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Multiple Distributions for Biased Random Test 
Patterns 

HANS-JOACHIM WUNDERLICH, MEMBER, IEEE 

Abstract-The test of integrated circuits by random patterns is very 
attractive, since no expensive test pattern generation is necessary and 
tests can be applied with a self-test technique or externally using linear 
feedback shift registers. Unfortunately, not all circuits are random 
testable, because either the fault coverage is too low or the required 
test length too large. In many cases the random test lengths can be 
reduced by orders of magnitude using weighted random patterns. 
However, there are also some circuits for which no single optimal set 
of weights exists. A set of weights defines a distribution of the random 
patterns. 

In  this paper, it is shown that the problem can be solved using sev- 
eral distributions instead of a single one. Furthermore, an efficient pro- 
cedure for computing the optimized input probabilities is presented. If 
a sufficient number of distributions is applied, then all combinational 
circuits can be tested randomly with moderate test lengths. The pat- 
terns can be produced by an external chip, and an optimized test 
schedule for circuits with a scan path can he obtained. Moreover, for- 
mulas are derived to determine strong bounds on the probability of 
detecting all faults. 

Fault simulation with weighted pattern shows a nearly complete 
coverage of all nonredundant faults. 

Keywords-Random tests, biased random patterns, multiple weights, 
low cost test. 

I. INTRODUCTION 
ESTING by random patterns has many advantages T compared to other test strategies, e.g., the self-test 

capability, a reduction of computing time, and high cov- 
erage of parametric faults. During the last few years many 
papers have been published on problems concerning ran- 
dom tests, such as computing fault detection probabili- 
ties and test lengths. Some of these results will be sum- 
marized as prerequisites of the later investigations. 

In Section 11, a theorem is established which provides 
a strong bound on the probability that all faults of a given 
set are detected by a given amount of random patterns. 
Another theorem shows that a real random test and a pseu- 
dorandom test by shift register sequences require the same 
length if the number of primary inputs is sufficiently large. 

It is shown that in general the fault coverage increases, 
and the overall test length decreases if several random 
pattern sets with different 1 -probabilities are applied. The 
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optimized input probabilities can be computed numeri- 
cally if a procedure which satisfies certain restrictions is 
available for estimating fault detection probabilities. 
These restrictions are discussed at the end of Section 11. 

In Section 111, the complexity of computing an opti- 
mized random test schedule is determined. Since this 
problem is at least NP-hard, we avoid the exact calcula- 
tion by using an efficient heuristic (Section IV). Some im- 
plementation details are given in Section V and results are 
discussed in Section VI. Finally we present a system for 
generating weighted random test patterns having multiple 
distributions, which is used for the external test of circuits 
with integrated scan path. 

11. BASIC FACTS 
2.1. Fault Detection Probabilities 

One of the main tasks in random pattern testing is the 
computation of fault detection probabilities. Many tools 
and algorithms have been proposed for estimating these 
probabilities (e.g., [9], [2], [22], [lo], [l]). However, 
most of them are restricted to the usual stuck-at fault 
model, but an extension to more complex faults is easy 
unless a sequential behavior is involved [27]. Unfortu- 
nately, algorithms for the exact computation of fault de- 
tection probabilities have a very high worst-case com- 
plexity. 

Observution I: Computing fault detection probabilities 
is at least NP-hard. 

This observation is a simple consequence of the NP- 
completeness of the fault detection problem [13], and 
hence, all known methods for estimating fault detection 
probabilities analytically in polynomial time have un- 
bounded relative estimation errors. The conjecture that a 
stochastic Monte Carlo algorithm would yield a higher 
precision more efficiently is not true. 

Observution 2: Estimating fault detection probabilities 
is #-complete, i.e., one cannot expect a stochastic algo- 
rithm with a sample size bounded by a polynomial in the 
reciprocal of the relative estimation error. 
The proof of Observation 2 is straightforward using meth- 
ods, for instance, presented in [12]. That means we can- 
not expect tools for estimating fault detection probabili- 
ties with arbitrary high precision in polynomial computing 
time. As we have to put up with approximated fault de- 
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tection probabilities, algorithms to compute lengths of 
random tests based on these values should not be over 
sophisticated. 

2.2. Fault Detection Probabilities and Test Lengths 

There are some papers on computing required test 
lengths for pseudorandom patterns applied by BIST reg- 
isters or a low-cost test equipment [20]. Taking the pseu- 
dorandomness into account, shorter test lengths are ob- 
tained but more complex algorithms are required. This is 
not necessary as random models are sufficiently precise. 

Zkeorem I: Let p < 1 /4 be the detection probability 
of a fault f in a combinational circuit with i > 4 primary 
inputs. Let E be the escape probability that f is neither 
detected by N ,  random patterns nor by Np pseudorandom 
patterns. For 2'/2 1 Np we have N ,  I Np + 2 ( 1 - In 
( E ) ) ,  i.e., N ,  = N p .  

Proofi (See Appendix A). 
Even if we assume the very low escape probability of E 

: = 0.001, theorem 1 provides N ,  I Np + 16. Hence, the 
theorem leads to observation 3. 

Observation 3: For not exhaustively testable circuits, 
the difference between the length of a random test and the 
length of a pseudorandom test is negligible. 

If an exhaustive test of the circuit is possible, then it is 
preferred anyway. As a consequence, we can use the ran- 
dom model assumption without any loss of generality for 
those circuits where an exhaustive test is impossible and 
where N ,  I 2'12. For instance, if we have to apply less 
than 8000 patterns to a circuit with more than 25 primary 
inputs, then random and pseudorandom pattern sets will 
have the same size. 

Now let F be a set of faults of the combinational circuit 
C with n inputs. Faults in F should not induce sequential 
behavior. Let X : = ( xl, * * , x,) E [0, 1 3 "  be a tuple 
of real numbers, denoting the 1-probability for each pri- 
mary input. For a fault f, let pf  ( X )  be the probability of 
detecting that fault by a random pattern generated with 
distribution X. The probability that all faults of F are de- 
tected with N random patterns is estimated by 

J N ( x )  = ( - ( - pf (1) 
feF 

Of course, formula (1) only holds if we assume that the 
detection of some faults by N patterns forms completely 
independent events. Therefore, some authors try to com- 
pute an exact value by means of Markov-theory [5], but 
the next theorem shows that formula (1) is a very precise 
estimation. 

Let ( j s i s I r  be an enumeration of F, where i e j 
implies pA I pA. In order to simplify the notation we omit 
the concrete distribution X. The expression P ( A ,  N ) de- 
notes the probability to detect all faults of the set A E F 

by N random patterns under some distribution X. Then we 
can show the following theorem. 

Theorem 2: 
Set 

Then 
U 

I P(F,  N )  

Proof: (See Appendix B). 
Using this theorem we can state the following. 

Observation 4: Let J N  = 1 be the derived probability 
to detect all faults. Formula (1) underestimates the exact 
probability by less than 0 ( 1 In ( J N )  I ) and overestimates 
it by less than O(  I ( 1 - JN ) In ( J N  ) 1 ). 

Observation 4 is derived by 
Ir 

N 
j - 1  

N 

j = 2  k =  1 

I C(1  - p f ) N  
feF 

using formula (12) in the Appendix. 

pf2 = 5 * andpf3 = loT6, then using formula ( l ) ,  
we will need N = 69 lo6 patterns, in order to detect all 
faults with probability 0.999. The estimation of Theorem 
2 yields: 

0.999 - lo-'' I P (  {fi,&,f3}, N )  I 0.999 + 

For instance, if we have three faults with pf  = 

The following fact has already been observed in [5]. 
Observation 5: Only the faults with lowest detection 

probability have impact on the necessary test length. 

In [23] it is discussed that those faults having a detec- 
tion probability which is more than 10 times larger than 
the minimal detection probability can be neglected. 

The next statement has already been established in [ 181. 
Observation 6: The necessary number of random pat- 

terns increases linearly with the reciprocal of the minimal 
fault detection probability. ' 

Thus during a conventional random test, the size of a 
test can grow exponentially with the number of inputs. 
For instance, consider an  AND^^ (Fig. 1) where each of 
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Fig. 1 .  32 Input AND. 

I I. 
the 32 inputs is set to “1” with probability x. Then an 
arbitrary stuck-at-0 fault is detected with probability x 32, 
and each of the 32 stuck-at-1 faults with probability (1 - 
x) x31. For x = 0.5 and a test confidence of 0.999 for 
detecting all 33 faults, formula (1) yields 0.999 = (1 - 
( 1  - 2-32)N)33 and N = 4.48 - 10”. 

By using unequiprobable patterns, i.e., x # 0.5, test 
lengths can be reduced drastically [22], [15]. For exam- 
ple, by setting 

x : =  3z 
we would need approximately N = 6 - lo2 patterns. 

Observation 7: There are circuits for which using un- 
equiprobable patterns can reduce the test lengths by or- 
ders of magnitude. 

In [23], [24] an efficient procedure for computing op- 
timized input probabilities was presented. Unfortunately, 
some circuits are resistant to this optimization when only 
a single distribution X is used. For the connection of an 
 AND^^ and an 0 ~ 3 2  in Fig. 2 no better single distribution 
exists than ( x i  = 0.5 1 i E Z ). 

The problem is solved by first applying 600 patterns 
with input probability 

x : =  3z 
x : =  1 - 753. 

and then 600 patterns with input probability 

This way we obtain a complete fault coverage with con- 
fidence 0.999 with N ,  = 1200 random patterns. 

In the rest of this paper, we deal with the problem of 
computing several distributions X for random patterns in 
order to minimize the overall test length based on tools 
estimating fault detection probabilities. 

2.3. Eficiency and Accuracy of the Testability 
Measures 

Computing optimized distributions X is essentially done 
by numerical algorithms maximizing formula (1). Re- 
cently several algorithms have been proposed for exactly 
computing fault detection probabilities using a 4-valued 
logic [ 101 or using some graph-theoretic properties of the 

- 
Fig. 2. Not random testable circuit. 

circuit [19]. However, until now, no reports about their 
measured performance are available. Furthermore, fault 
detection probabilities have to be estimated by a testabil- 
ity measure which meets the following requirements. 

a)  High Eficiency : During optimization, the detection 
probabilities pf  (X ) have to be evaluated very often for 
different arguments X. The involved fault detection prob- 
abilities pf  ( X )  cannot be determined exactly due to the 
high problem complexity. Therefore, we have to use heu- 
ristics for estimating fault detection probabilities, and dis- 
pense with the exact computation. 

b) Unique Results Instead of Bounds: The so-called 
‘‘cutting algorithm” is a heuristic algorithm to compute 
bounds on the detection and signal probabilities [9]. If 
one of the bounds is constant 0 or 1, this information is 
not sufficient, since these bounds are not sensitive to vari- 
ations of the input probability distribution x. In order to 
decide on optimal input probabilities, especially the re- 
sponse to faults with low detection, probabilities are in- 
teresting. Thus we need a single real number as an esti- 
mate. 

c) Handling Weighted Input Probabilities: For each 
fault, its detection probability will be computed several 
times for different input probabilities X. If these prob- 
abilities differ only in a few input positions, the algorithm 
should take advantage of this fact. 

d)  No Random Errors: If the algorithm is run for dif- 
ferent input probabilities, the estimation error should not 
be a random variable. If the error is random, computing 
optimal weights turns into a stochastic optimizing prob- 
lem which has a very high complexity. Standard opti- 
mizing procedures like the Newton iteration in general do 
not converge based on stochastic inputs. Only in special 
cases can these algorithms be modified, for instance, for 
PLA’s as described in [26]. 
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These four requirements are fulfilled by the tool PRO- 
TEST (probabilistic testability analysis) as described in 
[22], [23]. Furthermore, this tool has the advantage that 
the user can control the tradeoff between the precision of 
the estimation and the required computing time. All the 
results reported in this paper are obtained with PRO- 
TEST. 

111. OPTIMIZING INPUT PROBABILITIES 

Now we can formulate the optimizing problem in a more 
formal way. 

3.1. Problem A 

Let G be the desired probability to detect all faults. Find 
a number k ,  k distributions Xi, and k numbers N i ,  i = 1, 
. . .  , k ,  such that 

(1 - IT k ( 1  -Pf (Xi))") 

i =  1 
G S I T  

feF 
k 

and N : = c Ni is minimal. 
i =  I 

The problem is solved if we set k equal to the minimal 
number of deterministic test patterns, that is the size of 
the smallest possible test set. Then each Xi E [ 0, 1 1" rep- 
resents a test pattern, we have Ni = 1 for each pattern, 
and N = k .  However, the problem to find a minimal test 
set has been proven to be NP-complete [3], hence, there 
is little hope to develop an efficient CAD tool based on a 
solution for the NP-hard Problem A. Even the weaker 
Problem B turns out to be NP-hard. 

3.2. Problem B 

Let G and k be given. Find k distributions X i  and num- 
bersN,, i = 1, , k ,  such that 

k 

and N : = ,x Ni is minimal. 
I =  1 

It is easy to prove that Problem A can be reduced to Prob- 
lem B, so an efficient algorithm for B cannot be expected 
either. Therefore, our goal is not an optimal solution of 
problem A or B, but we satisfy ourselves with finding an 
efficient procedure. Fig. 2 indicates that the problem arises 
because different faults of the circuits require different 
distributions. Hence, we formulate our problem as fol- 
lows. 

Optimizing Problem: Let G and k be given. We are 

U Fk, distributionsX'; - .,Xkandnumbers N1; . e ,  

searching for a partition ( F l ,  - - , F k )  of F := Fl U - 

Nk, such that 

GI I71 
k k 

(1 - (1 -pf(Xi))") ,  a n d N : =  x Ni 
i =  I feFi i =  1 

( 2 )  

is sufficiently small. 
For k : = 1 this problem has already been solved in [23], 

[24], and we now list some basic results presented there. 
For the input probabilities X : = (xI, * * * , x, ) E [O, 1 I" 
we have for all faults f: 

This is a straightforward consequence of Shannon's for- 
mula. Now we can compute a fault detection probability 
and its partial derivative for an arbitrary value of x i ,  if we 
know the values under the conditions that input i is con- 
stant "0" and constant "1 ." 

By some straightforward approximations using formula 
(12) in the Appendix, formula (2) leads to 

We call a tuple X E [ 0, 11" optimal, if the objective func- 
tion 

is minimal. Obviously this corresponds to the fact that the 
probability of detecting all faults by N patterns is maxi- 
mal. Minimizing the objective function would need ex- 
ponential effort in general. However, a sufficient heuristic 
is found, since the first partial derivative of the objective 
function can be computed explicitly: 
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The next step shows that the second derivative is positive 
everywhere: 

- Pf (XI. * * > xz-I7 0, & + I ,  . 3 

. e - f f ( X ) N .  ( 8 )  
Thus the objective function is strictly convex with respect 
to a single variable, and these explicit formulas can be 
used to find the optimal value for xi  by the bisection 
method, the regula falsi or the Newton iteration [7]. The 
complete optimizing procedure is the following. 

Procedure Optimize 

Old := 26,(X) 
New := & ( X )  
While Old > (1  +X)New + e  do 

Old := New 
For i : = 1 to n do 
Search optimal value y using (7), (8) and 
a standard technique for input i 

(F:  Faultsets, X :  Startvector) 

xi := y 
New := 6,(X). 

The parameters h and E are specified by the user, and they 
determine another tradeoff between accuracy and com- 
puting time. In the next section we discuss the extension 
to multiple distributions. 

IV. PARTITIONING A FAULT SET 

In order to gain efficiency, the optimizing problem is 
solved by splitting the fault set into two subsets itera- 
tively. In this section, it is discussed how to find two tu- 
ples V , ,  V2 E [0, 11" and a partition FI U F2 = F ,  such 
that the sum of the two corresponding objective functions 
is minimized: 

< 6 ; ( x ) .  

For each F* C F the objective function 6," may be multi- 
modal and its global minimization would need exponen- 
tial effort. Hence, we do not try to compute a global min- 
imum, but we look for a,direction, where starting from a 
tuple Xo the decrease of 6; is maximal. The next theorem 
will give a helpful hint. 

Theorem 3: Let U C R" be convex, {: U -+ R ,  and grad 
({) : = ( d { / x i ) ,  be the gradient of {. For each Xo E 
U the vector -grad ({) (X , )  indicates the direction of 
strongest decrease. If { is linear a local minimum is found 
on the line Xo - CY grad ( {) ( X o ) ,  CY 2 0. 

Proof: Mathematical calculus. 

Even though 6," is not a linear function, Theorem 3 
claims that - grad ( 6 r ) ( X o )  is the required direction. 
Thus we define the new function 

4:: R f  U ( 0 )  -+ R 

by 
( ,"(CY)  := 6,"(Xo - CY grad ( 6 : ) ( X o ) ) .  

The formula 

(9) 

exactly measures the decrease of our objective function in 
its optimal direction. The solution of 

D ( P ,  N ,  xo, Y) = 0 (10) 

provides input probabilities Xo - y grad ( 6 ; ) ( X o ) ,  de- 
fining a minimum point in this direction. Therefore, our 
weakened partitioning problem can be solved by F ,  and 
F2 such that 

JD(Fi, N, Xo, 0 )  + JD(F2, N ,  Xo, 0 )  > 0 (11) 
is maximal, the square root is used for normalizing. It 
should be noted that for linear functions this process would 
indeed be optimal. 

The rest of this section discusses the tasks necessary for 
partitioning. These tasks have to be done only for the 
small subset of faults with lowest detection probability 
due to Observation 5 .  If this set is small enough, the pre- 
sented method will compute a global optimal solution 
maximizing formula (1 1). For large fault sets computing 
time can be saved, if the method is somewhat simplified. 

a) Computing the Gradient: The gradient for Xo - y 
grad (6,") ( X o )  can be computed explicitly using (7). If 
additionally ( 3 )  is used, it is immediately seen that we 

3xI-1, only have to computepf ( X )  and eitherpf (xI ,  . 
0, & + I ,  - * * > xn) orPf(Xt9 * 

9 xi-1, 1 , X I + I ,  * * * 2 

x,) for this purpose. 
b) Sorting the Fault Set: For each fault let 

= (1 grad ( e  - f f ( X ) N )  ( X o )  ( 1  
be the Euclidean norm of the gradient of e - f f ( X ) N  in X,, 
and let ( ) i c k  be an enumeration of F with 

i I k * d j ( X 0 )  2 dh(&). 

Now we select a constant value c and the most impor- 
tant subset of faults F C F where F : = [ fi 1 i I c 1. The 
results presented in the next section are provided for c = 
20. As usual, if the number of faults with low detectabil- 
ity is small enough, then a global optimum can be 
achieved. 
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Fig. 3. Node at level 5 with its both successors. 

c) Starting Partitioning: Firstly, we are looking for a 
starting partitioning F,, Fb C F 

Set F,, Fb := 0. 
F o r i : =  1 t o c d o  

if JD(Fuu { i} ,N,XO,O) + JD(Fb&,XO,O) > 
JD(F~,N,XO,O) JD(Fbu { fi) ,N,XO,O) 

then F, := F , U { A } .  
else Fb := F b u { A } .  

This starting partitioning corresponds to an objective 
value: 

v := J D ( F , ,  N ,  Xo, 0 )  + JD(Fb ,  N ,  XO, 0 ) .  

d )  Constructing a Search Tree: Now a search tree T 
can be constructed, where each node represents two dis- 
joint subsets of F .  Node A is a direct successor of node 
B,  if one of the subsets of A is equal to one of B ,  and if 
the other subset contains exactly one more fault (see Fig. 
3). Thus a node of depth k represents a partition of the 
first k faults into two subsets. 

Due to the triangle inequality, at a node A at depth nz 
I c with fault sets F,, F, the search can be stopped if 

v 2 JW,, N ,  xo, 0) + JW,, N, xo, 0) 

+ ( m  - c) dfin(X0) 

since no leaf succeeding node A will be better than the 
starting partitioning. If we reach a leaf this way, then a 
better solution F,, Fb is found and v must be updated. The 
complexity of this process is distinctly lower than 2', since 
most of the branches are aborted at a very early stage of 
the search. 

e)  The Complete Partitioning: The remaining faults of 
F (if some exist) are now added to the sets Fa and Fb in 
the same way as described in Section IV-c). Finally, for 
each fault it is checked whether or not the result can be 
improved by changing its membership. This greedy al- 
gorithm is stopped if 

U := J D ( F , ,  N ,  xo, 0) + d D ( F b ,  N ,  xo, 0) 

is maximized. 
f) Computing a Tuple of Optimal Input Probabili- 

ties: If the gradient for 6; is already computed, (10) is 
solved by a bisection method. This provides a 7, with 
D ( F a ,  N ,  Xo, T u )  = 0 and a Y b  with D(Fb ,  N, Xo, Y b )  = 

0. We set 

and 

Finally, we improve VI and V2 by the procedure Opti- 
mize of Section 111. If the gradient is unknown, Optimize 
is started immediately. 

V . MULTIPLE OPTIMAL DISTRIBUTIONS 

Of course partitioning is not restricted to two sets. Ex- 
perience has shown that better results are obtained by a 
successive procedure as compared to partitioning into m 
sets at one time. 

Procedure Multiple-Optimize 
(F: Faultsets, X Startvector, 
m: Number of distributions). 

F[1]  := F 
X[1]  := x 
F o r i : =  t o m  - 1 do 

L e t j  I m - 1 be such that F [ j ]  requires the 
largest test set. 
Partition F [ j ]  into Fa, Fb. 
Optimize (F,,X[ j ]  ,Xu) and Optimize 
( F b , x [ j ] , X b )  as mentioned in 
Section IV-e). 
F [ j ]  := F,, X [ j ]  := Xu,  F [ i ]  := Fb 
ai] := x b .  

This procedure provides m distributions Xi, and m disjoint 
fault sets Fi. Computing the m test lengths Ni by (2) would 
overestimate the necessary size, since there is a chance 
that a pattern according to Xi detects some faults of a set 
6 also, j # i .  The optimal numbers Ni can be computed 
by the formula of Problem B) in Section 111. 

The test application is simplified, if we assume that we 
use the same amount N* of patterns for each distribution. 
In this case the mentioned formula is simplified into 

G 5 feF ( 1  - i =  ii I ( 1  - pf  ( x i ) ) " )  
and N : = m*N*. 

VI. RESULTS 

In Table I optimizing results are shown based on detec- 
tion possibilities provided by PROTEST. The first ex- 
ample is the ~ ~ ~ 0 ~ 3 2 - c i r c u i t  of Fig. 2. For the well- 
known benchmark circuits [ 8 ] ,  k : = 1, . * * , 8 optimized 
input probabilities have been computed. The first column 
denotes the circuit name, the second one the necessary 
number of not optimized, equiprobable random patterns, 
and the following 8 columns contain the necessary num- 
ber of random patterns assuming that for each distribution 
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Circuit Numbcrof Numberof 

simulated redundant 

paaans faultsby 

U71 

c17 10 0 

c432 512 4 

c499 539 8 

c880 260 0 

c1355 2244 8 

cl908 2308 9 

~ 2 6 7 0  10766 117 

c3540 12200 137 

c5315 1316 59 

c6288 109 34 

c7552 34827 131 

'~7552 57320 131 

Number 

of not 

detected 

faults 

0 

4 

8 

0 

8 

9 

117 

137 

59 

34 

139 

131 

circuit 

e q u i p  

Necessary number of mdom patterns 

weights: 

bable 

Andor 3.8e10 

c17 8 . 5 ~ 1  

c432 2.4e3 

c499 1.4e3 

c880 3 . 7 4  

c1355 2.7e6 

cl908 6.Oe4 

c2670 1.1e7 

c3540 l . le6 

c5315 5 . 3 4  

c6288 8.2e2 

c7552 4.8ell 

1 

3.8e10 

5.8el 

l.le3 

1.4e3 

1.0e3 

2.7e6 

1.9e4 

l.le5 

6.4e5 

1.Oe4 

3.Oe2 

1 . 2 ~ 6  

the same amount N* of patterns is applied. For all ex- 
amples a detection confidence of G = 0.999 was required 
for the probability of detecting all faults. For the set of 
distributions which results in a minimal overall size, the 
number of test patterns is printed in bold letters. 

For the small circuit C 17 some distributions degenerate 
to deterministic test patterns. This circuit with 5 primary 
inputs is not appropriate for random pattern testing, and 
the requirements of Theorem 1 are not fulfilled. The 
ANDOR violates Theorem 1 in the equiprobable case but 
not for weighted patterns. Three points are outstanding. 

Firstly, all of the benchmark circuits and the counter- 
example AND OR^^ can be tested by only a few thousand 
random patterns. From a theoretical point of view, all cir- 
cuits can be made random testable by the presented pro- 
cedure. 

Secondly, the overall number of necessary patterns does 
not decrease monotonically with the number of distribu- 
tions. This is a practical consequence of the discussed 
problem complexity and the applied heuristics during op- 
timizing and partitioning. 

Thirdly, the results differ slightly from the results re- 
ported, e.g., in 1231, [24], since they depend on param- 
eters of the testability measure to a large extent. The pa- 
rameters were chosen such that partitioning could be done 
within less than 1 h of computing time for each circuit. 
The program is running under the operation system UNIX, 
and the experiments were performed on a SUN 3/50 
workstation. 

However, the results of Table I are only estimations, 
they denote that at most one out of thousand test sets of 
these lengths will fail to obtain a complete coverage of all 
irredundant faults. These predictions on fault coverage are 
validated by fault simulation as shown in Table 11. 

1.6e3 

8.Oel 

9.9e2 

1 . 3 ~ 3  

2.le3 

3 .1~6 

2.9e4 

7.3e4 

1.3e6 

8 . l e 3  

2.6e2 

7.le5 

TABLE I1 
FAULT COVERAGE PROVIDED BY SIMULATION OF WEIGHTED PATTERNS 

2 3 4  

1.8e3 2.le3 

6.Oel 5.3el 

9 . 8 ~ 2  9.3e2 

1.4e3 1.3e3 

1.2e3 l . le3 

4.Oe6 4.le6 

1.5e4 1.9e4 

7.4e4 6.4e4 

1.9e6 1.7e6 

9.4e3 9.3e4 

2 . 7 ~ 2  3.Oe2 

6.4e5 4.5e5 

2.2e3 

5 .0e l  

9.3e2 

1.3e3 

1.2e3 

4.8e6 

1.8e4 

5.6e4 

2.4e5 

9.9e3 

4.le2 

2.6e5 

100.00 

99.32 

98.99 

100.00 

99.53 

99.60 

95.48 

96.30 

99.07 

99.59 

98.13 

98.26 - 

5 6  

2.4e3 

5.7el 

9 .k2  

1.3e3 

1 . 1 ~ 3  

8.3e5 

2.9e4 

6.5e4 

2.9e5 

l.le4 

2.9e2 

2.3e5 

Fault coverage 

with respect 

to all detectable 

faults (%) 
7 

6.6el 

9.9e2 

1.3e3 

1.2e3 

5.3e6 

3.5e4 

4.8e4 

3.3e5 

1.3e4 

2.7e2 

2.3e5 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

100.00 

99.86 

100.00 

8 

7.5el 

l . le3 

1.3e3 

1.4e3 

5.2e6 

3.8e4 

4.5e4 

3.5e5 

1.2e4 

2.7e2 

2.2e5 

During fault simulation it is useful to merge the rn dif- 
ferently weighted pattern sets, since the fault dropping 
technique cannot be exploited otherwise. In the first col- 
umn of Table 11, the circuit name is found. The second 
column contains the numbers of merged weighted patterns 
which have been applied. For each distribution the same 
amount of patterns have been generated; the number of 
the pattern that detected the last fault is always given. 

The third column of Table I1 contains the number of 
redundant faults found by the deterministic test pattern 
generator of Schulz and Auth [17], which identifies all 
redundant faults in the benchmark circuits. The fourth 
column contains the number of faults not detected by sim- 
ulation, the fifth column the fault coverage with respect 
to all faults, and the sixth the fault coverage with respect 
to all detectable faults. In each case, the optimal number 
of distributions which is found in Table I11 has been ap- 
plied. 

It should be noted that the amount of simulated patterns 
was much smaller than that one required by PROTEST, 
due to restrictions of the available fault simulator. Pre- 
sumably this is the reason for the 0.1 % undetected faults 
of the circuit c7552, and thus the weighted patterns will 
be another application field of the recently proposed fast 
fault simulators for combinational circuits (e.g., [ 161, 
[21]). In the example *c7552, a higher precision of PRO- 
TEST is used in order to compute 17 different sets of 
weights. Then the computing time for optimizing in- 
creases from approximately 1 to 7.5 h, but fault simula- 
tion shows a higher fault coverage. In both cases c7552 
and "~7552,  fault simulation was aborted if 20 000 pat- 
terns did not detect any new fault. 

Table I11 compares the results of fault simulation using 
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TABLE 111 

(REDUNDANCIES) 
FAULTS NOT DETECTED USING WEIGHTED AND EQUIPROBABLE PATTERNS 

- 
C17 

C432 

c499 

C880 

C1355 

C1908 

C2670 

c3540 

C5315 

C6288 

C7552 - 

Numberof 

distributions 

5 

4 

6 

1 

6 

3 

8 

5 

2 

2 

8 

Numberof 

P- 

10 

512 

539 

260 

2244 

2308 

10766 

12220 

1316 

109 

34827 

Number of faults 

not d 

weighted 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

8 

!acd 

quipmbable 

1 

6 

6 

51 

0 

21 

515 

2 

8 

8 

268 

equiprobable patterns and weighted patterns. The first 
column contains the applied number of distributions. 
These are the numbers where the presented partitioning 
and optimizing procedures predict the shortest test length. 
In general, since no global statement about the optimal 
number of distributions can be obtained sufficiently, it is 
recommended to stop the partitioning at that point, where 
the test length is short enough for practical applications. 
The second column of Table I11 is the number of weighted 
patterns simulated. The third column is the number of 
testable faults not detected during simulations, i.e., re- 
dundancies are removed. 

The same amount of equiprobable patterns was simu- 
lated, and the last column contains the number of testable 
faults not detected by equiprobable patterns. For the equi- 
probable case, results of longer simulation runs are found 
in [29], where 221 random patterns did not lead to a com- 
plete fault coverage for some circuits. 

VII. APPLICATIONS 

The mentioned tools for estimating fault detection 
probabilities are mainly used to predict the necessary test 
length of a random test, which can be carried out by a 
BIST structure like a BILBO [ 141. Since a large class of 
circuits is resistant to such a conventional random test, 
optimized input probabilities should be computed. A test 
strategy based on weighted random patterns can also be 
implemented as self-test using a so called GURT (gener- 
ator of unequiprobable random tests) [25] .  However, even 
this way, not all circuits can be dealt with adequately. 

The presented method of computing multiple distribu- 
tions is applicable to all combinational circuits, but un- 
fortunately there is no obvious way to implement them by 

f- 
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Fig. 4. LSSD-based random test. 

a BIST technique. However, of course, they can be used 
for a so called LSSD or scan-path random test ([ 1 11, [4]). 
Fig. 4 shows the basic architecture of a scan design in 
combination with random pattern generation using linear 
feedback shift registers. 

The pattern generator and the signature registers are 
built on an external chip which sequentially generates ran- 
dom patterns with multiple distributions. Such a test chip 
has been designed and processed as a gate array [6]. Cur- 
rently, a circuit which can generate weighted patterns cor- 
responding to multiple distributions has been designed and 
processed. 

Using these chips leads to a weighted random pattern 
test system at low costs, where a similar or even a better 
fault coverage is reachable as compared to a conventional 
deterministic test (see [ZS]). In addition to the low priced 
test equipment the test application time will also decrease 
to the high-speed pattern generation. 

VIII. CONCLUSIONS 

An efficient method has been presented to compute 
multiple distributions for random patterns, which can be 
applied successively. Using multiple distributions, all 
combinational circuits can be made random testable, and 
a high fault coverage which is competitive with that 
reached by most of the deterministic test pattern genera- 
tors is provided by a few thousands of random patterns. 

The differently weighted random test sets can be ap- 
plied to scan path circuits using an external chip, combin- 
ing the advantages of a low cost test and high fault cov- 
erage. Since the size of the random test set is rather small, 
the fault coverage can be validated by simulation. 

Furthermore several facts about testing using random 
patterns have been proven. It has been shown, that the 
number of random patterns required for a certain fault 
coverage can be computed without regard to the pseudo- 
random property and with the independence assumption 
for fault detection. 
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APPENDIX A 
PROOF OF THEOREM 1 

Clearly we have Np I N,. The power series ,i the log- 
arithm provides 

m m :  

-~ P' 
1 - p  i = l  i = l  1 
-- - ~ p ' z  ~ - = - l n ( l - p ) z p ,  

for IpI < 1 .  (12) 
Fault detection by random patterns follows the binomial 
distribution, thus we have 

N,  
E = ( 1  - p )  or 

-In ( e )  = -N, In ( 1  - p )  1 pN,. (13) 
Fault detection by pseudorandom patterns follows the hy- 
pergeometric distribution, that is 

Hence, 

-In ( e )  
P 

Np I N, I ~ I Np + 2(1 - In ( e ) )  

and the theorem is proven. 

APPENDIX B 
PROOF OF THEOREM 2 

W e s e t 6 n + 1 : = P ( ( f i I i I n +  1 } , ~ ) - 1 1 7 2 : ( 1  - 

Now we have P (  F ,  N ) = JN + 6,, and using the Baye- 
( 1  - PA)N). 

6 n + 1  = ~ ( { f i  li I n >  9 N )  - 1 = I  ,n ( 1  - ( 1  - PA)") 

sian formula we can estimate 
n + l  

- ( 1  - Pf,+JNP({fi l i  I n >  

N 1 no pattern detects f, + ) 
N 

- (2'(1 - p ) ) !  = P ( { J q i - l } 3 ) - ( 1  - ( l - P f , + J  ) - 
(2'(1 - p )  - Np)!2'! 

e =  
n 

* n ( 1  - ( 1  -PA)") 
i = l  

N p - l  2'(1 - p )  - k 
k = O  2' - k = n  

k = O  

Since k I 2'" andp  < 1/4, we have (2'/2'k) p < 1 ,  
and by using the left inequation of (12) we get 

k = O  

2' 
N p - 1  - 2' - k p  

2' 
I C  

k = O  
P 1 -- 

2' - k 
2' N p -  1 

P 

I p N p ( 2 i ( i  - p )  2' - Np ) 
/ n  \ 

Since N j  I 2' and pNp I pN, I -In ( e ) ,  this yields 
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2'(1 + pNp) 
-1n ( e )  5 p(Np + 
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) 1 - In ( e )  
I ~ ( N P  + 1 - - 2-i/2 
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