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Abstract. The scan design is the most widely used technique used to ensure the testability of sequential circuits. 
In this article it is shown that testability is still guaranteed, even if only a small part of the flipflops is integrated 
into a scan path. An algorithm is presented for selecting a minimal number of flipflops, which must be directly 
accessible. The direct accessibility ensures that, for each fault, the necessary test sequence is bounded linearly 
in the circuit size. Since the underlying problem is NP-complete, efficient heuristics are implemented to compute 
suboptimal solutions. Moreover, a new algorithm is presented to map a sequential circuit into a minimal combina- 
tional one, such that test pattern generation for both circuit representations is equivalent and the fast combinational 
ATPG methods can be applied. For all benchmark circuits investigated, this approach results in a significant reduction 
of the hardware overhead, and additionally a complete fault coverage is still obtained. Amazingly the overall test 
application time decreases in comparison with a complete scan path, since the width of the shifted patterns is 
shorter, and the number of patterns increase only to a small extent. 
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1. Introduction 

In 1973, Angell and Williams proposed the scan path in 
order to facilitate test generation for sequential circuits 
[3]. In 1977, Eichelberger and Williams established a 
system of rules called Level-Sensitive Scan-Design 
(LSSD), resulting in higher flexibility of the design and 
less hardware overhead [9]. But the costs of a scan path 
are still up to 20% additional silicon area [4]; and some 
investigations show significant savings if only a part 
of the flipflops is integrated into an incomplete or partial 
scan path. 

The partial scan design does not lead to combina- 
tional test generation and test application, only the se- 
quential depth of the circuit is reduced. Moreover, the 
costs of wiring of an incomplete scan path do not directly 
depend on the number of scan elements. For this reason 
a partial scan approach is only worthwhile if the number 
of scan elements can be kept below 50 % of all flipflops 
[34]. Similar results are obtained in [21]. 

Trischler proposed the selection of scannable ele- 
ments based on testability measures [35], for instance 
SCOAP [15]. He uses a general-purpose sequential test 
pattern generator for the resulting network of reduced 

sequential depth. But this approach has two main 
drawbacks: 

1. For the modified sequential network, the use of a 
general ATPG does not guarantee a complete fault 
coverage. 

2. In general, the heuristics for selecting the scannable 
flipflops do not result in a minimal number. 

The first drawback is avoided by the approach pre- 
sented in [1 and 2]. Here the selection of the scan 
elements and the generation of the test patterns are inte- 
grated into one algorithm. The PODEM algorithm [14] 
tries to generate test patterns for the combinational part 
of the circuit; flipflops are selected that should be acces- 
sible in order to control the inputs of the combinational 
part. But the number of selected flipflops will become 
rather large. Both drawbacks can be avoided by an ap- 
proach based on the state transition graph as presented 
in [27], where circuit design and test generation are in- 
tegrated. This approach is especially applicable for 
logic synthesis. But, in general, the circuit structure 
is given and not the state transition graph. Generating 
this graph for arbitrary networks can become imprac- 
ticable due to time and storage limits. 
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In the presented work, both disadvantages are avoided 
without any serious time and storage restrictions. We 
establish some necessary restrictions on the circuit 
structure to ensure that the test length for each fault 
is linearly bounded by the circuit size. We present a 
new algorithm selecting a minimal set of scan elements 
in order to satisfy these restrictions. Since the selection 
problem is NP-complete, the exact solution optionally 
is weakened by some heuristics. Based on the selection 
of the scan elements, a new ATPG-algorithm is devel- 
oped, which is specially suited for these modified cir- 
cuits and succeeds in complete coverage of the irredun- 
dant faults. 

This article is an extension of the work reported in 
[23]; similar ideas have been presented in [6] and [13]. 

In section 2 we describe the necessary design restric- 
tions for our approach, introduce the used graph- 
theoretical circuit representations, and discuss the fault 
model. After these preliminaries, section 3 points out 
the relation between circuit structure and test length. 
The necessary restrictions are established; these must 
be satisfied by an incomplete scan path in order to 
bound the test length and the test effort. 

Section 4 presents an algorithm for selecting the 
scannable elements, and section 5 explains the corre- 
sponding ATPG-algorithm for the modified network. 
After a discussion of the necessary and sufficient test 
lengths and also of the test application time, the results 
of several benchmark circuits are presented in section 7. 

2. Circuit Representation and Fault Modeling 

We assume that the sequential circuits are described 
at gate level, and that the following restrictions are 
fulfilled: 
 9 The circuit is purely synchronous. 

* The system operation is controlled by a one-phase 
clock. 

 9 Only D-flipflops are used. 
 9 The D-fiipflops can be completed according to the 

rules of either level-sensitive or edge-triggered scan 
design (LSSD, ETSD). 

 9 Shifting is controlled by an additional clock, or the 
system clock for the non-scannable flipflops can be 
blocked. 
The extensions to multiple clocks are omitted in 

order to simplify the notations. More complex storage 
elements (e.g., T-, RS-, and JK-flipflops) can be used, 
if these components are modeled by D-flipflops and 
some combinational logic. 

We model sequential circuits by a directed graph, 
called data-flow graph, where the vertexes or nodes cor- 
respond to primary inputs, primary outputs, and to the 
outputs of the gates and flipflops. There is a directed 
edge between node v and w, if v is input of a component 
with output w. For the example circuit of figure 1 the 
corresponding data-flow graph is given in figure 2. 
Here the data-flow graph G = (V, E) consists of the 
nodes V:=  {E/ . . . .  , E5, K1, . . . ,  K8, Kll, K12, P01, 
P02, P03} and the corresponding edges. 

In the next section, it is shown that the topology of 
the storage elements in particular determines the test 
length. This topology is described by the so-called 
S(torage element)-graph. Figure 3 shows the S-graph 
corresponding to the data-flow graph of figure 2. 

The nodes V of the S-graph Gs := (V, E) are the 
terminals and the outputs of flipflops. There is an edge 
(v, w) E E in the S-graph, if there is a path from node 
v to node w in the data-flow graph, which does not con- 
tain any storage element. 

The presented approach is valid for a very general 
fault model, including the classical stuck-at fault model, 
combinational faults, and most of the bridging faults. 

E1 
E2 

Fig. 1. Example circuit. 

PO1 

PO2 

~ PO3 
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| 

Fig. 2. Data-flow graph. 

Fig. 3. S-graph. 

The only restrictions are, that no sequential behavior Observat ion  1. I f  the S-graph of a sequential circuit 
is induced for instance by stuck-open faults, and that contains cycles, the initialization sequence of some 
the topology of the S-graph is not altered by shorts, states can increase exponentially with the number of 

flipflops. 

3. The S-Graph and Test Lengths 

By the definition of our fault model, the correct circuit 
and all faulty circuits are mapped onto the same S-graph. 
Since all faulty changes of  the functions of the combina- 
tional components are admissible, we have to impose 
some restrictions on the topology of the S-graph, in 
order to ensure that the test lengths are linearly bounded. 
Due to observation 1 and observation 2 below, a neces- 
sary condition is that the S-graph contains no cycles 
(i.e., feedback loops within the gate-level netlist). 

A simple example of this observation is a linear feed- 
back shift register (LFSR) of length n, which might 
have an initialization sequence of length 2 n - 1. But 
even a single cycle can lead to a drastic increase in test 
size: 

Observation 2. There are S-graphs containing a single 
cycle, where the initialization sequence of some states 
increases quadratically with the number of flipflops. 

Such a circuit is shown in figure 4. 
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Acyclic Shift Register 
of length n (SR 1) 

- 

Cyclic Shift Register 
of length n (SR 

I 

Fig. 4. Sequential circuit with a single cycle. 

? 
Fig. 5. S-graph of the circuit of Fig. 4. 

In order to fill the register SR2 completely by "1," 
O(n 2) clocks are required. As illustrated by figure 5, 
the S-graph contains exactly one cycle only. The actual 
length of the transition sequence is determined by the 
data-flow graph, and there are circuits with short test 
sequences, though the S-graph contains some cycles. 
But since the data-flow graph is affected by each fault, 
we have to assume the worst-case, and we demand that 
the S-graph of a sequential circuit is cycle-free. This 
condition requires that almost all the flipflops of coun- 
ters or control parts must be integrated into a partial 
scan path. This drawback is not too severe, if these flip- 
flops are only a small subset of a total set of flipflops, 
as we will demonstrate by the analyzed benchmark cir- 
cuits. On the other hand, it is well known, for exam- 
ple, that large counters are hard to test and they should 
be directly accessible anyway. 

Adding a storage element to an incomplete scan path 
corresponds to the removal of a node from the S-graph 
as described in definition 4.1 below. In the next section, 
we discuss how to determine and to remove a minimal 
set of nodes in order to get an S-graph without cycles. 

In section 5, it is shown that these conditions are 
not only necessary, but also sufficient, to test a sequen- 
tial circuit with test pattern sequences of linear bounded 
length. 

4. The Selection of Scan Elements 

In order to describe the algorithms selecting scan 
elements, some graph theoretic notations are necessary. 
Let G :=  (V, E) be a finite, directed graph with nodes 
V and edges E C V z. We use the following notations. 

A sequence el . . . .  , eq of nodes (vertexes) is a 
path, if (ei, ei+l) E E for i = 1 . . . .  q - 1. The length 
g(~0) of a path o~ is the number of directed edges. An 
elementary path is a path where each node occurs only 
once; and a cycle is path where the first node and the 
last node are identical. An elementary cycle is a cycle, 
where no node occurs twice, with the exception of the 
first and last node. 

Let G = (V, E) be a graph, and v E V a  node. p(v, G) 
C V is the set of  all predecessors of v in G, s(v, G) 
C V is the set of all successors, pd(v, G) is the set of 
all direct predecessors, and sd(v, G) is the set of all 
direct successors of v in G. A node v of the graph G 
is initial (final), ifp(v, G) = q~ (s(v, G) = th). By this 
definition, all initial nodes correspond to primary 
inputs. 

Definition 4.1. Let G = (V, E) be an S-graph of a se- 
quential circuit. A cut of a node v E V is a map of G 
into a new graph G '  = (V', E') where 
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V' = {Pi} U {Po} U ~ {v}, with new Pi ;~ Po r V 
E '  = {(pi, w) ] w ~ sd(F, G)} U 

{(w, po) I w pd(v, G)} U 
E \ { ( x , y )  I x =  v V y  = v} 

If two nodes are cut, then the resulting graph G'  
is independent of the order in which the cuts are per- 
formed. Thus for each W C V, we can cut all nodes 
of W, and we denote the resulting graph by Gw = (Vw, 
Ew). 

The problem of selecting a minimal number of scan 
elements can now be stated as follows: 

(AC): For an S-graph G = (V, E), find a 
set W C V of minimal cardinality 
such that Gw = (Vw, Eve) is acyclic. 

(AC) is an NP-complete problem, sometimes called 
Feedback Node Problem [20]. For this reason, besides 
the exact algorithms some heuristics are necessary in 
order to obtain at least good, suboptimal solutions. Let 
Za be the set of all elementary cycles of G. For each 
cycle z ~ ZG, we define n(z) := {v ~ V I v E z} the 
set of all nodes of z. Now we can divide the scan selec- 
tion problem into two subproblems (see figure 6): 

i) For the S-graph G = (V, E), determine the set of 
all elementary cycles Zc. 

ii) Set H = U n(z). 
z~Zo 

Find a set W C H of minimal cardinality, such that 
u ~ ZG: w n n(z) # O. 

Both subproblems are standard-problems of graph- 
theory, and there are well-known solutions. For example, 
algorithms to solve subproblem (i) are presented in [8, 
32, 33, 36]. In the presented approach, an algorithm 
has been implemented based on [19]. In the worst case, 
the cardinality [ZG[ may increase exponentially in the 

size of E Also subproblem (ii) has a very high complex- 
ity, since it is a formulation of the Hitting Set Problem, 
which is also known to be NP-complete [12, 20]. 

The implemented algorithms are based on methods 
described in [7], but in combination with subproblem 
(ii) additional heuristics are used. These heuristics are 
divide-and-conquer methods, where the problem size 
is bounded by a constant C ~ IN. 

This procedure can also be used for probabilistic 
optimization, since the elementary cycles are selected 
randomly. Even a single pass provides good results; and 
for the results reported in section 7, this procedure has 
been called only once. 

In the next section we show that for circuits repre- 
sented by an acyclic S-graph test patterns can be gener- 
ated very efficiently. 

5. Test Pattern Generation 

For general synchronous circuits, Roth introduced the 
notation of time-frames [29]. For each lime step, a copy 
of the combinational part of the circuit is generated, 
and the number of time steps corresponds to the length 
of the test sequence (figure 7). 

It is known that for circuits described by an acyclic 
S-graph the necessary number of firne-frames is bounded 
by the number of storage elements [10]. In this section 
it is shown that only a small part of the combinational 
circuit must be copied at each time step. This results 
in a rather small combinational representation of the 
sequential circuit. It should be noted, that only a linear 
number of time-frames is needed in order to identify 
all redundancies. This includes combinational redun- 
dancies and redundancies due to unreachable states. 
Finally, the test pattern generation algorithm for this 

PROCEDURE scan__selection; 
SET W:=0, Gw=(V,E); 
REPEAT 

select a set of elementary cycles Z of G w at random with Izol-<c; 
SET H := U n(z); 

zEZ G 
Solve the hitting problem for H, i.e. find minimal W*CH such that 
vz~Z: W* n n(z) ~ 0. 
SET W: =W U W*; 

UNTIL Gw is acyelic 
END scan__selection; 

Fig. 6, Selection of scan-elements. 
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Fig. 7. Time frames. 

combinational representation is sketched, and the trans- 
formation of the combinational test patterns into se- 
quences is discussed. 

5.1. Test Lengths for Acylic S-Graphs 

In order to describe our solutions exactly, some more 
graph-theoretical definitions are required: 

Definition 5.1. Let G = (V, E) be an acyclic graph, 
let v fi V be a node. The value rf(v) :=  max {g(o~) ] 
~0 is a path in G with final point v} is called forward- 
rank, and rb(v) :=  max {e(~0) [ w is a path in G with 
initial point v} is called backward-rank. 

nodes that are connected with a primary output via a 
path of combinational elements. The time-frames are 
ordered by V t-1 = {v ] v E pd (w), w ~ Vt}. 

Obviously the nodes of V t have defined values, if 
the nodes of V t-1 have defined values. Hence we can 
use this notations for state-back-tracing, and if we find 
a time-frame V s, s < t, containing only initial nodes, 
then an upper bound (t - s) of a test sequence is derived. 

A test sequence of a sequential circuit must drive 
the faulty and the fault-free circuit into a state s or sy, 
where the responses to the same pattern are different. 
Hence the maximal test length is given by the maximal 
required state transition sequence. In a formal way, we 
can state the following theorem, which was also ob- 
served in [10, 18]: 

Definition 5.2. Let G = (V, E) be an acyclic graph. 
The rank of G is defined by 

rank(G) '= max {rf(v)} = max {rb(v)}. 
vEV vEV 

T h e o r e m  5.3. Let G = (V, E) be an acyclic S-graph 
with rank(G) = r. For each flipflop v, there is an initial- 
izing sequence of at most length r, if there is such a 
sequence at all. 

Let G = (V, E) be an acyclic S-graph with rank(G) 
-= r. A time-frame at time t is a subset of nodes V t 
C V. V r contains all the primary outputs and all the 

Proof. Let rb(v) = k < r, and start with V r = {v}. 
The theorem is proved if V ~ = 0 or V ~ contains initial 
nodes only. Set 
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m(i) :=  max {rf(u)},  i = O, . . . ,  r. 
ue~ 

By definition 5.1 we have re(i) = m(i - 1) + 1, if V i 
contains storage nodes. Since m(r) < r we have m(0) 
= 0. Q.E.D. 

In order to get a test sequence, we have not only 
to set a single flipflop, but we have to assign an entire 
state. This is possible by the following corollary: 

Corollary 5.4. Let G = (V, E) be an acyclic S-graph 
with rank(G) = r. Each admissible state can be reached 
within r steps. 

Proof .  Let S 1 . . , S  k be the flipflops of the circuit, let 
f (S1 . . . .  , Sk) be a boolean function, which is true, if 
and only if the desired state is reached. Let Sk+l be a 
new flipflop, and add circuitry such that Sk+l = f(S~, 
. . . .  Sk). Then the new S-graph has rank r + 1, and 
S~+1 can be set within r + 1 steps by theorem 5.3. 
Thus the desired state can be reached within r steps. 

Q.E.D. 

Up to now we have proved that the test lengths are 
linearly bounded. Now we will describe how to derive 
the test sequences. 

5. 2. Equivalent Combinational Circuits 

For a sequential circuit C with an acyclic S-graph G : = 
(V, E), we are generating an equivalent combinational 
circuit C of size O(r(G)" I c[) ,  such that a test pattern 
of C corresponds to a test sequence of C. Moreover, 

should be minimized. For this reason we extend our 
notion of time-frames to data-flow graphs. 

Let Gs :=  (Vs, Es) be an acyclic S-graph, and 
Go :=  (Vo, Eo) be its data flow graph. 

Let V i be a t ime-frame of the S-graph. In the data- 
flow graph, Qi is defined by 

~ ' i : :  V i [.) {1: (: S(W, Go) [ w ~ V i 

and there is a combinational path from w to v}. 

I f  one node occurs in several time-frames, it must 
be copied sufficiently often. Moreover the flipflops are 
modeled as pseudo-boolean functions in the well-known 
way. 

The equivalent combinational circuit C is repre- 
sented by the graph Gc "= (Vc, Ec) where 

V c : =  [,.J {(v, i) [ v E i7,i} 
O<i<_r 

and 

k2 

el e2 e3 

r i 

k4 

k5 

Fig. 8. Sequential circuit and data-flow graph. 

Ec := {((v, i), (w, j ) )  [ (v, w) 6ED 
A (i = j -- 1 A w is a flipflop))}. 

Instead of the formal description of this straightfor- 
ward method, an example is given. Figure 8 shows a 
sequential circuit and its data flow graph. The marked 
nodes of the data-flow graph correspond to flipflops. 
We have the following time-frames: 

V 2 = {a, k5}, 
V 1 = {k4, k3, k l ,  e3, el} and 
V ~ = {k2, k l ,  e l ,  e2}. 

The resulting equivalent combinational network is 
shown in figure 9. Test patterns, generated for the com- 
binational representation with 4 inputs, have to be trans- 
formed to pattern sequences of  length 2 as represented 
in table 1. 

5.3. Test Pattern Generation 

A target fault may affect a gate, which is represented 
in multiple time-frames. In this case the fault is copied, 
and test generation must be done for a combinational 
network with multiple faults. 

For this purpose the algorithm SPROUT-9V (Signal 
Probability Using Test Pattern Generator, 9-valued 
logic) has been implemented. The tool is described in 
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el /1  el /O e2/O 

kl /O 

1 1  . 

a/2 

e3fl  

n/t : node / 
t ime step 

Fig. 9. Equivalent  combinat ional  network.  

Table 1. Test pat tern  t ransformation.  

Test pat tern 
Test pat tern  sequences  

e l /1  e l / 0  e2/0 e3/1 e l  e2 e3 

1 0 1 1 ~ 0 1 - -  
1 - -  1 

0 1 0 0 = 1 0 - -  
0 - -  0 

detail in [22], and we are only sketching its main fea- 
tures. It is based on the nine-valued algebra proposed 
in [28], in order to guarantee the generation of test pat- 
terns for any detectable fault, if the computing time is 
not limited. The algorithm is an enumeration algorithm 
controlled by estimations of signal probabilities derived 
by PROTEST [37, 38]. Additional heuristics accelerate 
the TPG in a similar way as used in FAN [11] or 
SOCRATES [30, 31]. 

6. Test Application Time 

The test application time is determined by both the 
length of the scan path and the number of pattern se- 
quences. The shifting time is shortened by using a partial 

scan path, and it turns out that the number of patterns 
does not increase as fast as the number of scan elements 
decreases. Thus the overall test application time is 
reduced. 

In many cases it is possible to develop an overlay 
scheme for the test sequences. That is, new patterns 
can be applied at a time when parts of the circuit are 
still dealing with former sequences. Most widely this 
pattern compaction can be used for pipeline structures. 
Here, after a certain start-up time, an overlay technique 
can be used and at each time step a new pattern can 
be applied. Figure 10 shows the S-graph for pipeline 
circuits. 

Fig. 10. S-graph for  a pipeline structure.  
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o -  o 

Fig. 11. Equidistant graphs. 

A complete overlay of test patterns is also obtainable 
for more general structures than pipeline circuits. An 
acyclic S-graph G = (V, E) is called equidistant, if for 
two arbitrary nodes u, v ~ V, all paths with initial point 
u and final point v have the same length. Figure 11 
shows two examples. 

Definition 6.1. Let G = (V, E) be an acyclic graph. 
An asymmetric reconvergency between u, v ~ V is a 
set of nodes R C V, such that 

i) there are pathspl, andp2 from u to v with e(pl) ;e 
e(p2). 

ii) pl f3 p2 = {u, v}. 
iii) R = (p~ U p2)\  {u, v}. 

An acyclic graph is equidistant if there are no asym- 
metric reconvergencies. It can be generated by adding 
a few more elements to the partial scan path. 

An asymmetric reconvergency R is solved if at least 
one node of R is removed by adding the corresponding 
storage element to the scan path. Searching a minimal 
set solving all asymmetric reconvergencies is an NP- 
complete problem (see also [24]). Thus we are using 
heuristics, and we have to solve the same subproblems 
as presented in section 3: 

i) Create all asymmetric reconvergencies R c. 
ii) Set K := I,.) R. 

RER G 

Find a set W C K of minimal cardinality, such that 
YR ~ R~: W N  R # 0. 

Of course, the shorter test lengths for equidistant S- 
graphs are at the expense of somewhat longer scan paths. 

plete Scan Path Integration). Figure 12 summarizes the 
architecture of this system. 

The approach can also be extended to a test by 
weighted random patterns (WRP). For a design with 
a complete scan path, the application of weighted ran- 
dom patterns has been discussed in [25]. A partial 
scan path requires the computation of time-dependent 
weights as discussed in [39]. 

Several sequential circuits have been analyzed by 
INSPIRATION as described in [24]. Here, we discuss 
three examples. The first one is the operation unit of 
the signal processor (SP) proposed in [5]. The second 
example is a multiplier (MU) presented in [16], and we 
discuss a processor to accelerate PROLOG-programs 
(PP) [17]. Table 2 shows the relevant data of the exam- 
ple circuits including the transistor count. 

Table 2. Circuit characteristics. 

Inputs Outpu t s  Gates Flipflops Transistors 

SP 83 55 1,675 239 21,776 
MU 43 26 993 183 14,652 
PP 36 73 1,428 136 17,242 

Both discussed test strategies have been investigated: 
If the main objective is to reduce the hardware over- 
head, one has to generate acyclic S-graphs, and if the 
objective is to reduce test lengths, one has to generate 
acyclic equidistant S-graphs. Table 3 gives the percent- 
age of flipflops which has to be integrated into a scan- 
path in order to generate a complete scan path (CS), 
equidistant S-graphs (EQ), and acyclic S-graphs (AC). 

Table 3. Percentage of scan path elements. 

AC EQ CS 

SP 17.2% 38.5% 100% 
MU 39.3% 39.3% 100% 
PP 20.6% 44.1% 100% 

7. Results and Applications 

The presented algorithms are implemented and inte- 
grated into a tool system called INSPIRATION (Incom- 
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Fig. 12. Test system INSPIRATION. 

For the general partial scan approach, only 17.2% 
and 20.6 % of the flipflops must have the scan path capa- 
bility. The multiplier (MU) has a structure, where gen- 
erating an acyclic S-graph automatically provides an 
equidistant S-graph, too. The execution time for the 
sample circuits to determine the scan flipflops has 
always been less than 100 seconds (SUN 3/50). 

It has already been mentioned that the test pattern 
generator must take advantage of the different scan tech- 

niques like acyclic or equidistant S-graphs. General pur- 
pose ATPG programs are not able to do so, as proved 
by table 4. The different circuit structures have been 
given to the program LASAR2000 [26], where the scan 
elements have been modeled as pseudo-primary inputs 
and outputs. Fault coverages obtained after 3600 
seconds computing time are listed in table 3. 

For the combinational parts of the circuits, the new 
test generator SPROUT-9V succeeded in identifying all 
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Table 4. Fault coverage by LASAR after 3600 seconds. 

AC EQ CS Unmodified circuit 

SP 13.2% 27.9% 80.7% 8.7% 
MU 4 0 . 9 %  40.9% 98.9% 9.8% 
PP 47.9% 63.2% 93.0% 11.2% 

redundancies. The number and percentage of redundant 
faults are listed in table 5. These faults have been removed 
from the fault list. By the presented approach, it is also 
possible to identify sequentially redundant faults requir- 
ing unreachable states. Different sets of states can be 
reached by an (AC)- and an (EQ)-design, and both sets 
contain the states reached during system operation. 
Table 6 gives the overall number of redundancies. 

Table 5. Number and percentage of combinationally redundant faults. 

Number of combinationally 
redundant faults Percentage 

SP 4 0.1% 
MU 0 0% 
PP 188 7% 

Table 6 Total number of redundancies. 

Total number of 
redundancies Percentage 

AC EQ CS AC EQ CS 

sP 4 4 4 0.1% 0.1% 0.1% 

MU 10 10 0 0.4% 0.4% 0.0% 
PP 692 512 188 25.6% 18.4% 7.0% 

For the remaining faults, test patterns have been gen- 
erated. The fault coverage with respect to all detectable 
faults and the necessary computing time are given in 
table 7. The time is measured on a workstation SUN 
3/50. 

Table Z Fault coverage and computing time for different scan tech- 
niques by SPROUT-9V. 

AC EQ CS 

Coverage T ime  Coverage T ime  Coverage Time 

SP 99.8% 1,099 sec 99.8% 1,411 sec 100% 238 sec 
MU 100.0% 176 sec 100.0% 176 sec 100% 58 sec 
PP 100.0% 1,101 sec 100.0% 1,060 sec 100% 513 sec 

The rank of  the S-graphs is in the range between 
6 to 8. Compared with the size of the combinational 

part of the sequential circuits, the size of the combina- 
tional representations of the modified sample circuits 
grows in worst case only by 15 %. 

Up to now, the examples show that complete fault 
coverage is obtainable by scan paths containing only 
20%-45 % of  all flipflops. Table 8 indicates the neces- 
sary test application times. We distinguish the number 
of shifting clocks (SH) and the number of system clocks 
(SY) for the different designs. 

Table 8. Shifting clocks (SH) and system clocks (SY) for a complete 
test. 

AC EQ CS 

SH SY SH SY SH SY 

sP 14,555 354 5,152 55 17,208 71 
MU 6,696 92 6,696 92 16,653 90 
PP 33,124 1182 12,660 210 38,760 284 

The test lengths for equidistant S-graphs (EQ) are 
only a third of the test lengths for the more general 
acyclic graph (AC). On the other hand an acyclic graph 
needs only a half  of the scan elements. This trade-off 
must be solved by the designer. Surprisingly, for all 
circuits the largest test time is needed using a complete 
scan path. 

C o n c l u s i o n s  

An efficient method has been proposed to select a 
minimal set of flipflops, which must be integrated into 
a scan path in order to guarantee testability. For the 
modified circuits, an ATPG-algori thm has been devel- 
oped, providing complete fault coverage with respect 
to all irredundant faults. The proposed design and test 
method leads to lower hardware overhead and to shorter 
test times, thus reducing the overall test costs. 
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