resulting
equations are

(i) 1 = a2,
(ii) 0 = a3 = a0 + a2,
(iii) 0 = a5 = a0 + a1,

and a0 = a1 = a2 = 1 is a solution.

For q = k = n the scheme of Figure 3 becomes fully pro-
grammable and for k = n and q = 0 we obtain single
reseeding. Between these two extremes there is a range of
schemes determined by the choice of the parameter q. In
the sequel we will develop a technique to evaluate the effi-
ciency of encoding for varying parameters. As the evalua-
tion will be based on the probability of finding a solution
we need a probabilistic model for the generalized reseeding
scheme, which describes this probability as a function of
the involved parameters.

Problem Statement: Given a testcube C with s specified
bits and an LFSR that can implement 2q (primitive)
polynomials of degree k. Determine the probability
Psucc(k,n,q,s) that for a testcube C with s(C) = s and for
at least one of 2q (primitive) polynomials of degree k
there is a seed (n-q programmable bits), such that the
output sequence of the LFSR is conistent with C.

These probabilities will also characterize the classical ap-
proaches described in section 2.2, since Psucc(k,k,0,s) =:
Pseed(k,s) is the probability that for a testcube C with
s(C) = s and a fixed polynomial of degree k there is a
suitable seed. And Psucc(k,k,k,s) =: Ppol(k,s) is the pro-
bability that for a testcube C with s(C) = s and a fixed
seed there is a suitable feedback polynomial of degree k.
The corresponding probabilities of failure will be denoted
by Pfail(k,n,q,s) := 1 - Psucc(k,n,q,s), Pnoseed(k,s) := 1 -
Pseed(k,s) and Pnopol(k,s) := 1 - Ppol(k,s).

As linear independence of the equations is a sufficient (but
not a necessary condition) for the existence of a seed in the
classical reseeding scheme another objective of our
probabilistic analysis is to determine the probabilities
Pindep(k,s) that for a testcube C with s(C) = s and a fixed
feedback polynomial of degree k the resulting equations
for the seed variables are linearly independent, and
Pdep(k,s) := 1 - Pindep(k,s).

5

3. Full Polynomial Programmability
In this section a complete analysis of the BIST scheme
based on calculating polynomials is given. Since in this
case a fixed seed is assumed the general scheme introduced
in Figure 3 reduces to the scheme shown in Figure 4.

+++

q=n

...

...

'0' '0' '0'
Polynomials

'1' '0' '0'

...

&&&&

...

Figure 4. BIST scheme based on calculating feedback poly-
nomials.

The properties of this scheme are characterized by the pro-
babilities Ppol(k,s) and Pnopol(k,s), which are determined
by the following theorem.

Theorem 1: Let C ∈ {0,1,x}m be a testcube with s(C) =
s, and let 2k ≤ m. If a fixed seed a(0) = (0,…,0,1) is
assumed, then the probability Pnopol(k,s) is given by

Pnopol(k,s) =

2m - 2k

2m
2m-s

.

Proof: There are 2k different feedback polynomials of
degree k. For the fixed seed a(0) = (0,…,0,1) the corre-
sponding LFSR's produce 2k different output sequences.
Since 2k ≤ m the projection onto the first m bits provides
2k different sequences of length m. Thus there are 2m - 2k
sequences of length m which cannot be output sequences
of a k-stage LFSR using the seed a(0). Therefore the prob-
ability that an arbitrary sequence of length m is not a de-

sired LFSR sequence is 2m - 2k

2m . On the other hand,

there are 2m-s sequences of length m which are consistent
with the testcube C. C cannot be generated by a k-stage
LFSR, if none of this sequences is a desired LFSR se-
quence. Assuming statistical independence this completes
the proof.

For some representative values of s and k the values for
Pnopol(k,s) are shown in Table I.

For practical applications an approximation formula can
be used to calculate the probability Pnopol(k,s).

Corollary 1: For large m the probability Pnopol(k,s) is

given by Pnopol(k,s) ≈ (e-1)2k-s
.

Proof: By Theorem 1 Pnopol(k,s) =

2m - 2k

2m
2m-s

 =

()1 - 1

2m-k
2m-k

2k-s

. Since lim
x→∞

()1 - 1
x

x
 = e-1,

Pnopol(k,s) ≈ (e-1)2k-s
 for sufficiently large m.

 20 30

20 0.367880 0.000000
25 0.969233 0.000000
30 0.999024 0.367879
35 0.999969 0.969233
40 0.999999 0.999024
45 1.000000 0.999969
50 1.000000 0.999999
55 1.000000 1.000000
60 1.000000 1.000000

 40 50 60

0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.000000 0.000000 0.000000
0.367879 0.000000 0.000000
0.969233 0.000000 0.000000
0.999024 0.367879 0.000000
0.999969 0.969233 0.000000
0.999999 0.999024 0.367879

k
s

Table I. Theoretical values for Pnopol(k,s).

Since 2m grows quickly with m, the formula derived in
Corollary 1 gives a very precise approximation even for
relatively small values of m. For practical applications,
the BIST scheme is therefore fully characterized by the ap-
proximation formula. As a consequence we can observe
the following facts.

Observation 2: The size m of the testcube has no signifi-
cant influence on the probability Pnopol(k,s).

Observation 3: The probability Pnopol(k,s) only depends
on the difference k-s between the degree of the polynomial
and the number of care bits.

Observation 4: Increasing the degree of the polynomial
by one results in squaring the probability of failure.

Pnopol(k+1,s) = Pnopol(k,s-1) = (e-1)2k-s+1
 =

()(e-1)2k-s
 2 = (Pnopol(k,s))2.

These tradeoffs for varying parameters s and k can be seen
very clearly in Figure 5, where for fixed k the values of
Pnopol(k,s) are shown as a function of the number of care
bits. Increasing the degree of the polynomial corresponds
to simply shifting the curve to the right, which clearly re-
flects Observations 2 and 3. The steepness of the curves is
a consequence of Observation 4.

Summarizing the results of this section we can character-
ize the efficiency of encoding for this BIST scheme as fol-

lows: If we require that 10-6 ≥ Pnopol(k,s) = (e-1)2k-s
,

then this can be obtained by an LFSR with feedback
polynomial of degree k ≥ s + log2(-ln(10-6)) ≈ s + 4.

6

605040302010

1

10-6

10-5

10-4

10-3

10-2

10-1

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

number of specified bits

k=
20

k=
25

k=
30

k=
35

k=
40

k=
45

k=
50

Figure 5. Theoretical values of Pnopol(k,s).

4. Reseeding of Single Polynomials
The objective of this section is a complete analysis of the
classical reseeding approach. The corresponding BIST
scheme shown in Figure 6 is obtained as a specialization
of the general scheme introduced in section 2.3.

...

...

n = k

...

hk-1 h1 h0

Seeds

++ +

hk-2

Figure 6. BIST scheme based on reseeding of single poly-
nomials.

The properties of the single reseeding scheme are described
by the probabilities Pseed(k,s) and Pnoseed(k,s). Since the
linear independence of the equations (II) is a sufficient con-
dition for finding a seed we obviously have Pnoseed(k,s) ≤
Pdep(k,s) and Pseed(k,s) ≥ Pindep(k,s). Therefore we first
concentrate on these bounds.

Linear dependences have been extensively studied for the
purposes of exhaustive testing and of random testing [5,
15, 16, 8, 4]. With respect to our objectives especially the
probabilistic analysis carried out by Chen is of major in-
terest [8]. He showed that for primitive polynomials the
probabilities for linear dependences in the LFSR sequence
only depend on the degree k of the polynomial and the
number of considered positions in the sequence.

Theorem 2 (Chen): Let h(X) be a primitive polynomial
of degree k and let C ∈ {0,1,x}m be a testcube with

s(C) = s. Then Pdep(k,s) = 1 - ∏
s-1

j=0
 2 k - 2 j

2 k - j - 1
 holds.

To determine Pseed(k,s) and Pnoseed(k,s) we consider the
process of generating the equations (II) as a Markov chain
(Xt)1≤t≤s over a set of states S = {0,1,…,k}. At step t
the t-th equation is generated and for 1≤ d ≤ t ≤ s the equa-
lity Xt = d is interpreted as follows: The system of t equa-
tions generated so far has rank d and there is a solution for
this system. Xt = 0 means that the system has no solu-
tion. The Markov chain is described by its initial distribu-
tion and the transition probabilities P(Xt+1 = d' | Xt = d).

Theorem 3: Let C ∈ {0,1,x}m be a testcube with s(C) =
s, h(X) a primitive polynomial of degree k and let 2k-1 ≥
m. The Markov chain (Xt)1≤t≤s as defined above has the
initial distribution P(X1 = 1) = 1, P(X1 = d) = 0 for d ≠ 1,
and the transition probabilities are given by

P(Xt+1 = d+1 | Xt = d) =

 2 k - 2d

2 k - 1 - t
fo r 1 < d+1 ≤ k

0 otherwise
,

P(Xt+1 = d | Xt = d) =

1

2 · 2 d - 1 - t
2 k - 1 - t

for d>0 and t+1 ≤ 2d - 1

0 otherwise
,

P(Xt+1 = 0 | Xt = d) = P(Xt+1 = d | Xt = d) for d > 0 and
P(Xt+1 = 0 | Xt = 0) = 1. All other transition probabilities
are zero.

Proof: Let Et denote the system of t equations generated
up to step t.

If Xt = 0, then the system Et has no solution. Therefore
adding an additional equation at time t+1 provides a sys-
tem Et+1 which also cannot have a solution. Therefore
P(Xt+1 = 0 | Xt = 0) = 1 holds.

If Xt = d ≠ 0, the system Et has rank d, and a solution
exists. Since the rank is d, 2d-1 different linear combi-
nations can be obtained from the t equations in Et. 2d-1-t
of them are not contained in Et and the total number of
possible equations which are not contained in Et is 2k-1-t.
Assuming that the 2d-1-t linearly dependent equations are
uniformly distributed within the 2k-1-t possible equations,
a fraction of them, i.e.

m - t
2 k - 1 - t

 · (2d -1 -t)

corresponds to equations for the testcube. Therefore we
have

m - t - m - t
2 k - 1 - t

 · (2d -1 -t)

linearly inpendent equations out of m - t possible equa-

7

tions which correspond to equations for the testcube and
are not contained in Et. The generation of an additional
equation at step t+1 therefore has one of the following
implications:

(i) For d < k a system Et+1 of rank d+1 is obtained
with probability

m - t - m - t
2 k - 1 - t

 · (2d -1 - t)

m - t = 2 k - 2d

2 k - 1 - t
 .

For this system the existence of a solution is also guaran-
teed. For d = k the rank can no longer be increased and
therefore we have the formula for P(Xt+1 = d+1 | Xt = d).

(ii) With probability 1 - 2 k - 2d

2 k - 1 - t
 = 2 d - 1 - t

2 k - 1 - t
 the

rank of the new system Et+1 remains d. The existence of a
solution is no longer guaranteed. Since the LFSR pro-
duces a pseudorandom sequence, the probability that the
additional equation does not introduce a contradiction can
be assumed as 12 .

The structure of the Markov chain (Xt)1≤t≤s is repre-
sented by the graphic shown in Figure 7. Transitions to
the state d = 0 are omitted.

(d)

(d) (d+1)

 2 - 2
2 - t - 1

P = k
k d1 2 - t - 1

2 2 - t - 1
d
kP =

X t

X t+1

(2)

(2) (3)

(3)

(3)

(4)

(4) (5)

P=1

1

2 - 4
2 - 3

k
k

2 - 8
2 - 4
k
k

1 1
2 2 - 3k

1 4
2 2 - 4k

X

X

X

X

X

1

2

3

4

5

Figure 7. Structure of the Markov chain (Xt)1≤t≤s.

In terms of this Markov model the probability Pseed(k,s)
is obtained as P(Xs ≠ 0). Moreover, as the rightmost
branch in Figure 7 corresponds to generating linearly inde-
pendent equations, the probability Pindep(k,s) is obtained
as P(Xs = s). Obviously the following corollary to Theo-
rem 3 holds.

Corollary 2: Let C ∈ {0,1,x}m be a testcube with s(C) =
s, h(X) a primitive polynomial of degree k and let
(Xt)1≤t≤s be the Markov chain defined above. Then

Pseed(k,s) = ∑
s

d=1
P(Xs = d) = ∑

min(k,s)

d=log2(s+1)
 P(Xs = d).

The probabilities P(Xs = d) can be determined recursively
using P(Xt = d) = P(Xt-1 = d) · P(Xt = d | Xt-1 = d) +
P(Xt-1 = d-1) · P(Xt = d | Xt-1 = d-1).

Theorem 3 relies on two assumptions. The first is that the
period 2k - 1 of the LFSR sequence is bigger than the
length m of the testcube, but for practical applications
where we have for example k ≥ 16 and m = 1000 this is
no restriction. Secondly it is assumed that the equations
which are linearly dependent on the system Et are uni-
formly distributed within the set of all equations not con-
tained in Et. If this second assumption is not made, the
probabilities Pnoseed(k,s) may become dependent on the
length of the testcube. Within the scope of this paper we
cannot discuss this problem in more detail, but it will be
a topic of further research.

In Table II the values for Pnoseed(k,s) are listed for some
representative values of s and k.

 20 30

20 0.389634 0.000488
25 0.969234 0.015503
30 0.999024 0.389678
35 0.999969 0.969234
40 0.999999 0.999024
45 1.000000 0.999969
50 1.000000 0.999999
55 1.000000 1.000000
60 1.000000 1.000000

 40 50 60

0.000000 0.000000 0.000000
0.000015 0.000000 0.000000
0.000488 0.000000 0.000000
0.015503 0.000015 0.000000
0.389678 0.000488 0.000000
0.969234 0.015503 0.000015
0.999024 0.389678 0.000488
0.999969 0.969234 0.015503
0.999999 0.999024 0.389678

k
s

Table II. Theoretical values for Pnoseed(k,s).

From this table and the graphical representation shown in
Figure 8 two interesting observations can be made.

Observation 5: The probability Pnoseed(k,s) mainly
depends on the difference k-s between the degree of the
polynomial and the number of care bits.

Observation 6: For k = s the value of Pnoseed(k,s) is
always close to 0.389678 ≈ e-1.

Both observations have been confirmed by calculating the
values of Pnoseed(k,s) for 5 ≤ k,s ≤ 60. For a more gen-
eral analysis the upper bound Pdep(k,s) is used as a rough
appoximation for Pnoseed(k,s). For large values of k >> s
a simplified formula for Pdep(k,s) can be derived as a
corollary to Theorem 2.

8

605040302010

1

10-6

10-5

10-4

10-3

10-2

10-1

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

number of specified bits

k=
20

k=
25

k=
30

k=
35

k=
40

k=
45

k=
50

Figure 8. Theoretical values for Pnoseed(k,s).

Corollary 3: Let h(X) be a primitive feedback polyno-
mial of degree k and let s << k. Then for large k the pro-
bability Pdep(k,s) is given by Pdep(k,s) ≈ 2s+1-k.

Proof: By Theorem 2 Pdep(k,s) = 1 - ∏
s-1

j=0
 2 k - 2 j

2 k - j - 1
 .

For large values of k 2-k ≈ 0 can be assumed. This yields

∏
s-1

j=0
 2 k - 2 j

2 k - j - 1
 = ∏

s-1

j=0
 1 - 2 j - k

1 - (1 - j) ·2- k ≈ ∏
s-1

j=0
 (1 - 2j-k) =

(1 - 2-k)·(1 - 21-k)·(1 - 22-k)·…·(1 - 2s-k) ≈ 1 - (21-k +

22-k + … + 2s-k) = 1 - 21-k·(2s -1) ≈ 1 - 2s+1-k.

Corollary 3 also provides the following observation,
which can be regarded as an analogon to Observation 4.

Observation 7: Increasing the degree of the polynomial
by one results in reducing the probability Pnoseed(k,s) by
half. For k >> s we have Pnoseed(k+1,s) ≈ Pnoseed(k,s-1)

≈ 2s-k = 12
()2s-k+1 ≈ 12Pnoseed(k,s).

Comparing these results to the results of the previous sec-
tion we see that both for full polynomial programmability
and for single reseeding the probabilities for not finding a
solution only depend on the difference k-s between the de-
gree k of the polynomial and the number s of carebits.
However, increasing the degree of the polynomial leads to
an exponential decrease of Pnopol(k,s), whereas for single
reseeding only a linear decrease of Pnoseed(k,s) can be
achieved.

10-6 is used again as an upper bound for the probability of
failure. It is known from the previous section, that 10-6 ≥
Pnopol(k,s) if k ≥ s + 4. Using the approximation formula
of Corollary 2 we obtain 10-6 ≥ Pnoseed(k,s), if 2s-k+1 ≈
Pnoseed(k,s) ≤ 10-6, i. e. if k ≥ s + 1 - log2(10-6) ≈ s +
21. In fact, calculating the exact values for Pnoseed(k,s),
it can be observed that 10-6 ≥ Pnoseed(k,s), if k ≥ s + 19.

5. Multiple Polynomials
The results of the previous sections have confirmed our
conjecture that calculating the feedback polynomial offers
a considerably higher efficiency of encoding than the clas-
sical reseeding approach. In general, however, the method
is not feasible for practical applications because of the
high computational effort required. In this section the gen-
eralized reseeding scheme introduced in section 2.3 will be
analyzed, and it will be shown that with this scheme the
encoding efficiency of calculating polynomials can be
achieved by the computational effort required for the clas-
sical reseeding technique.

The properties of this general scheme are measured by the
probabilities Psucc(k,n,q,s) and Pfail(k,n,q,s) = 1 -
Psucc(k,n,q,s). Since k - n + q bits of the seed are fixed,
there are k - n + q additional equations determining the
output sequence (ai)i≥0 of the LFSR. Therefore
Psucc(k,n,q,s) can be determined as the probability
Pseed(k,q,s+k-n+q), where Pseed(k,q,s) denotes the proba-
bility that for a testcube C with s(C) = s there is a seed for
at least one of 2q primitive polynomials of degree k, such
that the resulting output sequence is consistent with C.
Assuming that calculating seeds for different primitive
polynomials corresponds to statistically independent
events, the probability Pseed(k,q,s) can be determined us-
ing the results of the previous section.

Theorem 4: Let C ∈ {0,1,x}m be a testcube with s(C) =

s and q ≤ log2()φ(2k-1)
k , where φ denotes Euler's func-

tion. Then Pnoseed(k,q,s) := 1 - Pseed(k,q,s) =

Pnoseed(k,s)2
q
.

Proof: The number of primitive polynomials of degree k

is
φ(2k-1)

k . As q ≤ log2()φ(2k-1)
k , it is guaranteed that

there are 2q ≤
φ(2k-1)

k different primitive polynomials and

thus 2q statistically independent events.

Consequently the probability Pfail(n,k,q,s) can be deter-
mined as Pfail(n,k,q,s) = Pnoseed(k,s+k-n+q)2q.

Similarly as in the previous two paragraphs an approxi-
mation formula can be used to examine the tradeoffs for
varying parameters k, q and s. Using the approximation
2s-k+1 ≈ Pnoseed(k,s) derived in the previous section for
large k >> s Theorem 4 yields Pnoseed(k,q,s) ≈

(2s-k+1)2q
 and Pfail(n,k,q,s) ≈ ()2s-n+q+1 2q

 for n >> s+q.

This formula shows that increasing the parameter q results
in a slightly increased probability of failure for reseeding
with respect to the single polynomials, but this is over-
compensated by the decrease due to the growing number of

9

polynomials. In fact for increasing values of q and n = k
the probability Pfail(k,k,q,s) converges very quickly to the
asymptotic value of Pnopol(k,s). This is illustrated by
Table III for n = k = 40. The columns show the differences
Pfail(40,40,q,s) - Pnopol(40,s) for q = 0, …, 4. The
asymptotic value is practically reached already for q = 4.

 0 1 2 3 4

20 0.000000 0.000000 0.000000 0.000000 0.000000
22 0.000002 0.000000 0.000000 0.000000 0.000000
24 0.000008 0.000000 0.000000 0.000000 0.000000
26 0.000031 0.000000 0.000000 0.000000 0.000000
28 0.000122 0.000000 0.000000 0.000000 0.000000
30 0.000488 0.000001 0.000000 0.000000 0.000000
32 0.001951 0.000015 0.000000 0.000000 0.000000
34 0.007782 0.000240 0.000001 0.000000 0.000000
36 0.030766 0.003670 0.000190 0.000006 0.000000
38 0.099112 0.030327 0.004742 0.000936 0.000210
40 0.021799 0.004613 0.001052 0.000261 0.000062

s
q

Table III. Differences Pfail(40,40,q,s) - Pnopol(40,s) for
0 ≤ q ≤ 4.

Figure 9 elucidates this effect showing the probability
Pfail(n,k,q,s) as a function of s for fixed parameters n = k
and q. Clearly the largest gain is obtained by changing q
from 0 to 1, and for q = 4 the asymptotic behavior is
practically achieved.

50403020
number of specified bits

1

10-6

10-5

10-4

10-3

10-2

10-1

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

q = 0

q =
 1

q
=

2

P n
op

ol

Figure 9. Pfail(40,40,q,s) as a function of the number s of
specified bits for q = 0,…,4.

With respect to the computational complexity it was al-
ready pointed out in section 2.3 that the generalized reseed-
ing scheme involves in the worst case solving 2q systems
of linear equations. With the probabilistic model devel-
oped in this section we are able to carry out an analysis of
the average case computational complexity. The average
number of systems of linear equations that must be treated
will be denoted by Q(n,k,q,s).

Theorem 5: In the average case the generalized reseeding
scheme involves solving Q(n,k,q,s) =

1 - Pnoseed(n,s+k-n+q)2q-1

1 - Pnoseed(n,s+k-n+q) + Pnoseed(n,s+k-n+q)2q- 1

systems of linear equations.

Proof: Let P := Pnoseed(n,s+k-n+q). Then the proba-
bility that t systems of linear equations have to be treated
is Pt-1·(1 - P) for t < 2q and P2q-1 for t = 2q. Therefore
the average number of attempts is

∑
2q-1

t=1
t·Pt-1·(1 - P) + 2q·P2q-1 = ∑

2q-1

r=1
 ∑
2q-1

t=r
Pt-1·(1 - P) +

2q·P2q-1 = 1 - P2q-1
1 - P - (2q -1)·P2q-1 + 2q·P2q-1.

If 2q-1 is large then Q(n,k,q,s) ≈ 1
1 - Pnoseed(n,s+k-n+q) .

Using the approximation formula from Corollay 2 for
large n >> s+q the average computational complexity can
be estimated as 1

1 - 2s-n+q .

This allows us to fully determine the tradeoff between the
achievable efficiency of encoding and the average computa-
tional complexity. In Figure 10 this is done for n = k =
40 and s = 36.

20100
1

10

102

103

104

105

106

2 4 6 8 12 14 16 18 22 q

Q(40,40,q,36)P (40,40,q,36)fail
P (40,36)nopol

Figure 10. Tradeoff between the efficiency of encoding and
the average computational complexity for n = k =
40 and s = 36.

The straight line represents the ratio Pfail(40,40,q,36)/
Pnopol(40,36) and the dotted line the average computatio-
nal complexity Q(40,40,q,36), both as functions of the
parameter q. Obviously Q(40,40,q,36) as well as the ratio
Pfail(40,40,q,36)/Pnopol(40,36) are close to one for q =
4, and thus the efficiency of encoding of full polynomial
progammability is practically reached with a computatio-
nal effort comparable to that required for single reseeding.

10

6. Experimental Validation
To validate the assumptions made in sections 3 and 4 we
performed a series of experiments based on a Monte-Carlo
simulation. For a randomly generated set of 10000 test-
cubes we determined by exhaustive search the number of
suitable polynomials and suitable seeds respectively for 8
≤ k ≤ 16 and 5 ≤ s ≤ 20. Comparing the results to the
corresponding numbers predicted by our theoretical models
we observed only small differences. These observations
were confirmed by a confidence test for which we divided
each experiment into 10 smaller experiments with 1000
testcubes each [14].

To validate the assumption that calculating seeds for dif-
ferent polynomials corresponds to statistically independent
events we took 10 different polynomials of degree 10 and
determined for each pair of polynomials and varying para-
meter s the relative frequencies that for none of both poly-
nomials a suitable seed exists. Comparing the mean va-
lues to our theoretical values Pnoseed(10,2,s) only small
differences could be observed. A detailed description of
these and further experiments can be found in [11].

7. Conclusion
In this paper we presented a new pattern generator for
BIST. The generator is based on an LFSR capable of im-
plementing a number of primitive polynomials. The poly-
nomials are selected by controlling the feedback links in
the LFSR. We demonstrated that with approximately 16
polynomials the generator can produce sequences with the
phenomenon linear dependence practically eliminated. This
property is utilized to enhance the encoding efficiency of
testcubes for difficult to test faults. Very high probability
of successfull encoding is achieved with s + 4 bits for a
testcube with s specified bits. 4 bits are used to identify
one of 16 polynomials and s bits for the seed. Because of
the reduced linear dependences other interesting applica-
tions of this scheme are seen in the area of pseudo-exhaus-
tive testing.

Acknowledgement
This research was supported by grants from the French
Foreign Ministry, the French Ministry of Research and
Technology (MRT) and the French National Center of
Scientific Research (CNRS).

References
1 V. K. Agarwal, E. Cerny: Store and Generate Built-in-

Testing Approach; Proc. IEEE 11th Int. Symposium on
Fault-Tolerant Computing, FTCS-11, 1981, pp. 35-40

2 S. B. Akers, W. Jansz: Test Set Embedding in a Built-in
Self-Test Environment; Proc. IEEE Int. Test Conf.,
Washington D.C., 1989, pp. 257-263

3 P. Bardell, W. H. McAnney, J. Savir: Built-in Test for
VLSI; Wiley-Interscience, New York, 1987

4 P. H. Bardell: Design Considerations for Parallel
Pseudorandom Pattern Generators; Journal of Electronic
Testing: Theory and Applications, Vol. 1., No. 1,
February 1990, pp. 73-87

5 Z. Barzilai, D. Coppersmith, A. L. Rosenberg:
Exhaustive Generation of Bit Patterns with Applications
to VLSI Self-Testing; IEEE Trans. on Comp., Vol. C-32,
No. 2, February 1983, pp. 190-194

6 E. J. McCluskey, S. Bozorgui-Nesbat: Design for
Autonomous Test; IEEE Trans. on Circuits and Systems,
Vol. Cas-28, No. 11, November 1981, pp. 1070-1078

7 F. Brglez et al.: Hardware-Based Weighted Random Pat-
tern Generation for Boundary-Scan; Proc. IEEE Int. Test
Conf., Washington D.C., 1989, pp. 264 - 274

8 C. L. Chen: Linear Dependencies in Linear Feedback
Shift Registers; IEEE Trans. on Comp., Vol. C-35, No.
12, December 1986, pp. 1086-1088

9 W. Daehn: Deterministische Testmustergenerierung für
den eingebauten Selbsttest von integrierten Schaltungen;
Grossintegration, NTG-Fachberichte 82, Baden-Baden
1983

10 C. Dufaza, G. Cambon: LFSR based Deterministic and
Pseudo-Random Test Pattern Generator Structures; Proc.
European Test Conference, Munich, 1991, pp. 27-34

11 S. Hellebrand, S. Tarnick, J. Rajski, B. Courtois: Genera-
tion of Vector Patterns Through Reseeding of Multiple
Polynomial LFSR‘s; TIM3 Research Report, Grenoble,
March 1992

12 B. Koenemann: LFSR-Coded Test Patterns for Scan
Designs; Proc. European Test Conference, Munich,
1991, pp. 237-242

13 J. L. Massey: Shift Register Synthesis and BCH
Decoding; IEEE Trans. on Information Theory, Vol. IT-
15, No. 1, January 1969, pp. 122-127

14 R. L. Masson, R. F. Gunst, J. L. Hess: Statistical Design
and Analysis of Experiments, John Wiley & Sons, 1989

15 D. T. Tang, C. L. Chen: Logic Test Pattern Generation
Using Linear Codes; IEEE Trans. on Comp., Vol. C-33,
No. 9, September 1984, pp. 845-850

16 E. J. McCluskey, L. T. Wang: Circuits for Pseudo-
Exhaustive Test Pattern Generation; Proc. IEEE Int.Test
Conf., 1986, pp. 25-37

17 H.-J. Wunderlich: Self Test Using Unequiprobable
Random Patterns; Proc. IEEE 17th International
Symposium on Fault-Tolerant Computing, FTCS-17,
Pittsburgh 1987

18 H.-J. Wunderlich: Multiple Distributions for Biased
Random Test Patterns; Proc. IEEE Int. Test Conf.,
Washington D.C., 1988, pp. 236-244

19 H.-J. Wunderlich, S. Hellebrand: The Pseudo-Exhaustive
Test of Sequential Circuits; IEEE Trans. on CAD of
Integrated Circuits and Systems, January 1992

