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Abstract

Selfl test modules based on linear feedback shift regi-
sters (LFSR) like BILBOs perform signature analysis
and generate equiprobable pseudo random patterns,
The selfl test is carried out after the production pro-
cess and also during system operation while the cir-
cuit is idle. But there exist many combinational cir-
cuits, which cannot be tested by equiprobable rundom
patterns due to the unsufficient fault coverage. Re-
cently it has been shown that this problem can be sol-
ved if each primary input is set to logical "1™ with its
special optimal probability.

In this paper we present a module generating unequi-
probable random patterns, which can also perform si-
gnature analysis and work like a normal register simi -
lar to the well known BILBO. The hardware overhead
of this module has the same magnitude as a conventio -
nal BILBO. Thus the class of self testable circuits is
enlarged without additional costs.
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L1_lIntroduction

Reconfigurable and fail safe architectures of reliable computing

systems [providc the detection and identification of faulty compo -

nents. Efficiently this is done by circuits which are testing them -

selves while their function is not needed by the system. The self

test feature is also used to support the production test now rea -

ching more than 60 % /Benn84/ or even 70 % /Will86/ of the
overall chip costs.

Most self test strategies are based on linear feedback shift regi-
sters (LFSR) generating pseudo-random patterns which set each
flip-flop to logical "1" with probability 0.5. During self testing
the system registers are configurated to LFSRs, generate peudo
random patterns and perform signature analysis /McCI85/, thus
testing the combinational part of the circuit. Well known is the
BILBO approach /KOENT79/.

Here we can dispense with the time consuming automatic test pat -
tern generation, and no expensive test equipment is needed. The
test is carried out in high speed, and therefore many technology
dependent dynamic faults can be detected in addition (/Tsai83/,
/WuRo086/). Since a randomly generated test set is larger than a
deterministic one, the detection rate of logical faults not in the
fault model, multiple faults for instance, will be higher.

Let b e [0,1] be the probability to detect all faults f € F of a non -
redundant circuit by N random patterns. The length N can be esti -
mated for each required confidence b, if for all faults the detection
probabilities are known (/WCMB86/, /Wu85/, /BaSa84/). In recent
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papers several algorithms estimating fault detection probabilities
have been presented (/BDS84/, /Wu85/, /Agla84/, /SETHS6/),
the approach of this paper is based on the tool PROTEST.

PROTEST determines fault detection and signal probabilities at
gate level by some analytical procedures described in /Wu85/.

But now it turns out that there are many circuits which cannot be
tested randomly due to faults with very low detection probabili -
ties. Based on the estimations of PROTEST table 1 shows for so -
me circuits the test lengths which are necessary in order to detect
all detectable faults..

Circuit Required test length

¢ S1 5.6*108

. S2 2.0%101!
C432 2.5*103
C499 1.9*103
C880 3.7*104
C1355 2.2*106
C1908 6.2*104

* C2670 1.1*107
C3540 2.3*106
C5315 5.3*104
C6288 1.9%103

. C7552 4.9+1011

Table 1: Necessary test lengths for a conventional random test

(by PROTEST)

The circuits Cn are the well known benchmarks of the ISCAS
1985 test session /BRGLBS/, the circuit S1 is a 24-bit comparator
constructed by six Texas Instruments comparators SN7485
/T180/, where some redundancies are removed, and S2 is the
combinational part of a 32 bit divider /KuWu85/.

In table 1 the marked (*) circuits need an exorbitant size of the
random test set. If we assume a system working at 20 MHz, then
a self test technique applying one pattern within 3 cycles would
need the very large test times listed in table 2.

Circuit Test application time (sec)
S1 84

S2 30 000

C2670 1.7

C7552 73 500

Table 2: Time needed for self test



One cannot assume that components of 2 running system are idle
during those long times, and therefore in many cases this conven -
tional random pattern approach cannot be used to improve reliabi-
lity. Furthermore the production test becomes uneconomical.

But recently it has been shown that the necessary test length can
decrease by several orders of magnitude if each primary input i of
the combinational circuit is set logical "1" with a specific optimal
probability x; € {0,1] /Wu85/, and an efficient algorithm has been
presented to compute those optimized probabilities based on the
circuit structure (/Wu86/, /WuB7/). Another approach tries to
compute those optimized input probabilities during simulation
/LBGG86/. In table 3 the necessary test lengths using optimized
random tests are shown.

Circuit Required test length
S1 1.5%104
S2 4.0¢10%
C2670 6.9%104
C7552 1.2%104

Table 3: Necessary test lengths for an optimized random test

estimated by PROTEST

As already mentioned the predictions of PROTEST are correlated
to the number of test patterns necessary to get complete fault co-
verage. This is validated for conventional and for optimized ran -
dom tests by fault simulation in table 4:

Circuit testlength  fault coverage fault coverage
(conventional) (optimized)

S1 12 000 80.7 % 99.7 %

S2 10 000 81.2 % 99.2 %

C2670 4 000 88.0 % 99.7 %

C7552 4096 93.9 % 98.9 %

Table 4: Fault coverage achieved by simulation using optimi -

zed and conventional random patterns

Assuming an appropriate self test strategy now all circuits are te -
sted within a few milliseconds. Thus the production test can be
carried out this way economically, and in addition the self test
during system operation is possible, since the test time has the sa -
me magnitude as a disk access for instance.

For the rest of this paper we present a self test architecture ap -
plying optimized random patterns. In section 2 we resume the es -
sential properties of LFSRs, and we present the basic structure of
our approach. In section 3 we demonstrate, how a generator of
unequiprobable random tests (GURT) is composed by cascading
two basic types of cells.

In section 4 the four operating modes of a GURT are discussed,
and in section 5 an example is presented.

2. Self test by random patterns

The most widely used self test techniques are based on LFSRs,
where the system registers are augmented by some additional
hardware. Then those registers can be controlled to perform the
normal operating mode, the shifting mode or the LFSR mode.
Fig. 1 shows the typical test configuration.
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Here the test is carried out within five phases. First the registers
R1 and R2 are reset. Then both registers work in the LESR mo -
de, where R1 produces random patterns for the combinational
network SN1, and R2 compresses its responses by signature ana -
lysis. Third the signature of R2 is shifted out, and then both regi-
sters work as LFSR again, but R2 generates the patterns for SN2
and R1 performs signature analysis. At last the signature of R1 is
shifted out.

R1 SN2

I

Fig. 1: A self test configuration

The LESRs produce random pattemns by polynomial division over
GF[2]. This is possible by two different architectures which are
usually denoted as LFSR of type I and LFSR of type 11 (see /He -
Le83/). Both automata are equivalent, and implement a polyno -
mial division. For a discussion in some deeper detail see /Golo67/

or /HeLe83/. The LESR of type I feeds back the linear sum

T-1
;‘gr-l-iti

into ty (fig. 2a), and the LFSR of type II feeds s,_+s;_{ into those
s;, where g; = 1 (fig. 2b).

Both automata of fig. 2 perform a division by the polynomial
xO4x54+x34x2+1.

Fig. 2a: LFSR of type 1
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Fig. 2b: LFSR of type 11

If they implement a division by a primitive polynomial, their pe -
riod is maximum and a produced bit sequence A of length m sa-
tisfies some basic random properties:

I The "1" appears with probability p = 0.5 approximately.

2. A run of length n has probability p? approximately.



3. The autocorrelation function
1 m
Call) 1= 2 X

is two-valued if m approaches infinity: c(1) = p? for
t# 0 and c(0) = p.

The properties 2) and 3) should also hold for bit sequences reali -
zing other probabilities than p = 0.5.

Conventional self test techniques use LFSRs of type I, since they
can easily be composed by cascading identical cells. But pattern
generation by this type has some significant disadvantages. One
disadvantage results from the fact that between stage t,.) and stage
tp a rather complex boolean function has to be implemented, whe -
reas in a shift register of type II this function is distributed to
XOR gates between different stages making higher speed possi -
ble. Furthermore in a LFSR of type I two subsequent patterns
differ only in one bit whereas the other bit positions are results of
a simple shift operation, causing two other problems:

Already Bardell and McAnney /BaMc84/ noticed that one
cannot produce parallel pseudo random sequences by one
LFSR of type I feeding different scan paths, since the pat -
temns in those paths would be highly correlated (fig. 3).

Scan Path 1 Scen Peth 2

Y

_ |

-

LFSA of type |

Fig. 3: Autocorrelation by using LFSRs of type I

If one wants to generate a bit sequence realizing another
probability than 0.5, one cannot combine two storage ele -
ments by a boolean function, since the autocorrelation func -
tion wouldn’t be two-valued any more. If for instance we
want to generate a bit sequence of probability 1/4, and the-
refore use an AND combining the flip-flops at position i
and at position i+k, then the resulting sequence violates
property 3): If at time t the AND output is "1", then both
positions x; and x;,y are "1", and in this case at time t+k the
position x;,y is "1" too. Thus if the AND output is "1" at ti -
me t, it is "1" with probability 0.5 at time t+k. Therefore
c(0) = 1/4, but c(k) = 1/8 = 1/16.

Consequently we cannot generate biased patterns by LFSRs of
type I, and we have to use a new self test architecture instead.
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3. A Generator of uneguiprobable random patterns
(GURT)

A GURT has four operation modes:

1) Normal system operation as register

2) Unequiprobable random pattern generator

3) Signature Analysis

4) Shift register

Each GURT consists of two basic types of cascadable cells con-
taining one master-slave D-flip-flop each and some additional cir -

cuitry T1 and T2 respectively. The functions of T1 and T2 are de -
cribed in table 5 below:

Subcircuit T1 Subcircuit T2

A B C BBy D A B BBy D
X XX00 BzC X X000 B
XX X011 B XX01 B
XX X1 0 BzCzA X X1 0 A#B
XXX11 A XX11 A

Table 5: Elementary functions T1 and T2

Fig. 4a and fig. 4b show implementations on gate level of those
functions. The inputs By and B are control lines selecting one of
the four modes.

A
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Fig. 4a: TI
A
B = (4]
I— Mmuxi__._ D
— 1
= |
Bg B1
Fig. 4b: T2

The output D of T1 or T2 is connected to the data input of the
flip-flop. In fig. 5a and fig. 5b the complete basic cells G1 and
G2 can be seen.
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Cascading these cells two modules LR and SR are constructed.

Module LR consists of a chain of k+1 basic cells G1 and G2 in
arbitrary order, but starting with G1 (fig. 6).
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Fig. 6: Module LR

The output Qg of a basic cell is connected to the input B of the
following cell, the first B is the shifting input LR;;,, and the last
Qg is the shifting output LR, Additionally LR, is fed back to
all C inputs of the G1-cells, controlled by a multiplexer M1 if B}
is "0". If By = "1" the multiplexer M1 selects an input explained
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later. Furthermore there is a boolean function F, getting its argu -
ments by the Qg outputs of some basic cells.

The module SR is just a cascadation of basic cells G2 (fig. 7),
and the inputs are connected to a preceeding module LR. The
multiplexer M2 selects F for By=B;, and LR, otherwise.

The shifting output SR, is connected to the already mentioned
input of the multiplexer M1 of the preceeding LR.

!
w1 M |

i 8L |
LU
11

SR

Fig. 7: Modul SR

The construction of a complete GURT by the modules LR and
SR can be seen in the next section, where the operation modes of
a GURT are discussed.

4. The operation modes of 3 GURT
The inputs (B1,Bg) control the operation modes of a GURT:
(1,1) Normal system operation as register:
According to table 5 the modules T1 and T2 sensitize
a path from the input A to the output D. Therefore the
modules G1 and G2 respectively are working like a
D-flip-flop with data input A.
(0,0) Unequiprobable random pattern generation:
Here the module LR configurates to a linear feed back
shift register of type II, where the positions of the G1
cells determine the feed back function (fig. 8). The
boolean function F gets its arguments by three flip-
flops, which have to be selected carefully in order to
diminish the autocorrelation of the resulting random
sequence. Easily it can be shown, that each possible
state of LR has the same probability, if LR;;, is stimu-
lated by a randomly generated (perhaps biased) bit se -
quence /Wu86/. In this case each position of LR is
"1" with probability 0.5, and the random variables at
all positions of LR are completely independent. The-

refore each probability p € {1/8,...,7/8)}.can be ge -
nerated by an appropriate function F, and the random
sequence generated by F satisfies property 1). The
fulfilment of properties 2) and 3) depends on the bias
of the input sequence, the length of LR and the tabs
for F. In a straightforward way this can be proven by
describing the values of the input variables of F at dif -
ferent times in terms of the values of the flip-flops of
LR at the starting time and in terms of the incoming
random sequence at LR;;. Using this tabulating me -

thod the appropriate tabs can be found automatically.

The module SR becames a normal shift register which
has the random sequence generated by F as input. So -
me flip-flops of SR may get only the inverted logical
value of the preceeding one, therefore each flip-flop



of SR is logical "1" with probability p or with proba-
bility 1-p.

T

Fig. 8: Random pattern generation using LR and SR

Usually LR consists of 6 basic cells, and the inco -
ming sequence at LR, can be produced by a precee -
ding GURT too.
(1,0) Signature Analysis:
Here LR and SR together form a large LFSR with the
parallel inputs A; (fig. 10). Since fault detection by a
LFSR is only determined by its length /Davi80/, we
need not modify the resulting linear function by com -
posing LR and SR.
(0,1) Shift register:
LR and SR form together a large shift register. This
mode is used in order to initialize random pattern ge-
neration or signature analysis or in order to read the
signature.

LR

&1 =) 1 al £

N
1]
LI

Fig. 9: A GURT in signature register mode

Using those four modes the system operation and a complete self
test can be carried out.

A GURT needs a sufficiently long pattern sequence as input in
order to guarantee properties 1) and 2) and to avoid periodicity.
This input sequence can be generated by a long LFSR with self -
test features like a BILBO or a LR described above, or by a pre -
ceeding GURT.

Furthermore one GURT is only able to generate the three proba-
bilities p, 1-p, and 0.5 at its storage elements. Therefore the in -
puts of the combinational circuit under test have to be grouped in -
1o four sets: one set contains the inputs which must be stimulated
with probabilities 1/8 and 7/8, in the next set there are the inputs
with probabilities 1/4 and 3/4, a further set needs probabilities 3/8
and 5/8, and at least there is the set with probability 1/2. If a cir -
cuit has inputs in each of those sets at least 3 GURTs must be
connected in series (see fig. 10).
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Fig. 10: Self test configuration using GURTSs

Now we want to use GURTS in order to generate random pat -
terns for the circuit example C2670. PROTEST proposes the op-
timized input probabilities listed in table 6. Furthermore we will
use three GURTS I, II and 111, and a module LR. GURT I reali -
zes the probabilities 1/8, 7/8 and 1/2, GURT II the probabilities
1/4, 3/4 and 1/2, GURT UI the probabilities 3/8, 5/8 and 1/2, and
LR generates equiprobable patterns of 1/2. Then table 6 descri -
b:; 'il,‘}: correspondence between the primary inputs, the GURTSs
a -

primary optimized GURT  realized
inputs probability probability
1-3, 7, 10-11, 0.5 LR 0.5
28,32, 41, 43,

51, 53, 62, 64,

73-74, 76, 86,

96, 106,

115-233

4, 13-20, 24 0.1 1 0.125
37,39,55, 88,

99-100

5-6, 21, 40, 0.15 I 0.125
25-26, 47, 54,

63,93

8, 103 0.7 1l 0.75
9,22, 114 0.9 1 0.875
12, 0.55 LR 0.5
27,92 0.2 Il 0.25

29, 31, 33-36, 0.05 1 0.125

38, 42, 44, 48,
52, 56-61, 67,
75, 78-83, 95,
98, 105,
108-112



77, 84, 87,94 0.95 I 0.875
30, 97 0.85 I 0.875
45-46, 70, 85, 0.25 I 0.25
89-91, 101

49-50, 71, 0.3 11 0.25
113

65, 69 0.35 1] 0.375
66, 72 0.4 I 0.375
68,102 0.45 LR 0.5
104 0.75 1 0.75
107 0.65 111 0.625

Table 6: Optimized input probabilities and their implementation
for the circuit C2670

As it is shown in /Wu87/ small differences between realized and
optimized input probabilities have no significant effect on the test
length, since the detection probability of each fault depends on the
signal probability of each primary input linearly.

At least 18 of the flip-flops denoted by LR are used for the LR
modules of the GURTS, whereas the other flip-flops are forming
a LR module implementing 2 LFSR with maximum period.

In order to minimize the routing overhead the GURTS can be di-
vided. Currently some research is done to minimize the hardware
overhead by algorithms searching the best order and the optimal
size of the GURTS.

6. Conclusion

A self test architecture was presented generating unequiprobable
random patterns based on linear feed back shift registers of type
I1. Using these modules the class of self testable circuits is enlar -
ged without significant additional hardware costs compared with
the conventional BILBO approach.

The self test features can be used during the production test and
during system operation while the circuit is idle. The later can be
used to support the design of reliable and fail safe system archi-
tectures.

Literature;

AglaB84  Jain, S, K.; Agrawal, V.D.: STAFAN: An altemnative
to fault simulation; in: Proc. 21st Design Automation Conference,
1984

BaSa84  Savir, J,; Bardell, P.H.: On Random Pattern Test
Length; in: IEEE, Trans. on Comp., Vol. C-33, No. 6, June
1984

Benn 84  Bennetts, R. G.: Design of Testable Logic Circuits,
Addison-Wesley, 1984

BDS84  Savir, J. et al.: Random Pattern Testability; in: IEEE,
Trans. on Comp., Vol. C-33, No. 1, Jan. 1984

BRGL85 Brglez, F. et al.: Accelerated ATPG and fault grading
via testability analysis; in: Proc. ISCAS 85, Kyoto 1985

263

Davi80  David, R.: Testing by Feedback Shift Registers; in:
IEEE, Trans. on Comp., Vol. C-29, No. 7, July 1980

Golo67  Golomb, S. W.: Shift Register Sequences; Holden-
Day, Inc., 1967
Hele83  Heckmaier, J. H.; Leisengang, D.: Fehlererkennung

mit Signaturanalyse; in: Elektronische Rechenanlagen, Heft 3,
1983

KuWu85 Kunzmann, A.; Wunderlich, H.-1.: Design automa -
tion of random testable circuits; in: Proc. ESSCIRC 1985, Tou -
louse

KOEN79 Koenemann, B. et al.: Built-In Logic Block Observa -
tion Techniques, Proc. Test Conference, Cherry Hill 1979, New
Jersey

LBGG86 Lisanke, R. et al.: Testability-Driven Random Pattern
Generation; in: Proc. ICCAD, November 1986

McCI85  McCluskey, E.J.: Built-In Self-Test Techniques &
Built-In Self-Test Structures; in: IEEE Design & Test, April 1985

SETH86 Seth, S. C. et al.: An Exact Analysis for Efficient
Computation on Random-Pattern Testability in Combinational
Circuits; in: FTCS 16, 1986

Tsai83 Tsai, M. Y.: Pass Transistor Networks in MOS Tech -
nology: Synthesis, Performance, and Testing; in: Proc. IEEE,
Symp. of Circuits and Systems, 1983

TI80

WCM86 Wagner, K.; Chin, C., McCluskey, E.: Fault Covera -
ge of Pseudorandom Testing; in Proc. ICCAD-86, IEEE Interna -
tional Conference on Computer-Aided Design, 1986

Willgé Williams, R.M.: IBM Perspectives on the Electrical
Design Automation Industry. Keynote Address to the 23rd De -
sign Automation Conference, Las Vegas, 1986

Wu85 Wunderlich, H.-J.: PROTEST: A Tool for Pro babili -
stic Testability Analysis; in: Proc. 22nd Design Automation Con -
ference, Las Vegas, 1985

Wu86 Wunderlich, H.-J.: Probabilistische Verfahren zur
Verbesserung der Testbarkeit synthetisierter digitaler Schaltun -
gen; Dissertation an der Fakultit fiir Informatik der Universitit
Karlsruhe, 1986

Wu87 Waunderlich, H.-J.: On Computing Optimized Input
Probabilities for Random Tests, Proc. 24rd Design Automation
Conference, Miami Beach, 1987

WuRo86 Wunderlich, H.-J.; Rosenstiel, W.: On Fault Mode -
ling for Dynamic MOS Circuits; in: Proc. 23rd Design Automa -
tion Conference, Las Vegas 1986

The TTL Data Book; Texas Instruments, 1980



