Optimized Synthesis of Self-Testable Finite State Machines

Bernhard Eschermann, Hans-Joachim Wunderlich

Universitit Karlsruhe, Institut fiir Rechnerentwurf und Fehlertoleranz
Zirkel 2, 7500 Karlsruhe, F.R. Germany

ABSTRACT

In this paper a synthesis procedure for self-testable finite
state machines is presented. Testability is already considered
while transforming the behavioral description of the circuit into
a structural description. To this end a novel state encoding al-
gorithm as well as a modified self-test architecture are devel-
oped. Experimental results show that this approach leads to a
significant reduction of hardware overhead.

Keywords: VLSI design validation, synthesis for testability,
sequential circuits, built-in self-test.

1 INTRODUCTION

1.1 Motivation

Scan design methods and designs based on self-test regis-
ters, e.g. BILBO's, are used to alleviate the problem of testing
sequential circuits. Both approaches have in common that sup-
plementary hardware only used for testing purposes is added
after the functional design of the circuit is finished. It is tried to
keep the hardware overhead low by integrating the additional
components within the original circuit as much as possible.

The overhead can be reduced further, if testability is consid-
ered during the functional design of the circuit ("synthesis for
testability”). The advamages of this approach are twofold:
Firstly, the test hardware, which has to be implemented any-
way, can be utilized in system mode instead of being superflu-
ous after the test is finished, thus reducing the amount of logic
needed to implement the system functionality. Secondly, logic
design decisions can be targeted towards obtaining circuits,
which are easily testable "by construction”. Several approaches
to synthesis for testability have already been investigated and
are reviewed in the sequel.

CH 2877-9/90/0000/0390/$01.00 - 1890 IEEE

390

1.2 State of the Art

A finite state machine (FSM) can be tested functionally by a
sequence of test patterns, which validates the existence of all
the states and the correctness of all the state transitions. Such a
checking experiment [Henn 64] can be simplified by adding
extra inputs, outputs and/or state transitions to the FSM (e.g.
[FuKi 74], [Prad 83], [HaMc 84], [SaDa 86], [WaMM 87]).
Devadas et al. proposed a special state assignment strategy
[DMNS 88a], that allows to reduce the test length by replacing
the exhaustive checking with deterministic test patterns using a
single stuck-at fault model. Later on the same authors pub-
lished an approach for designing sequentially irredundant
FSMs, which can also be tested for all single stuck-at faults
[DMNS 90]. Cheng and Agrawal were able to reduce the num-
ber of flipflops in a partial scan path by using a special state
assignment algorithm [ChAg 89].

On-line checking of FSMs can be done by verifying the state
code sequence with a parallel signature register. Leveugle and
Saucier [LeSa 89] simplified this process by encoding the
states in such a way, that the signature only depends on the
state reached by the FSM and not on the exact transition se-
quence, with which the state was reached. Chuang and Gupta
[ChGu 89] suggested to use a parallel self-test strategy for se-
quential circuits, in which the signatures collected in a multiple-
input linear feedback shift register are also used as test patterns.
The problem that certain states are not reachable in self-test
mode is avoided by assigning the state codes in a clever way.

This paper focuses on the synthesis of self-testable FSM’s.
In the following subsections we first present our target archi-
tecture, and illustrate its merits with a small example. The de-
scription of an FSM state assignment algorithm in section 2,
which makes optimal use of the self-test hardware, forms the
core of this paper. Self-testing circuits generally employ linear
feedback shift registers for pattern generation. The impact of
choosing a particular feedback polynomial on the state encod-
ing is discussed. Testing the modified self-test structure is
similar to testing the modified scan path structure in
[EsWu 90] and therefore not elaborated in this paper.

1.3 Target Architecture

A circuit is made self-testable by adding a source of test pat-
terns and a response analyzer to the circuit. One approach is to
use a built-in logic block observer (BILBO) [KSMZ 79]. The
system flipflops are redesigned, so that they can function as a
linear feedback shift register (LFSR), which is able to both
generate test patterns and to compact test responses into a sig-
nature. The mode of the BILBO is determined by external con-
trol signals. While LFSR ’s generating pseudo-random patterns
are widely used as pattern generators, many circuits are not
amenable to random tests due to faults with low detection prob-
abilities. By using pattern generators with optimized signal
probabilities (e.g. GURT s [Wund 87]), higher fault coverages
can be obtained with reasonable test lengths.

Fig. 1 shows three possible self-test architectures!. In archi-
tecture a) [Benn 84], [WaMc 87] the system flipflops can be
configured as autonomous LFSR, which generates test patterns
for the combinational logic (PG: pattern generator). The re-
sponses are compacted in a separate multiple-input LFSR
(MISR). If the signature analyzer is implemented as a BILBO,
it can also be used to generate test patterns for other circuits on
the chip. Architecture b) [Benn 84] is applicab]e, if the logic
can be partitioned into two parts, such that the state signals
generated by one part are only used as inputs in the other part.
In a first test session BILBO 1 is employed as pattern genera-
tor, BILBO 2 as signature analyzer, in a second session the
functions are interchanged. Unfortunately, for FSM’s such a
partitioning is rarely possible. Architecture ¢) [BaMc 82],
[BeMa 84] saves a separate pattern generator, it uses the out-
puts of the signature analyzer as test patterns instead. The
drawback is that the characteristics of these test patterns may be
undesirable [ChGu 89]. In the sequel we will restrict ourselves
to architecture a), since it is the only one usable for arbitrary
circuits and able to guarantee a high fault coverage.

: —
combi-

national
logic

a) Separate pattern generation and signature registers

! Pauern generation and response analysis for the primary inputs and
outputs are not shown, since they are identical for all the self-test
architectures,

391

. combi-
: national

logic

Y
b) Combinational logic partitioned

combi-
national
logic

Ly

¢) Signature register used to generate test patterns

Fig. 1. Architectures of self-testable sequential circuits

The test pattern generation register PG is characterized by its
ability to cycle through certain states on its own. This property
can also be used in system mode, if the encodings of the pre-
sent and the next state are consecutive elements in this cycle. If
the next state code is produced by the PG register, which has to
be implemented for testing purposes anyway, it is not neces-
sary to generate it in the next state logic. Replacing the next
state entries with don 't cares for all such transitions, greatly in-
creascs the potential for logic optimization of the combinational
logic. Fig. 2 illustrates a possible realization of this idea. An
additional output signal L/S determines, whether the state ma-
chine flipflops behave like ordinary D-flipflops or function in
pattern generation mode. In this mode the state register gener-
ates the next state on its own, the next state signals asserted by
the combinational logic can be set to arbitrary values.

combi-
national
logic

Fig. 2. Modified self-test architecture

The main problem is to find a state assignment reducing the
combinational logic of this modified self-test structure.
Conventional state assignment algorithms are certainly not opti-
mal, because the pattern generation capability of the state mem-
ory cannot be taken into account until after the state assign-
ment. On the other hand it is not necessarily advantageous to
maximize the number of state transitions generated by the PG
register, since it may be impossible to further minimize the

combinational network for the remaining state transitions. Both
aspects, minimization by replacing next state entries with dont
cares and minimization by conventional logic optimization al-
gorithms have to be regarded concurrently during state assign-
ment.

1.4 Illustrative Example

A variety of state assignment algorithms has been proposed
to minimize the area of the combinational logic needed 1o im-
plement an FSM. An extensive survey can be found in
[Esch 90]. Most of the newer algorithms for two-level
combinational logic follow a strategy proposed by DeMicheli et
al. [DeMi 86]: First, logic minimization is applied to a
symbolic representation of the FSM. The effect of this
symbolic minimization? is to group together the states that are
mapped by some input into the same next state and output. If
these groups of states are encoded in a minimal subspace of
Boolean r-space (r: encoding length), the number of product
terms of a two-level implementation is reduced. It is the task of
the subsequent encoding step to satisfy these coding
constrainis.

To illustrate this process, the FSM of Fig. 3a is used. If
each symbolic state is replaced by a binary code word, in
which each state is represented by one bit position (Fig. 3b),
and this binary representation is minimized with a standard
minimization algorithm, the result in Fig. 3c is obtained. This
minimized symbolic cover contains the coding constraints that
have to be satisfied later on.

state inp| n.state out. s i|ns ofl]s i|lms o
A 00] A 1 100 00] 100 1|{101 00}j100 1
01] B 0 100 01010 OJf111 1-{010 1
1-| B 1 100 1-|010 1||100 01j010 O
B 00| A 0 010 00| 100 0|{010 00j100 O
01l C 0 010 01| 001 0||010 01j001 O
1-| B 1 010 1-]010 1/{001 01f100 O
C 00 A 1 001 00| 100 1
01} A 0 001 01| 100 O
1-] B 1 001 1-{010 1
Fig. 3.

a) FSM description b) symbol. descr. c) coding constraints

The first symbolic implicant in Fig. 3c contains the follow-
ing information: If states A and C are given adjacent codes
(Hamming distance equal to 1), the binary implicants can be
merged in the same way as their symbolic counterparts are. The

2 To simplify the presentation, in this paper actually only "disjoint
minimization” [DeMi 86] is used.

92

constraint in line 2 is trivially satisfied by any encoding. With
the state assignment of Fig. 4a, the two-level logic of Fig. 4b is
obtained. The example illustrates that conventional state as-
signment methods only use those implicants of the minimized
symbolic cover, in which groups of present state symbols ap-
pear.

sae A: 01 s ijns o
state B: 10 -1 00} 01 1
state C: 11 == 1-1 10 1
01 01| 10 O
10 00| 01 O
1001 11 0
11 01} 01 O
Fig. 4. a) state assignment b) PLA personalization

With the self-test architecture of Fig. 2, the next state need
not necessarily be produced by the combinational logic of the
FSM. The self-test hardware can be utilized to take over this
function if the next state code of the FSM is equal to the next
pattern generated by the PG register. For the state encoding of
Fig. 4a and the LFSR feedback polynomial 14+x+x2, the PG
register built from this LFSR is able to generate the state transi-
tions A — B, B — C, and C — A. The symbolic implicants
in line 3, 5 and 6 of Fig. 3c, not usable for minimization in
conventional state assignment algorithms, can now be com-
pletely saved, if the signal L/S = 0 (cf. Fig. 2) makes the LFSR
operate in pattern generation mode, and L/S = 1 makes it load
the next state signals from the combinational logic. The result is
shown in Fig. 5.

s i | ns o LS s i |ns oL/
101 00) 100 1 1 -1 0001 1 1
111 1- 1010 1 1 --1-110 1 1
100 01] --- 0 O 10 00101 O 1
010 00| 100 O 1
010 01 |--- 0 0
001 01]--- 0 O

=2

Fig. 5. a) min. sym

. description b) PLA personalization

b

i, —>
P

Fig. 5. c) Resulting circuit structure

2 SOLUTION OF THE STATE ASSIGNMENT
PROBLEM

Our approach to state encoding is based on an analytical
formulation of the state assignment problem. The main advan-
tage of this approach is that a global optimization is performed.
The heuristic algorithms usually employed for satisfying the
coding constraints all use some kind of a greedy ordering,
which is likely to lead to a good solution in most cases, but
sometimes also fails in achieving this objective. Additionally, it
is very easy to accommodate the additional PG register con-
straints in the analytic formulation. Beforehand, some matrices
have to be introduced. Let s be the number of states of the
FSM, and r the number of bits used for the encoding of these
states.

Definition 1: The adjacency matrix A of a minimized sym-
bolic cover is an s x s matrix of non-negative integer entrics
a;- For izk the value aj, corresponds to the number of lines, in
which state i and k both occur in a coding constraint; the diago-
nal entries a;; are set to 0.

Definirion 2: The distance matrix D is a 2F x 2F matrix with
non-negative integer entries djj, where dj; is equal to the
Hamming distance of codes j and 1 minus 1 for j # 1 and
djj = 0.

Similar adjacency and Hamming distance values have al-
ready been used in many state assignment algorithms (see
[Arms 62] for one of the first references). To describe the ef-
fect of the PG register, two other matrices become necessary.

Definition 3: The successor matrix S of a minimized sym-
bolic cover is an s x s matrix of non-negative integer entries
sik» where s;; is the number of symbolic implicants with an
isolated present state i and next state k.

Definition 4: The cycle matrix C of an r-bit pattern generator
is a 2F x 2f matrix with entries ¢; & (0,1}, where ¢;; =0, if
code | is the successor of code j in the sequence generated by
the pattern generator, and cj = 1 otherwise.

Matrix A collects the information about pairs of states from
the minimized symbolic cover, matrix S deals with the succes-
sor relationships obtainable from the symbolic implicants not
specifying any state groups. Matrices D and C contain the in-

393

formation about pairs of codes necessary for the encoding pro-
cess? .

For the example of section 1.4 and the minimized symbolic
cover in Fig. 3c, the matrices in Fig. 6 are obtained. In matri-
ces A and S the first row/column corresponds to state "A", the
second to state "B" and the third to state "C". The order of en-
tries in matrices D and C corresponds to the codes 00, 01, 10
and 11 in that sequence. For matrix C, again the LFSR with a
feedback polynomial 1+x+x2 was used. Note that A and D are
symmetric matrices, whereas S and C are not.

o1ay 880
A=|101 D=

0100

33 L1000,

TN
s=|101 Cc=

.8 0 1110

(101 1]

Fig. 6. Example matrices A, S, D and C

To formulate the state assignment problem analytically, a
cost function is needed that captures all the necessary ingredi-
ents of a good assignment. In a good assignment, all the states
appearing together in many symbolic implicants are assigned to
codes with small Hamming distances, preferably to adjacent
codes. Let X be an assignment matrix with Boolean entries xj;
€ (0.1), x;; =1 if code j is assigned to state i and 0 other-
wise. Then a partial cost of

o (k) =3 agedyyxijxu
is incurred (cf. Fig. 7) by the assignment of a pair of non-adja-
cent codes j and 1 (dy= dj; > 0) to states appearing together
in symbolic implicants (aj = ay; > 0). The factor 3 takes the
symmetry of matrices A and D into account.
codes

states

Fig. 7. Non-adjacency cost a (i,jk,1)

3 Two more matrices are necessary, if "covering relations” from a true
symbolic minimization are (o be considered.

If wransitions not minimizable with the help of adjacency
constraints (s, > 0) cannot be realized with the help of the PG
register (cjy = 1) by assigning code j to state i (x;; = 1) and code
1 1o state k (xyy = 1), this corresponds to a cost of
Tk = sig € X5 Xy
(cf. Fig. 8).
states

(L=

codes

(e

Fig. 8. Non-PG transition cost T (i,j.k,1)

The problem of finding an appropriate assignment matrix X,
such that state pairs appearing together in symbolic implicants
are encoded with adjacent codes and that the remaining state
transitions are preferably produced by switching to pattem gen-
eration mode, then can be formulated as a 0-1 integer program:

(M minXx Y (al,jkD+16,5k1)

Liky
= Y (daqd; +8,¢5) xgXy

i)
(2) w.r.t. IZxﬁ <1 Vj
(3) ;xﬁ =1 Vi

(4) xy € {0,1} vi,j

In this formulation the complete cost of the assignment was
obtained by adding the cost of transitions not reducible by logic
minimization to the cost of transitions not realizable by switch-
ing to pattern generation mode and summing these cost values
over all states and codes. Adjacency and successor relation-
ships can also be given different weights by minimizing the
sum of cost values ky @ (i,j.k,1) +ky T (i,j.k,1), with arbitrary
constants kq,k920. The i + j linear constraints (2) and (3) en-
sure that each state is assigned exactly one code and that each
code is assigned to at most one state.

Problem (1) - (4) is a well-known combinatorial optimiza-
tion problem, the quadratic assignment problem [GaNe 72].
Although it was proven to be NP-complete [Galo 79], because
of its relevance for many applications a lot of effort was spent
to develop feasible solution methods (see [Burk 84) for an

394

overview). Exact algorithms using implicit enumeration tech-
niques can cope with problems up to 15-20 states. For larger
problems, we chose to use a heuristic approach similar to
[BuRe 84]. The algorithm does not rely on a heuristic ordering
of coding constraints or codes to be encoded; the cost function
to be minimized always provides a global view on the complete
encoding.

For the example of section 3, the minimal cost obtained with

the assignment in Fig. 4a
0100
X=[0 01 0]
0001

ta.d +s.c)x.x. = 2
i..i.zk.l(a k3 Tk Jl) i

with a cost of 1 for non-adjacencies (the Hamming distance
between the codes for "A" and "B" is 2) and a cost of 1 for
other transitions not realizable with the PG register (B — A).

The proposed state encoding method can be used for multi-
level combinational circuits with only minor modifications. In
[DMNS 88b] a first state assignment algorithm targeted to-
wards multi-level implementations was proposed. It is based
on minimizing a cost function with the same mathematical
structure as the non-adjacency part of the cost function used
above. The only difference is that the values ay are not derived
by symbolic minimization but by estimating the number of
common cubes that can be extracted from the resulting combi-
national network.

is

3 CHOICE OF FEEDBACK POLYNOMIAL

Until now the characteristics of the pattern generator were
only needed to determine the cycle matrix C. Therefore any test
pattern generator describable by such a matrix can be accom-
modated. In practice the choice will be made based on the nec-
essary fault coverage and the hardware overhead involved. In
the sequel we will consider the important case of LFSR s with
primitive feedback polynomials (cf. [Pete 72]).

An LFSR with feedback polynomial p;(x) produces a code
sequence which, when reversed, is equal to the sequence pro-
duced by the reciprocal feedback polynomial p;(x). Hence, the
cycle matrix C;" obtained for p;"(x) is equal to the transposed
cycle matrix C; for p;(x). If the indices of the codes are per-
muted in such a way, that C;” becomes equal to C;, the corre-
sponding permutations in the distance matrix D will reverse all
the lines of D. Accordingly, the state assignments obtained
with different polynomials vary, so do the complexities of the

resulting combinational logic. To obtain the optimal solution
requires finding out, which LFSR structure is best suited to the
FSM under consideration. Choesingthe feedback polynomial
of the LFSR by minimizing the cost function of section 4 over
all C; thus provides an additional degree of freedom.

In order to minimize LFSR area, minimum weight polyno-
mials are often preferred. An interesting fact is that it does not
matter, whether a standard implementation or a modular im-
plementation [McCl 86] of the LFSR is chosen, as long as a
polynomial p(x)=1 + xi +x", 1<i< n, with only one 2-
input XOR-gate in the feedback structure of the LFSR is used.
The reason is that in this case both implementations only differ
in the sequence of flipflops (see Fig. 9), which is irrelevant to
state assignment and logic minimization. Matrix D remains un-
changed, because the permutation of coding columns does not
influence the Hamming distances of codes.

standard implementation

Fig. 9. Standard and modular LFSR with p(x)=1 + xi + x?

4 RESULTS

The complete logic synthesis process for self-testable
FSM’s is summarized in Fig. 10. Starting from a behavioral
description, the coding constraints are generated either by sym-
bolic minimization (for 2-level combinational logic) or with the
approach presented in [DMNS 88b] (for multi-level logic).
They are analyzed and translated into the matrices A, D and S.
The default encoding length is rp = rlogz s 1, but any other
number r > rg can be specified as well. Matrix C is computed
for a first candidate PG register. With these matrices the algo-
rithm for quadratic assignment is started. The resulting cost
function value can be compared for different PG registers. The
PG register with the lowest cost is chosen. Afterwards logic
minimization (either 2-level or multi-level) can be performed
and a layout for the self-testable FSM can be generated.

395

behavioral FSM PG register
description 4 description
/
generation of /
coding constraints /
/ e
/ _iatr
/
/
quadratic assignment
algorithm
l logic minimization l
Boolean equations
to layout

generation v

Fig. 10. Synthesis process for self-testable FSM’s

We performed various experiments by running FSM bench-
mark examples from the MCNC Workshop on Logic Synthesis
[MCNC 88] through a preliminary implementation of the algo-
rithms presented. First, the machines were encoded and opti-
mized disregarding the pattern generation capability of the state
memory. We used the programs NOVA? (2-level logic,
[ViSa 89]) and MUSTANGS (multi-level logic, [DMNS 88b])
from the Octtools distribution of the University of California,
Berkeley [OCT 89] for this purpose. Afterwards, we used our
combined synthesis for testability (SfT) approach.

The combinational logic was optimized using identical logic
minimization procedures for the conventional and the SfT ap-
proach. This is particularly important for comparing multi-level
logic results, since multi-level minimizers are generally interac-
tive and it would be impossible to distinguish between im-
provements due to a modified circuit structure / state assign-
ment on the one hand and a more intensive logic minimization
on the other hand. Some results are summarized in Table 1.
The column "i/o/s" gives the number of input variables, output
variables, and states, respectively. For the two-level implemen-
tations of the combinational logic the number of PLA product
terms, for multi-level logic the number of literals is given. CPU

4 More exactly, the encoding option "ihybrid” was used.

5 Both, the fanin-ariented algorithm and the fanout-oriented algorithm
were run. The best result was taken.

times for the state assignment were in the range of minutes on a
3 MIPS machine.

€ le 2-level (# pt) m-level (# lit)

name i/ofs NOVA | SfT MUST| SfT
— —

scf 27/56/121 146 136 822 | 773
planet 7/19/48 91 83 578 | 569
tbk 6/3/32 149 59 547 | 496
styr 9/10/30 94 93 594 | 543
dk16 2/3/21 59 57 270 | 241
donfile 2/1/24 29 33 160 74
exl 9/19/20 48 44 280 | 253
sl 8/6/20 80 81 351 | 236
sla 8/6/20 76 65 248 | 171
ex2 2/2/19 29 27 149 | 132
kirkman 12/6/16 64 54 176 | 146
bbsse 771/16 30 27 121 | 134
mark1 5/16/15 20 17 108 94
dk512 1/3/15 18 17 70 48
exd 6/9/14 19 16 77 70
modulo12 1/1/12 13 9 35 29

Table 1. Summary of benchmark results

For many examples significant savings are possible,
although, because of output incompatibilities, not all the transi-
tions realized with the PG register can indeed be saved. An ex-
cellent illustration of this effect can be found in Table 1: the
only difference between the examples s/ and s/a is that for sla
all the outputs are "0", so output incompatibilities do not play a
role, in contrast to sJ. The problem is particularly important for
2-level combinational logic; it could be alleviated by separating
the next state logic and the output logic. Sometimes there is a
tradeoff between satisfying adjacency constraints and utilizing
PG transitions. As it is unlikely that there exists a cost function
accurately modeling this effect without requiring exponential
effort (logic minimization is NP-complete [GaJo 79]), it may
happen that utilizing PG transitions actually increases the
amount of hardware needed (cf. donfile and sI). In this case
experimenting with different weighting factors kj and ks in
cost function (1) can help.

5§ CONCLUSIONS

Self-testable circuits can provide a satisfactory solution to
the problem of testing digital systems, if they are realizable
with a reasonable amount of extra hardware. In this paper we
presented an approach to reduce the overhead for self-testable
control units by finding a useful application of the self-test
hardware in system mode. This way the combinational logic

396

for implementing the system functionality can be simplified.
Self-test thus may become more competitive with other design
for testability methods for area-critical applications.

ACKNOWLEDGEMENTS

The help of Prof. Burkard and Dr. Rendl from the Technical
University of Graz (Austria), who provided us with some stan-
dard programs for quadratic assignment, is gratefully acknowl-
edged.

LITERATURE

Aman 87 R. Amann: Algorithmic Design Methods for Combined
PLA/ROM Controllers (in German);, Fortschrittberichte
VDI, nr. 68, 1987.

D. B. Annstrong: A Programmed Algorithm for Assigning
Internal Codes to Sequential Machines; IRE Trans. on
Electronic Computers, vol. EC-11, pp. 466-472, 1962.

P. H. Bardell, W. H. McAnney: Self-Testing of Multichip
Logic Modules; Proc. IEEE Int. Test Conference, pp. 200-
204, 1982

F. P. Beucler, M. J. Manner: HILDO: The Highly
Integrated Logic Device Observer; VLSI Design, pp. 88-96,
June 1984,

R. G. Bennetts: Design of Testable Logic Circuits;
Addison-Weslcy, 1984,

R. E. Burkard, F. Rendl: A Thermodynamically Motivated
Simulated Procedure for Combinatorial Optimization
Problems; European Journal of Operational Research, vol.
17, pp. 169-174, 1984,

R. E. Burkard: Quadratic Assignment Problems; European
Journal of Operational Research, vol. 15, pp. 283-289,
1984,

K.-T. Cheng, Vishwani D. Agrawal: Design of Sequential
Machines for Efficient Test Generation; Dig. Tech. Papers
International Conference on Computer-Aided Design, pp.
358-361, 1989.

C. C. Chuang, A. K. Gupta: The Analysis of Parallel BIST
by the Combined Markov Chain (CMC) Model; Proc. I[EEE
Int. Test Conference, pp. 337-343, 1989,

G. DeMicheli, R. K. Brayton, A. Sangiovanni-Vincentelli:
Optimal State Assignment for Finite State Machines; [EEE
Trans. on Computer-Aided Design, vol. CAD-4, no. 3, pp.
269-285, 1985.

G. DeMicheli: Symbolic Design of Combinational and
Sequential Logic Circuits Implemented by Two-Level Logic
Macros; IEEE Trans. on Computer-Aided Design, vol.
CAD-5, pp. 597-616, 1986.

Arms 62

BaMc 82

BeMa 84

Benn 84

BuRe 84

Burk 84

ChAg 89

ChGu 89

DeBS 85

DeMi 86

DMNS 88a

DMNS 88b

DMNS 90

Esch 90

EsWu 90

FuKi 74

Galo 79

GaNe 72

HaMc 84

Henn 64

KOMZ 79

LeSa 89

McCl 86

MCNC 88

OCT 89

Pete 72

Prad 83

SaDa 86

S. Devadas, H.-K. Ma, A. R. Newton, A. Sangiovanni-
Vincentelli: Synthesis and Optimization Procedures for
Fully and Easily Testable Sequential Machines; Proc. Int
Test Conference, pp. 621-630, 1988.

S. Devadas, H.-K. Ma, A. R. Newton, A. Sangiovanni-
Vincentelli: MUSTANG: State Assignment of Finite State
Machines Targeting Multilevel Logic Implementations;
IEEE Trans. on Computer-Aided Design, vol. CAD-7, pp.
1290-1300, 1988.

S. Devadas, H. T. Ma, A. R, Newton, A. Sangiovanni-
Vincentelli: Irredundant Sequential Machines Via Optimal
Logic Synthesis; IEEE Trans. on Computer-Aided Design,
vol. CAD-9, pp. 8-18, 1990.

B. Eschermann: State Assignment Methods for
Synchronous Sequential Circuits; Progress in Computer
Aided VLSI Design, G. Zobrist (ed.), Ablex, Norwood,
1990,

B. Eschermann, H.-J. Wunderlich: A Synthesis Method to
Reduce Scan Design Overhead; First European Design
Automation Conference, 1990,

H. Fujiwara, K. Kinoshita: Design of Diagnosable
Sequential Machines Utilizing Extra Outputs; IEEE Trans.
on Computers, vol. C-23, pp. 138-145, 1974.

M. Garey, D. Johnson: Computers and Intractability;
Freeman, New York 1979.

R. Garfinkel, G. Nemhauser: Integer Programming; Wiley,
New York, 1972,

S. Hassan, E. McCluskey: Pseudo-Exhaustive Testing of
Sequential Machines Using Signature Analysis; Proc. Int.
Test Conference, pp. 320-326, 1984.

F. C. Hennie: Fault Detecting Experiments for Sequential
Circuits; Proc. 5th Annual Symp. Switching Circuit
Theory and Logical Design, pp. 95-110, 1964.

B. Konemann, J. Mucha, G. Zwichoff: Built-In Logic Block
Observation Techniques; Proc. [EEE Int. Test Conference,
pp. 3741, 1979

R. Leveugle, G. Saucier: Optimized Synthesis of Dedicated
Controllers with Concurrent Checking Capabilities; Proc.
Int. Test Conference, pp. 355-363, 1989,

E. J. McCluskey: Logic Design Principles with Emphasis
on Testable Semicustom Circuits; Prentice-Hall, Englewood
Cliffs, 1986.

R. Lisanke: Logic Synthesis and Optimization Benchmarks,
Version 2.0; Microelectronics Center of North Carolina,
1988.

Ocutools Distribution 3.3, Electronics Research Laboratory,
University of California, Berkeley, 1989.

W. W. Peterson, E. J. Weldon: Error-Correcting Codes;
MIT Press, Cambridge, 1972.

D. K. Pradhan: Sequential Network Design Using Extra
Inputs for Fault Detection; IEEE Trans. on Computers, vol.
C-32, pp. 319-323, 1983.

K. K. Saluja, R. Dandapani: A Built-In Self-Testable
Design Method for Sequential Circuits; Proc. 16th Int.
Symp. Fault Tolerant Computing, pp. 312-317, 1986.

397

ViSa 89

WaMc §7

WaMM 87

Wund 87

T. Villa, A. Sangiovanni-Vincentelli: NOVA: State
Assignment of Finite State Machines for Optimal Two-
Level Logic Implementations; Proc. 26th Design
Automation Conference, pp. 327-332, 1989.

L.-T. Wang, E. J. McCluskey: Built-in Self-Test for
Sequential Machines; Proc. Int. Test Conference, pp. 334-
341, 1987,

L.-T. Wang, E. J. McCluskey, S. Mourad: Shift Register
Testing of Sequential Machines; Proc. 17th Int. Symp.
Fault-Tolerant Computing, pp. 66-71, 1987.

H.-J. Wunderlich: Self-Test Using Unequiprobable Random
Patterns; Proc. 17th Int. Symp. Fault-Tolerant Computing,
pp. 258-263, 1987,

