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Hardware verification and sequential test generation are
aspects of the same problem, namely to prove the equal
behavior determined by two circuit descriptions. During
test generation, this attempt succeeds for the faulty and
fault free circuit if redundancy exists, and during
verification it succeeds, if the implementation is correct
with regard to its specification. This observation can be
used to cross-fertilize both areas, which have been treated
separately up to now. In this paper, a common formal
framework for hardware verification and sequential test pat-
tern generation is presented, which is based on modeling
the circuit behavior with temporal logic. In addition, a new
approach to cope with non resetable flipflops in sequential
test generation is proposed, which is not restricted to
stuck-at faults. Based on this verification view, it is possi-
ble to provide the designer with one tool for checking cir-
cuit correctness and generating test patterns. Its first
implementation and application is also described.

1. INTRODUCTION

The increased use of VLSI especially in safety critical sys-
tems demands a high confidence in the correct functioning
of these systems. Thus, it has to be ensured that circuits
contain neither design errors nor fabrication faults.

Hardware verification copes with errors, which occur in
the circuit during the design process. Verification is per-
formed by formally proving that an implementation meets
the specification, i.e. the behavioral requirements. Usually
this is done by modeling the functional behavior in terms
of logic and using a theorem proving tool to support the
proof process (e.g. [1], [2], [3]).

Test generation on the other hand addresses the problem
of finding input stimuli for a circuit in such a way that
fabrication defects are found. Generally, this is accom-
plished by injecting faults given by an appropriate fault
model into the description of the correct circuit and com-
paring the behavior of the resultant faulty circuit and the
correct circuit to find input sequences such that the output
values of the two circuits eventually differ. Most of the
algorithms for test generation perform the behavioral

reasoning mainly on the given structural circuit informa-
tion (e.g. [4], [5], [6], [7]). Sequential test generation is
known to need exponential worst case effort, which is
reduced by design modifications like a complete scan path
([8], [9]), a partial scan path ([10], [11], [12]), a pseudo-
exhaustive technique [13] or an appropriate synthesis [14].
Sometimes such design modifications are not feasible due
to area and speed restrictions and test generation has to be
done for the original circuit, or the modifications only
reduce the complexity of the sequential test generation
process.

Although hardware verification and testing are needed to
achieve fault free systems, both have been treated in isola-
tion up to now. Since both have to cope with propositions
about the behavioral equivalence of circuit descriptions, it
is possible to combine test generation and verification
which results in appropriate benefits for both.

In this paper temporal logic is used to capture the cir-
cuit behavior. This logic is often used for hardware
verification, since circuit specifications may be described
naturally and more complex properties may be expressed
than in normal FSM verification approaches ([15], [16],
[17]). Additionally, using temporal logic, the behavior of
arbitrary faults at gate level may be easily modelled.
Moreover, using a formal logic leads to a reduction of the
hardware verification and testpattern generation problem to
a satisfiability and validity problem and hence new and
different approaches are possible, which are based on a
separation between problem formulation and solution
methods [18].

Our approach leads to a tool which supports the
designer at two stages of the design process. When creating
a circuit implementation, he ensures design correctness by
describing his design in terms of temporal logic and verify-
ing it against a given specification. The very same circuit
description and tool is then used to generate test pattern
sequences. Moreover, as a spin-off, design for testability is
automatically supported, since a verifiable implementation
leads automatically to better testable designs.

A related approach has been presented by Cho, Somenzi
et al. which relies on similar implementation principles
([19], [20]). However, it is directly based on FSM equiva-



lence checking and is not able to cope with circuits with-
out reset line.

The paper is organized as follows: In section 2 some
fundamentals of temporal logic are introduced. The next
section shows how to model hardware behavior using this
formal language. In chapter 4 an approach for hardware
verification with temporal logic is presented. Then the
verification problem is extended to sequential ATPG.
Chapter 6 points out some optimizations which accelerate
the approach. The paper ends with experimental results and
a conclusion.

2. TEMPORAL LOGIC

Propositional temporal logic is frequently used in hardware
verification ([16], [21], [17]). Traditional propositional
logic is extended by temporal operators, which allow the
expression of time varying properties as the sequential
behavior of digital circuits. Moreover, propositional tem-
poral logic is decidable, and there are constructive, fully
automated decision procedures available, which are the
main advantages compared to approaches based on first or
higher order logics ([2], [3]). There, mechanized theorem
proving is slower and often requires user guidance.

Two approaches to temporal logic theorem proving are
mainly used – Computation Tree Logic (CTL) and
Propositional Temporal Logic (PTL). CTL is a proposi-
tional, branching time logic, i.e. in the future many com-
putation paths are possible [22]. A specification is given
by CTL formulas and the implementation of the system to
be verified is given by a state graph [17]. PTL is based on
a linear sequence of discrete time points. In contrast to
CTL, no explicit state graph is given and both,
specification and implementation are described in PTL. It
has been proposed by Manna and Pnueli as a means for
verifying concurrent programs [23] and its usefulness for
describing and verifying hardware has also been established
([24], [25], [16]).

Since our approach is based on PTL, its operators as
well as the underlying decision procedure are explained in
the following.

Formulas in PTL are constructed in the usual way of
the propositional calculus. The semantics of PTL is
explained based on the propositional operators ÿ and Æ,
but other logical connectives are used as abbreviations (Ÿ,
⁄, ´, ( as and, or, equivalence and exclusive-or respec-
tively). A formula F is built from a set A of variables and
it is called atomic, if F Œ A or F= ÿp with p Œ A . In
addition to the propositional connectives, temporal rela-
tionships are expressed by three operators. The formula

p indicates, that formula p holds in the next time
instance, p means, that p is true in this and all follow-
ing time points and p means that p is true in this or one

of the following time points. The until operator is omit-
ted, since it is not used in this context.

PTL formulas are defined as follows [23].

   Definition     1  :
a) An atomic proposition is a PTL formula.
b) If F and G are PTL formulas, then ÿF, F Æ G, F,

F and F are PTL formulas.

In the following, small letters denote atomic propositions
(e.g. p) and capital letters denote compound PTL formulas
(e.g. F, UC).

A formula F is called elementary, if it is atomic or F=
G, i.e. F contains the next operator as its outermost

connective.

   Definition     2  : Let s := (s0, s1, s2, ...) be a sequence of
truth assignments si: A  Æ {0, 1}, and be si := (si,
si+1, ...) the ith truncated suffix of s. We call s a
model of a formula H or H is true under s (denoted as s
2 H) according to the following rules:
s 2  p    iff s0(p) =1 when p Œ A
s 2 ÿF iff s  "  F
s 2 F Æ  G iff s  " F or s  2  G
s 2  F iff s1 2 F
s 2  F iff  "i , i Œ I N0 . s i 2  F
s 2  F iff  $i , i Œ I N0 . s i 2  F

   Definition     3  : A formula is satisfiable if there exists a
model for it. A set of formulas is called satisfiable, if
every formula from this set is satisfiable. A formula F
is called valid (or tautology, denoted by 2 F) if s 2 F
holds for every s.

Automated theorem proving can be done based on tableau
methods in a similar way as they are used for the proposi-
tional calculus [26]. A property of proving procedures
required for test generation is their constructiveness, i.e.
the ability to explicitly generate models for a satisfiable
formula and counterexamples if a tautology check for a
given formula fails.

However, for the problems treated in this paper not the
whole expressiveness of temporal logic is needed. Hence
methods known from FSM equivalence checking ([27],
[19], [28]) may be used to fasten the temporal logic prov-
ing process similar to suggestions of Burch, Clarke,
McMillan and Dill ([17], [29]). This is described in more
detail in chapter 6.3.

3. HARDWARE MODELING

To describe hardware with PTL, the model of discrete time
points is mapped onto real time events. Two approaches
are conceivable. Either every discrete time point is defined
by a fixed time schedule or the time points mark the clock
ticks of a synchronous system. Although the former pos-



sibility allows the expression of asynchronous behavior, it
complicates the circuit descriptions and limits its use to
small circuits. In this paper, the latter method is used. The
“next”-operator indicates the values of circuit variables
after the next clock signal. This modeling is not restricted
to single clock systems, complex clocking schemes are
allowed provided that clock transitions only occur at time
points describable with PTL.

A simple example of a single clock circuit is shown in
figure 1 [30].
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Figure 1: Example Circuit

Its behavior is described by the following set of formulas:

 (m ´ ÿ (in Ÿ out))
 ( out ´ m)

The “always”-operator indicates, that the functional rela-
tionship between the input and output of the elements
must hold forever. For better readability the AND-operator
is omitted between the subformulas.

A netlist description of a circuit is translated into tem-
poral logic in linear time, the PTL formulas to model the
behavior of basic cells have to be stored in a library.

4. HARDWARE VERIFICATION

For performing hardware verification, both circuit specifi-
cation and circuit implementation can be described as indi-
cated in the last section. If a specification S of only certain
circuit properties, i.e. a partial specification, as well as an
implementation J are given in temporal logic, the formula

2 (I Æ S) (1)

must be proven [15]. Often the specification describes the
complete behavior of the circuit. In that case, the behav-
ioral equivalence of two circuit descriptions S  and J must
be shown

2 (I ´ S) (2)

The behavioral equivalence of two circuit implementations
J1 and J2 has to be checked, if a design has been modified,
e.g. by minimization. The necessary verification can also
be performed with formula (2), but for an easier processing
with a temporal proof system, a slightly different
approach, based on the definition of behavioral equivalence
(see e.g. [31]) is used.

   Definition     4  : Two circuits are behaviorally equivalent, if
for arbitrary input values the correspondent primary

outputs carry the same values for all time points,
provided that both circuits have been initialized
correctly.

If the variables oi1 (i = 1, …, no) denote the primary out-
puts of the first circuit and oi2 denote the correspondent
outputs of the second circuit, the property P as defined in
formula (3) states behavioral equivalence directly in terms
of temporal logic (Å denotes a conjunction of its
arguments).

P :=  
no
Å

i  =  1
( )oi1 ´  oi2  (3)

The equivalence ÿ x ´ ÿx leads to the following
uncover condition UC ($ denotes a disjunction of its
arguments), which, if satisfiable, indicates a different cir-
cuit behavior.

UC := 
no
$

i  =  1
( )oi1  (  oi2  (4)

Since the two circuits to be verified must be in the same
starting state at the beginning of the verification process,
there must be a unique reachable initial state, which is
guaranteed, if all flipflops are resetable. This is expressed
by the following PTL initialization condition IC, where
di1 and di2 denote the state variables of both circuits.

IC := 
nd1

Å
i  =  1

( ) ÿdi1   Ÿ 
nd2

Å
i  =  1

( ) ÿdi2  (5)

The correspondence between satisfiability in temporal
logic and circuit equivalence is stated in lemma 1, which is
an immediate consequence of definition 4 and the definition
of satisfiability in PTL.

   Lemma     1  : Let J1 and J2 be two circuits, let UC be an
uncover condition according to (4) and IC an initializa-
tion condition according to (5) in PTL. If the conjunc-
tion J1 Ÿ J2 Ÿ IC Ÿ UC is not satisfiable, then the two
circuits have identical behavior.

This lemma reduces verification to theorem proving,
moreover, as the proof system is constructive, an input
sequence is generated automatically, which uncovers the
different behavior. This input sequence may be used by the
circuit designer as a hint to identify and eliminate the
design errors.

5. TEST GENERATION

Test generation is performed by injecting faults given by
an appropriate fault model into the description J of the
correct circuit to get a faulty description Je. The behavior
of J and Je is then compared to find input sequences so



that the output values of both descriptions eventually
differ.

The following approach is not restricted to stuck-at
faults, an arbitrary erroneous behavior can be handled, if it
is describable in PTL. This includes for instance stuck
open faults (see figure 2).
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Figure 2: NOR-gate with stuck-open fault

More effort is required for considering the impact of
hazards and charge-storing on transition faults. These
mechanisms and delay faults can be handled by refining the
grid of the time points of PTL and by adding timing speci-
fications to the library elements. Overall this leads to a
considerable increase of complexity and is not incorporated
in our first implementation. Moreover, for conciseness and
comparability with other approaches [32], we restrict our-
selves in the following to the stuck-at fault model.

Unlike verification, the test generation must not be
based on the assumption of a reset state, since an initiali-
zation sequence may be altered by the fault, the reset line
may be affected or there exists a stuck-open fault with
unknown starting value. Hence one must be able to deal
with unknown values of storage elements at the beginning
of the test generation process. For easier understanding, the
case that the faulty circuit still has a reset state is discussed
first, and then the general case is treated.

5.1 Circuits with Reset State

The uncover condition (4) and the initialization condition
(5) defined in the former section still hold for the faulty
and fault free circuit. A test pattern sequence is a truth
assignment for the primary input variables so that at least
one of the outputs of the correct and faulty circuit eventu-
ally carries a different value. If such an assignment does
not exist, the fault is called undetectable.

As an immediate consequence of lemma 1 the following
fact is proven:

   Lemma     2  : Let J be a correct circuit and let Je be a faulty
circuit, let UC be an uncover condition according to (4)
and let IC be according to (5). A satisfying variable
sequence Te for the conjunction J Ÿ Je Ÿ UC Ÿ IC is a
test pattern sequence for the fault.

   Example  : The modeling of the correct and faulty circuit
behavior is demonstrated by the circuit, given in figure 3.
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Figure 3: Example circuit taken from [33]

Given a stuck-at-0 fault at the output g5, the behavior of
the correct circuit J and faulty circuit Je is modelled by the
PTL formulas, depicted in figure 4.

 (g1 ´ ÿ d)
 (g2  ́ (ÿ q0 Ÿ d))
 (g3  ́ (q0 Ÿ g1Ÿ q1))
 (g4  ́(d Ÿ ÿ q0Ÿ q1))
 (g5  ́ (q0 Ÿ ÿ q1))
 (g6  ́ (g3 ⁄ g4 ⁄ g5))
 ( q0  ́g2)  
 ( q1 ´ g6)  

 (g1e  ́ÿ d)
 (g2e  ́ (ÿ q0e Ÿ d))
 (g3e  ́ (q0e Ÿ g1eŸ q1e))
 (g4e  ́(d Ÿ ÿ q0eŸ q1e))
 (g5e  ́ 0)
 (g6e  ́ (g3e ⁄ g4e ⁄ g5e))
 ( q0e  ́g2e)  
 ( q1e  ́g6e)  

Figure 4:Behavior of the circuit J and Je

The uncover condition UC is as follows:

( )(q0 (  q0e) ⁄  (q1 (  q1e)  

Since all flipflops are resetable, the following initializa-
tion condition holds

IC := ÿq0 Ÿ ÿq1 Ÿÿq0e Ÿÿq1e

The formulas from figure 4 a) and b) as well as the
uncover and initialization condition are now input to a
temporal proof system to perform a satisfiability check,
i.e. a variable sequence for the conjunction



J Ÿ Je Ÿ IC Ÿ UC

has to be found. In the example, the proof system will find
the following solution

Te := d Ÿ ÿd Ÿ  ÿd.

This formula corresponds to a test pattern sequence (d, ÿd,
ÿd) (end of example).

5.2 General Case

A test pattern sequence Te is called generally valid (denoted
as Tev), if it is a truth assignment for the primary input
variables so that at least one of the outputs of the correct
and faulty circuit carries eventually a different value for
arbitrary initial values of the storage elements of the cir-
cuit.

Cho and Bryant generated such sequences by introducing
a third value X to assign an “unknown” signal value to the
flipflops [30]. Since efficient multiple-valued logic theo-
rem tools are not generally available, an encoding of every
three-valued variable by two two-valued variables is
required and leads to a significantly larger search space.
Moreover, this approach leads to test pattern sequences
which are often not minimal. Even worse, approaches
based on such a representation of unknown values are
inherently incomplete, since information may get lost
[33].

The approach, presented in the following avoids an
explicit representation of unknown signal values and hence
this drawback of incompleteness. It is based on the trivial
observation, that if a test pattern sequence is generally
valid, it is also a test pattern sequence for a circuit with
resetable flipflops. Vice versa, in many cases the deter-
mined sequence for circuits with reset state is also a valid
sequence for arbitrary initial values of the flipflops. This
property is formally provable by using the following
lemma, which states directly general validity.

   Lemma     3  : Let J and Je be the PTL descriptions of a fault
free and faulty circuit, let UC be an uncover condition
according to (4) and Te a PTL formula describing a test
pattern sequence. The sequence is generally valid, if
formula (6) holds.

2 (JŸ Je Ÿ Te) Æ UC (6)

The following algorithm starts by generating a sequence
for an arbitrary initial state. If a sequence Te has been
found which is not generally valid, the test generation pro-
cess is restarted to capture “missing” initial states by
extending the sequence.

The function isce returns a formula describing the values
of all state variables of the counterexample at the first time
point.

Note, that the splitting into the two functions
check_sat and sat_seq has been chosen only for
clarification. When using a temporal proof system, both
results are achieved by one pass of the system due to its
constructiveness. This also holds for check_val and
isce.

function atpg(J, Je, UC);

{UC is determined according to (4)}
begin
valid := false;
IC := 1;{first init. state arbitrary  }
while not val do
  begin
  sat := check_sat(J Ÿ Je Ÿ IC Ÿ UC);
        {check satisfiability}
  if sat then
    Te := sat_seq(J Ÿ Je Ÿ IC Ÿ UC)
        {satisfying sequence          }
  else
    return(“fault undetectable!”);
  val := check_val((J Ÿ Je Ÿ Te) Æ UC)
        {check validity               }
  if not val then
    begin
    ISCE := isce((J Ÿ Je Ÿ Te) Æ UC);
      {initial state of counterexample}

    IC := ISCE Ÿ Te

    end
  else
    return(Te);
  end;
end.

   Theorem   : The algorithm atpg finds a test pattern
sequence, which is generally valid, if one exists.

   Proof  : The correctness of atpg follows immediately from
lemma 3, since this property is explicitly proven in the
algorithm. For proving completeness, the termination
condition must be checked. The algorithm stops, if no fur-
ther test sequence with the given initialization condition
IC is found. At the beginning, IC leads to a sequence for
an arbitrary, but fixed starting state. If no such sequence is
found, trivially no generally valid sequence exists. In the
second and further iterations of the algorithm, the general
validity property is checked. If a sequence is not generally
valid, a counterexample is generated. The values of the
state variables at the first time point indicate an initial



state for which the determined sequence Te is unable to un-
cover the fault. The proof process is restarted with this
state and the already generated test sequence as an additional
constraint. Therefore, a new sequence is generated which
extends the old sequence to uncover the fault for this new
state. The algorithm only fails, if the sequence is not
extendable to comprise all possible initial states. However,
this is only the case, if it is impossible to find a subse-
quence beginning at the endstate of the circuit after apply-
ing the already generated sequence, which uncovers the
fault. Hence if the circuit would have been in this endstate
at the beginning of the generation process, no sequence
would have been possible either. Therefore no generally
valid test pattern sequence exists. Ò

   Example  : If the algorithm is applied to the example circuit
from figure 3, with the new condition IC := (ÿq0 Ÿ ÿq1 Ÿ
ÿq1e ), the result of table 1 is achieved. The flipflop q0e

can be omitted, since the fault may not propagate to that
flipflop. “Chosen state” indicates the state, which has been
chosen for test generation according to IC. The remaining
initial states indicate the states for which Te is not a valid
test pattern sequence.

Table 1: Variable Assignments for Example Circuit

IC chosen state Te remaining
initial states

1 q1eÿq1ÿq0 ÿd  q1e q1 ⁄
ÿq1eÿq1

q1e q1 ⁄
ÿq1e ÿq1

ÿq1eÿq1 q0 ÿd Ÿ d q1e q1 ⁄
ÿq1eÿq1ÿq0

q1e q1 ⁄
ÿq1eÿq1ÿq0

ÿq1eÿq1ÿq0 ÿd Ÿ d Ÿ
2d Ÿ 3d  

q1e q1 q0

q1e q1 q0 q1e q1 q0 ÿd Ÿ d Ÿ
2d Ÿ 3d

Ÿ 4ÿd Ÿ
5ÿd

0

Thus a generally valid test pattern sequence is found ( i

abbreviates i consecutive -operators)

Tev = ÿd Ÿ d Ÿ 2d Ÿ 3d Ÿ 4ÿd Ÿ 5ÿd

If the sequence (ÿd , d, d , d, ÿd, ÿd ) is applied to the cir-
cuit, a stuck-at-0 fault at the output g5 for arbitrary initial
values of the flipflops is uncovered (end of example).

6. OPTIMIZATIONS

The temporal proving process has an exponential worst
case complexity with regard to the number of state vari-
ables. Optimizing the proving system, avoiding unneces-
sary proof runs and reducing the problem size are therefore
crucial to obtain feasible runtimes.

6.1 Avoiding Unnecessary Proof Runs

In case of circuits without reset state, the number and
length of the proof runs are reduced by taking advantage
from the degrees of freedom in the initial condition IC:
Especially when starting the algorithm, no constraints are
imposed on the initial state. Hence, it is first checked, if
there exists directly a state, which satisfies the given
uncover condition. Thus is is always tried to extend the
generated sequence by only one test vector. A real proof
run is only performed, if IC forces it. Moreover, after each
proof run a fault simulation is performed by a commercial
fault simulator [34] to reduce the number of faults to be
processed by dropping all faults, which have been also
detected by the determined test pattern sequences. For this
purpose, the test pattern sequences for all faults already
processed are concatenated in case of not resetable
flipflops. Due to the completeness of the presented ap-
proach, the fault simulator is only used for speed im-
provements and is not required for validating the test
pattern sequences.

6.2 Reducing the Problem Size

There are situations in case of circuits without reset state
as well as in case of circuits with reset state in which not
all parts of the circuit have to be described by PTL formu-
las. Hence, the input to the proof system is reduced by per-
forming a partial modeling of the correct and faulty circuit.

Circuit parts which will not propagate the fault to
primary outputs can be eliminated in J and in Je. When
modeling the circuit by a directed graph, this elimination
affects the predecessor nodes of all primary output nodes
which are not successors of the faulty node. Furthermore,
circuit parts, which are not affected by the fault can be
modelled only once for J and Je (nodes which are not suc-
cessors of the faulty node). Finally, when dealing with
stuck-at faults, all those nodes can be eliminated, which
would have been only necessary to compute the value of
the faulty node.

These optimizations lead to considerable savings. When
dealing e.g. with a stuck-at fault at a primary output, it is
not necessary to model the faulty circuit as in that case the
uncover condition only denotes, that the correspondent
output of the correct circuit must eventually carry the
proper logical value (e.g. 0 for a stuck-at-1 fault).



Moreover, only the predecessor nodes of that output must
be modelled.

A temporal logic based approach is well suited for
incorporating user guidance. It is easily possible to add to
the circuit description initializing values (e.g. a reset sig-
nal) or sequences, the designer knows to put the circuit
into a state, suited for a given fault by providing additional
temporal formulas to the proving procedure.

6.3 Optimizations of the Proving System

The proving procedure can be optimized by reducing the
number of nodes represented by a tableau and by imple-
menting more efficient transition conditions than the
tableau rules, originally used [26]. Both approaches can be
combined.

Fujita and Fujisawa have shown, that it is possible to
represent the transition conditions of the tableau with
binary decision diagrams (BDDs) to reduce the representa-
tion overhead [16]. However, an explicit enumeration of
all reachable nodes in the large space of the power set of
all subformulas is still required ([23], [26], [21]). This
large space can be reduced when using temporal logic only
for representing and analyzing the behavior of digital cir-
cuits. In that case, it is possible to represent the states of
the digital system with propositional state variables and
the nodes of the tableau can be also encoded by a vector of
state variables, which can be implemented more
efficiently, compared to a characterization of states with an
elementary formula labelling. Moreover, the model can be
represented symbolically by a transition relation and sets
of states with characteristic functions.

Coudert et al. presented a method for sequential circuit
verification, which traverses the FSMs by symbolic
manipulations of Boolean functions, represented as BDDs,
which avoids the state explosion drawback ([35], [27],
[36]). This approach has proven successful and has been
refined immediately ([19], [28]). Burch et al. have shown,
that the basic mechanisms are well suited for implement-
ing model checkers for temporal logic ([17], [29]). Our
own implementation is based on these approaches using
the BDD-package of Brace et al. [37]. The construction
process is stopped after the first satisfying variable se-
quence is found, so that the whole tableau of a PTL
formula has to be constructed only if no solution exists.

7. EXPERIMENTAL RESULTS

The presented approach has been validated on a variety of
sequential circuits. In the following, we present the results
achieved on the ISCAS ‘89 s-benchmark set [32]. All
runtimes are given in seconds and have been achieved on a
SUN 4/65 workstation. Table 2 shows the results of
verification runs, according to lemma 1. The compared

circuits are known to have identical behavior. “Depth”
indicates the maximal length of an input sequence which
may be applied to the circuit before a same state is encoun-
tered again. The runtimes give a worst case estimation of
the time effort needed in case of undetectable faults for cir-
cuits with reset state, if the circuit modeling has not been
optimized as indicated in section VI. A undetectable fault
requires at worst the same exploration of the complete
state space. Hence, if the designer succeeds in the verifica-
tion step he can also be sure that for each stuck-at fault a
test sequence can be generated with similar computing
time. Aborted faults are avoided this way.

Table 2: Verification results

circuits depth time in seconds

s344 ´ s349 7 59.2
s382 ´ s400 151 213.7

 s526 ´ s526n 151 127.6
s820 ´ s832 11 1.5

s1488 ´ s1494 22 3.8

Table 3: Test Generation Results (resetable flipflops)

circuit #flts #undet
faults

#test
vectors

avg.
ATPG
time/flt

total
time in
seconds

s27 32 0 16 0.01 0.2
s208 215 65 135 0.4 35.3
s298 308 36 271 1.1 78.6
s344 342 5 98 31.9 837.7
s349 350 7 101 32.4 944.0
s382 399 20 1858 43.4 2405.1
s386 384 70 162 0.5 74.5
s400 424 27 1815 46.0 2868.7
s420 430 226 121 1.0 263.1
s444 474 35 1794 60.3 4103.7
s510 564 0 724 1.3 33.7
s526 555 89 2182 58.0 7745.3
s526n 553 87 2182 58.0 7626.5
s820 850 35 767 1.2 230.4
s832 870 51 785 1.2 269.3
s838 857 555 138 4.7 2725.6
s1196 1242 3 330 2.8 648.2
s1238 1355 72 336 4.5 1331.4
s1488 1486 40 1034 2.7 399.4
s1494 1506 51 970 2.6 378.5

In table 3 and 4, the close relation of verifiability and
testability is obvious. Test generation time for circuits
with reset state is high for all circuits, which have shown



to be hard to verify. With our first implementation we
were able to generate generally valid test patterns for those
circuits without reset state, which had small verification
times. It is apparent that the sequential depth directly
influences test pattern length and runtimes especially in
the case of circuits with non resetable flipflops. Since the
system is based on a breadth-first traversal of the circuits,
always minimal length test pattern are generated in case of
circuits with reset state. If a fault is undetectable, accept-
able runtimes are generally preserved, since in that case a
complete exploration of the whole state space has to be
performed, which is a strength of the verification oriented
approach. By using “cheaper” methods  like random-pat-
terns before applying verification based techniques a con-
siderable speed-up may be achieved for test generation [20].
However, since we want to emphasize in this paper the
similarities between test and verification we renounced to
elaborate these possibilities.

Table 4: Test Generation Results (non resetable flipflops)

circuit #flts #undet
faults

#test
vectors

avg.
ATPG
time/flt

total
time in
seconds

s27 32 0 14 0.1 0.7
s208 215 65 208 0.5 72.2
s298 308 35 356 20.3 1238.2
s386 384 70 185 0.8 85.5
s420 430 226 252 6.2 1692.7
s820 850 35 977 1.8 2057.7
s832 870 51 977 1.8 2063.7
s1488 1486 40 1107 5.1 1849.5
s1494 1506 51 1034 5.5 1586.7

8. CONCLUSIONS AND FUTURE WORK

Using temporal logic it is possible to generate test pattern
sequences by performing a constructive proof of the for-
mally stated testing problem. Following this approach, a
method has been presented which allows test generation for
arbitrary fault models and leads to a novel approach  for
not resetable flipflops, which avoids many drawbacks of
other approaches. Thus we are able to provide one tool,
which can be used for both, test generation and hardware
verification.

With our prototype implementation of this design tool,
we are currently able to process the small and medium
sized circuits from the ISCAS ’89 benchmark set. This is
not a fundamental drawback since we have shown, that it
is possible to reduce test generation to a satisfiability
problem in formal logic as it has been done previously for
hardware verification. Temporal logic model checking

algorithms are subject to constant improvements so that
the size of manageable circuits will further increase [38].
Moreover, it is possible to extend the approach to hierar-
chical circuits since hierarchy is one of the key issues of
verification and many useful approaches have already been
published, which can also be applied to testing ([1], [39]).
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