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D. Abstwz.t 
Self testing of integrated circuits by random patterns has several 
technical and economical advantages. But there exists a large 
number of circuits which cannot be randomly tested, since the 
fault coverage achieved that way would be too low. In this paper 
we show that this problem can be solved by unequiprobable 
random patterns, and an efficient procedure is presented compu - 
ting the specific optimal probability for each primary input of a 
combinational network. 

Those optimized random patterns can be produced on the chip 
during self test or off the chip in order to accelerate fault simu - 
lation and test pattern generation. 

Keywords: Optimized random test, self test, fault detection 
probabilities, fault simulation. 

1. TntroductiQn 

For application specific integrated circuits in small and medium 
sized charges the costs of the production test can reach more than 
60% [Benn84] or even 70% [Will861 of the overall chip costs. 
One way to handle this problem may be testing by random pat - 
terns. 

Here we can dispense with the time consuming automatic test 
pattern generation, and the application of those patterns needs no 
expensive test equipment, since it can be done by linear feedback 
shift registers (LFSR) during self test. This is possible in high 
speed, and therefore many technology dependent dynamic faults 
are detected in addition ([Tsai83], [wuRo86]). 

Since a randomly generated test set is larger than a deterministic 
one, the detection rate of logical faults not in the fault model, 
multiple faults for instance, will be higher. 

Now let 6 be the confidence of a random test of length N, that is 
the probability to detect all faults fE F of the fault model F by 
applying N randomly generated patterns. If we assume that the 
detection of some faults by a pattern set of size N forms 
completely independent events, then we have / 
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where pf is the detection probability of the fault f. 

For large N the assumption of independence is asymptotically 
fulfilled, but in general computing the necessary test length N by 
formula (1) will only provide an upper bound. Regarding 
correlated faults we would have to modify (1) slightly [Tyro86], 
but there is no efficient procedure known to compute those corre - 
lations. But for our purposes it is sufficient to compute an upper 
bound of the test length. 

Furthermore we need not consider the bias of formula (1) due to 
pseudo-random testing [ChCI85], since for patterns with large 
bit width the difference is minimum. Thus formula (1) is precise 
enough, and it can be evaluated by tools computing fault detec - 
tion probabilities for combinational circuits. 

For circuits with tree structures such algorithms were presented 
by P. and V. D. Agrawal [AgAg75], and the general case was 
solved by Parker and McCluskey [McPa75]. But the latter 
procedure shows an exponential time and storage complexity due 
to the NP-completeness of the underlying fault detection pro - 
blem. Therefore in recent years much work was done to estimme 
those probabilities. 

The cutting algorithm [BDS84] determines upper and lower 
bounds for the probabilities, PROTEST ([Wu84], [Wu85]), and 
a new version of PREDICT [ABS86] estimate by an analysing 
procedure, and STAFAN [AgJa84] uses counting of signal 
values during simulation. 

But now it turns out that there are many circuits which cannot be 
randomly tested due to faults with low detection probabilitites. 
Table 1 shows, for some circuits, the necessary test lengths 
based on the estimations of PROTEST. 
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I Circuit Required test length I 
I I 
I * Sl 5.6*10* I 
I * s2 2.0*1011 I 
I C432 2.5*103 I 
I c499 1.9*103 I 
I C880 3.7*104 I 
I Cl355 2.2*106 I 
I Cl908 6.2*104 I 
I * C2670 1.1*107 I 
I c3540 2.3*106 I 
I c5315 
I C6288 ::z*% I * 
I * C7552 4.9*1011 I 

I ; Table Necessary test lengths for a conventional random 
test (by PROTEST). 

The circuits C<n> are the well known benchmarks of the 
ISCAS’85 test session [BRGL85], the circuit Sl is a 24-bit 
comparator constructed by six Texas Instruments comparators 
SN 7485 [TI80], where some redundancies are removed, and 
S2 is the combinational part of a 32 bit divider [KuWu85]. 

Fia. 1: 24-bit comparator S 1 

In table 1 the marked (*) circuits need an exorbitant size of the 
random test set, and those predictions of PROTEST are 
confirmed by fault simulation: 

I Circuit Test length Fault coverage I 
I I 
I * Sl 12,000 80.7 % I 
I * s2 12,000 77.2 % I 
I * C2670 4,000 88.0 % I 
I * C7552 4,096 93.9 % I 
I I 

T&?2; Fault coverage by simulation of conventional 
random patterns. 

It should be noted that an estimation with the exact value 0 or 1 
of a signal probability by PROTEST is a proof (not an 
estimation!) of redundancy. But of course not in all cases a fixed 
signal value can be detected this way, and therefore there may be 
redundancies left which cannot be found by PROTEST. 

The fault coverage in table 2 is computed only with respect to 
those faults which are not proven to be undetectable due to re- 
dundancy. This explains the difference to the results of Carter et 
al. [CART85], where the fault coverage was even lower. The 
table indicates that self testing of those circuits may need several 
hours, preventing an economical use of random patterns. 

But PROTEST suggests also specific probabilities to set each 
primary input to logical “1”. Using such optimized input proba - 
bilities PROTEST proposes the test lengths listed in table 3: 

I Circuit Required test length I 
I I 
I * Sl 1.5*104 I 

* s2 4.0*104 I 
* C2670 6.9*104 I 
* C7552 1.2’105 I 

I I 

Table Necessary test lengths for optimized random tests 
(by PROTEST). 

The results of fault simulation listed in table 4 prove that such op - 
timized random patterns yield a higher fault coverage indeed. A 
suspicious reader may verify this by random patterns generated 
with respect to the optimized input probabilities listed in the 
appendix. 

I Circuit Test length Fault coverage I 
I I 
I* Sl 12,000 99.7 % I 
I* s2 12,000 99.7 % I 
I * C2670 4,000 99.7 % I 
I * C7552 4,000 98.9 % I 

Table 4: Fault coverage by simulation of optimized random 
patterns 

For the rest of this paper we are dealing with the optimizing 
problem. In section 2 we introduce an objective function for 
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input probabilities, and in section 3 we discuss its mathematical 
properties. In section 4 we describe the implemented optimizing 
procedure. Some applications, the limits of the approach, and the 
performance are discussed in section 5. 

The examination are based on the assumption that there is a tool 
available computing or estimating fault detection probabilities 
efficiently. For the reported results the estimation procedures of 
PROTEST have been used, but with slight modifications 
PREDICT or STAFAN will presumably work as well. 

2. An obiective function for inuut mobabilitieS 

2.1 Some definitions 

The most widely used self test techniques configure the circuit 
registers to linear feedback shift registers in order to produce and 
to evaluate test patterns. Therefore we can restrict our exami - 
nations to combinational networks. 

A combinational network C has nodes K := <kt,. . .,kr>, some 
special nodes I := <it ,. ..,i,>, the primary inputs, and some 
special nodes 0 := <o I,. . . ,ot>, the primary outputs. We define 
an input variable x of a combinational network C as a boolean 
random variable, and P(x) is the probability that x is true. The 
tupel X := CXiliE I> defines for each primary input an input 
variable, we assume that those variables are completely indepen - 
dent. 

For three boolean random variables we have 

(2) P(7x) = l-P(x) 

(3) 

P(x)P(y)P(z), if x, y and z 
are independent; 

P(x&y&z) = P(y&z), if x=y; 
else additional informations 
are required. 

The set of boolean functions 

[ fb: (TRUE, FALSE)” + (TRUE, FALSE) I nE N) 

P. and V. D. Agrawal proposed an algorithm which computes in - 
put probabilities of reconvergent free networks maximizing the 
probability of path sentizing [AgAg75a]. For the general case 
Agrawal and Seth tried to optimize input probabilities by infor - 
mation theoretic means ([AgraH], [AgSe821), which has the 
disadvantage that the real fault model and fault coverage are not 
directly involved. Lieberherr compared two optimizing ap - 
proaches [Lieb84]: On the one hand optimizing path sen - 
sitization, on the other hand the generation of patterns setting al - 
ways k inputs to logical “l”, and finding an optimal k. He didn’t 
present optimizing procedures. 

is isomorphically mapped into the set of arithmetical functions 

(fa:(O,l)n +{O,l)] nEN] 
In the following we define a new objective function based on the 
real circuit structure and on the real fault model. 

by the following rules: 2.3 The definition of the obiective function 

(4) TRUE + 1 
FALSE 

2 
0 

xb&yb X*Y 
1X b * l-x 

Throughout the paper we assume an arbitrary but fixed combi - 
national fault model F. This is adequate for the large number of 
circuits in bipolar technologies, in nMOS pull-down designs, in 
dynamic nMOS and domino CMOS [WuRo86]. However the 
treatment of sequential St-open faults in static CMOS and nMOS 
pass transistor designs would require some modifications. F may 
contain an arbitrary number of such faults, and it must contain all 
stuck-at-0 and stuck-at-l faults at the primary inputs. Further - 
more all faults of F must be detectable. 

Let x t,. . .,x, be boolean random variables with P(x i) =: pi and 
let Yl,.-.>Yn be two-valued arithmetical variables from 
{0,1 ) with P(yi=l) = pi. Then the expectation values are 
E(yi) = pi, and the probability of a boolean function being true is 
equal to the expectation value of the corresponding arithmetical 
function: 

(5) 

An arithmetical embedding of a boolean function 

~~J:{TRUE, FALSE)” -+ (TRUE, FALSE) 

is the real function f: [O,l]n + [O,l], defined by 

(6) f(Zl,..., Z”) := P(@(xt,...,x,)). 

where the completeley independent boolean random variables 
have the probability P(XI) = Zi. 

Notation; Let Z := <zt . . . zn>, and y E [O,l]. We 
write f(Z,yli) := f(Z1,...,Zi-l,yIzi+lr...,zn). 

Lemma 1: For each arithmetical embedding f we have 

(7) f(Z) = Zif(Z, lli) + (I-Zi)f(Z,Oli) 

Proof: By the Shannon expansion. 

The input variables Xi determine the boolean random variables xk 
for all nodes ks K with the signal probabilities P(xk). The input 
probabilities are the signal probabilities at the primary inputs. 

Let f be an arbitrary fault changing a gate function into another 
combinational function, and let X be a tupel of input variables. 
The fault detection probability PAX) off is the probability 
that f is detected by a random pattern generated according to the 
distributions of X. 

2.2 Preliminarv work bv other authors 

For each fault fe F the detection probability pf(X) depends on the 
tupel of input probabilities X := <xiliG I>. Therefore formula (1) 
turns into 
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S,(X) = J-J l-wP,m)>N). 
fe F 

This formula expresses the probability that all faults are detected 
by N patterns with the distributions of X. Using some well 
known approximations (8) is transformed into 

(9) 

h(h(x)) = -C(i-pf(X)lN = -&eNpAm 
faP fE F 

Formula (9) describes our objective function and we call a tupel 
X of input probabilities oatima! with resuect to N, if 

(10) 

J,(X) := &-NpFcx, 
f‘z F 

is minimum at X E [O,l]I 

3. Mathematical or-ties of the obiective function 

3.1 Classification of the ontimizing problem 

In the (0,l )-space expectation value and probability coincide, 
and the stochastical optimizing problem reduces to a deterministic 
one. But this is only a modest simplification, since one imme - 
diately notices that the objective function is not a member of the 
well known linear or quadratical optimizing problems. 

Examining only the stuck-at faults at the primary inputs 
Ao,...,A23,Bg,..., B23 of circuit S 1 one can easily verify that the 
objective function will have at least 224 minimum points. Thus in 
general the objective function will not be convex or even uni - 
modal. Our optimizing problem is a member of the general class 
of smooth multi-extremal problems, which have an exponential 
average case complexity with respect to the number of variables, 
and to the required precision [NeYu83]. 

Furthermore the known global optimizing procedures like the 
Newton or the gradient method will fail to handle large circuits 
with hundreds or thousands of input variables resulting from 
scan designs. Therefore we don’t try to find a global optimum, 
but we use some approximations to search a relative one. Here 
the fundamental means are provided by the next section. 

3.2 Optimization with respect to one variable 

We will show that the objective function is strictly convex with 
respect to one single vanable. Hence for each fixed xl,. . -,Xi-1, 
Xi+l9**.9 x, there exists exactly one xi’ [O,l] with mini - 
mum JN(x~ ,...) xi, . ..x”). First we define again 
JN(X,yli) := JN(XI. ..,Xi-l,yipXi+l ,... xn). Then we observe: 

Lemma 2: For all XE]O,~[I and all sufficiently large N we have 

Proof: If N is sufficiently large formula (9) yields 
1 = S,(X) = exp(-JN(X)), and thus JN(X) = 0. But if for 
instance xi =l, then the stuck-at-l fault at xi is not detectable, 
has detection probability 0, and thus JN(X) > 1. 

Now we use a well known convexity criterium: 

Lemma 3: For all ie I we have 

(12) 

2 ‘0 
dy 

and therefore JN(X,yli) is strictly convex in y. 

F’roqf; Using Lemma 1 we have 

PAX) = pAX,OIi) + xi(p~X,lli)-pAX,Oli)). 

Hence 

dJ,(X, 9,) 
dy = 

c -N(p,(X, 1 li)-p,(X,Oli))~-NPfO(.yl’) 
fE F 

and 

(14) 

d*J,tW,) 

d‘ y 
& *(pf(x, Il,)-pf~,Ol~~e-NPCx~Y~) > 0. 
fc F 

The > holds since we assume it-redundancy, and at some 
pnmary input we have pf(X, 1 Ii)-pr(X,Oli) # 0. 

And no we have by Lemma 2 and Lemma 3: 

For each XE [O,l]I there exists exactly one y E 
[O,l] with dJN(X,yIi)/dy = 0 and JN(X,yli) has 
there its minimum. 

This minimum point can be computed by a simple iteration: 

(15) 
dJ,(X, Y’i> 

y+ :=y - dy 

d2J,CX, y’i) 

d2Y (11) 
JN(X,Oli) > J,(X) < J,(X,lli). 
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. . 4. The oum orocedure 

In this section we discuss some implemented procedu-res mini - 
mizing the objective function. First we observe two facts with 
very important impact to the efficiency: 

Input: 

(1) Already Bardell and Savir [BaSi84] noticed that only 
the hardest detectable faults are relevant to the neces- 
sary test length N. If N satisfies formula (7), we 
have JN(X) = p = 0, and for instance, if there are 
two faults f and g with pf = lO*p,, then exp(-Np ) 
+ exp(-N*lOpg) I p holds. Thus exp(-Npg) I B 
and exp(-Npf) = exp(-N*lOp& = exp(-Npg)to I pro. 

output: 

Begin 

Therefore pf doesn’t contribute any numerically 
computable value to the objective function. Hence 
during one optimizing step we have only to deal with 
the small subset F’ of the hardest detectable faults of 
F. (But caution! The order of the detection proba - 
bilities may change during optimization). 

end, 

(2) Formula (15) needs the values of pf(X,Oi) and 
pf(X,ll), fE F’. They can be computed before the 
iteration by an effort which is less than twice of the 
testability analysis. Thus the minimizing procedure 
itself is nearly independent of the circuit size! 

This procedure implements the iteration of formula (15). Y will 
be the minimizing value for Xi. 

Now we discuss the implemented procedures in deeper detail: Begin 

SORT (F): 

Output is the sorted fault list ft...f, in the order of increasing 
probabilities, where n is the total number of faults, and all 
known redundancies are removed. 

NORMALIZE(N,nf): 

If a sorted fault list is given the procedure computes the minimum 
number N of random patterns to satisfy (7), nf will be the 
number of faults with low detection probabilities, that is 
F’= { fl.. .fnf). Roughly the algorithm is like this: 

Set Q:= ln@), and define the function 

l(z, M) :=I&-pfiM 

which is a lower bound of J,(X). Set 

u(z,M) := l(z,M) + (n-z)e 
-P$’ 

NORMALIZE(N-new,nf); 
end; 

end; 
end; 

which is an upper bound of JM(X). We already remarked that for 
fixed M only few z are needed to check l(z,M) > Q or 
u(z,M) < Q. In the first case the desired N must be larger than 
M, in the second case we have N < M. Hence using interval1 
sections we find an N and an integer z with u(z,N-1) < Q and 
l(z,N) > Q. Now we set nf := z. 

In the next section we discuss the performance and some appli - 
cations. 

ANALYSIS (X,F): 

Using the input probabilities X the list F of detection 
probabilities is computed by PROTEST. 

During the optimization of an primary input i the-ANALYSIS 
procedure is called three times, but each time with the same 
values X except for xi. If ANALYSIS takes this into account 
then optimizing one input variable will take less effort than a 
complete testability analysis in most cases. 

PREPARE (X,i,nf,F,F 0 1): -- 

X {Input probabilities] 
i {Input number to be optimized) 
nf {Number of relevant faults) 
F (Sorted fault list}; 

F-O-1 (List of pr(X,Oi) and p&X, li) for all fe F) 

YO := (X,0,); 
F-0 := F; 
ANALYSIS (YO, F-O); 
Yl I= (X,li); 
F-1 := F; 
ANALYSIS (Y 1, F-1); 
F-0-1 := Ordered list with the corres- 

ponding pairs of F-0 and F-1. 

MINIMIZE (F 0 l,N,Y): -- 

OPTIMIZE: 

X := Starting vector; 
ANALYSIS (X,F); 
SORT(F) 
NORMALIZE(N-new,nf) 
N-old := the maximum possible value of N, 
While (N-old - N-new) > d do 

{o is user definded) 
Begin 

N-old := N-new; 
For i=l to INP do 
Begin 

PREPARE (X,i,nf,F,F-O-1); 
MINIMIZE (F-O-l,N-new,y); 
Xi I= y; 
ANALYSIS(X,F); 
SORT(F); 

. . 5. Practical 

5.1 Performance 
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Table 5 lists the performance statistics for the circuits mentioned 
in section 1. The results are achieved by a SIEMENS 7561 
computer, a machine with approximately 2.5 MIPS. 

I I 
I Circuit CPU time (set) I 
I I 
I * Sl 300 I 
I * s2 600 I 
I * C2670 1.200 I 
I * C7552 2.000 I 

Table CPU time for optimizing input probabilities by 
PROTEST 

5.2 Simulation 

Self test by random patterns is the main goal of the optimizing 
approach. A self test modul similar to the well known BILBO is 
presented in wu86] and [Wu87]. 

But the optimizing procedure can also support deterministic test 
pattern generation, since the computing time of optimizing and 
simulation together is less than computing test patterns by the D- 
algorithm. Fault simulation of optimized patterns can provide 
nearly complete fault coverage in economical time. Fig. 2 
illustrates the increase of fault coverage for optimized and 
conventional random patterns. 
Fault 
coverage 
(%I 
100 

95 

90 

85 

80 

70 
60 
50 L D Patterns 

&& Fault coverage vs. pattern count (S 1) 

5.3 The limits of the approach 

Up to now all examined circuits could be made random pattern 
testable by optimizing. For all circuits by the input probabilities 
that could be found, an optimized random self test needs less 
than 1 sec. test time. But of course circuits can be constructed, 
which cannot be processed by optimization. This is the case if 
there are pairs of faults with the following two properties: 

each of the faults has a very low detection probability, 
and 

the Hammin g distance between the test sets of these both 
faults is very large. 

This situation prevents the successful1 optimizing for both faults 
simultaneously. The problem can be solved by partitioning the 
fault set, and by computing different optimal input probabilities 
for each part. But until now such pathological circuits didn’t 
occur, and thus the additional procedure wasn’t implemented yet. 

5. Conclush 

Using optimized, unequiprobable random patterns the fault 
coverage can increase and the necessary test length can decrease 
by orders of magnitude. Hence the class of random testable 
circuits is enlarged distinctly this way. 

Based on tools estimating fault detection probabilities an efficient 
procedure was presented, which computes for each primary input 
its optimal input probability. 

The optimized random patterns can be applied during self test or 
during fault simulation. 

[AgAg75] Agrawal, P.; Agrawal, V.D.: Probabilistic Analysis 
of Random Test Generation Method for lrredundant 
Combinational Logic Networks; in: IEEE, Trans. on Comp., 
Vol. C-24, No. 7, July 1975 

[AgAg75a] Agrawal, V.D.; Agrawal, P.: On Improving the 
Efficiency of Monte Carlo Test Generation; in: FTCS 5, 1975 

[Agragl] Agrawal, V.D.: An Information Theoretic Approach to 
Digital Fault Testing; in: IEEE, Trans. Comp., Vol. C-30, No. 
8, August 1981 

[AgJa84] Jain, SK.; Agrawal, V.D.: STAFAN: An Alternative 
to Fault Simulation; in: Proc. 21st Design Automation 
Conference, 1984 

[AgSe92] Seth, S.C.; Agrawal, V.D.: Statistical Design 
Verification; in: Proc. FTCS-12, 1982 

[ABS86] Seth, S.C. et al.: An Exact Analysis for Efficient 
Computation of Random-Pattern Testability in Combinational 
Circuits; in: FTCS 16, 1986 

[BaSi84] Savir, J.; Bardell, P.H.: On Random Pattern Test 
Length; in: IEEE, Trans. on Comp., Vol. C-33, No. 6, June 
1984 

[Benn84] Bennetts, R.G.: Design of Testable Logic Circuits, 
Addison-Wesley, 1984 

[BDS84] Savir,J.: Random Pattern Testability; in: IEEE, 
Trans. on Comp., Vol. C-33, No. 1, 1984 

[BRGL85] Brglez, F. et al.: Accelerated ATPG and fault 
grading via testability analysis; in: Proc. ISCAS’85, Kyoto 
1985 

Paper 24.2 
397 



[ChCl85] Chin, C.K.; McCluskey, E.J.: Test Length for 
Pseudo Random Testing; in: Proc. International Test 
Conference, 1985 

[CART851 Carter, J.L. et al.: ATPG via Random Pattern 
Simulation; in: Proc. ISCAS’85, Kyoto 1985 
[KuWu85] Kunzmann, A.; Wunderlich, H.-J.: Design 
automation of random testable circuits; in: Proc. ESSCIRC’85, 
Toulouse 1985 

[Lieb84] Lieberherr, K.J.: Parameterized Random 
Testing; in: Proc. 21st Design Automation Conference, 1984 

[McPa75] Parker, K.P.; McCluskey, E.J.: Analysis of Logic 
Circuits with Faults Using Input Signal Probabilities; in: IEEE, 
Trans. on Comp., Vol. C-24, No. 5, May 1975 

[NeYu83] Nemirovsky, A.S.; Yudin, D.B.: Problem 
Complexity and Method Efficiency in Optimization; John Wiley 
& Sons, 1983 

[Tyro86] Tyron, D.R.: Self-Testing with Correlated 
Faults; in: Proc. 23rd Design Automation Conference, Las 
Vegas 1986 

[Tsai831 Tsai, M.Y.: Pass Transistor Networks in MOS 
Technology: Synthesis, Performance, and Testing; in: Proc. 
IEEE Int. Symp. of Circuits and Systems, 1983 

Optimized input 
probabilities for 
the circuit C2670 

l-3 
4 
5-6 
7 
8 
9 
IO-II 
12 
13-20 
21 
22 
23 
24 
25-26 
27 
28 
29 
30 
31 

if-36 

ii 
39 
40 
41 
42 
43 
44 
4.5-46 
47 
48 
49-50 

Probability 

0.5 
0.1 
0.15 
0.5 
0.7 
0.9 
0.5 
0.55 
0.1 
0.15 
0.9 
0.55 

KS 
0:2 

KS 
0.85 
0.05 
0.5 
0.05 
0.1 
0.05 
0.1 
0.15 
0.5 
0.05 
0.5 
0.05 
0.25 
0.15 
0.05 
0.3 

51 
52 
53 
54 
55 
56-61 
62 
63 
64 

22 
67 

2 
70 
71 
72 
73-74 
75 
76 
77 
78-83 
84 
85 
86 
87 
88 
89-91 
92 
93 
94 
95 
96 
97 
98 
99-100 
101 
102 
103 
104 
105 
106 

0.5 
0.05 
0.5 
0.15 
0.1 
0.05 
0.5 
0.15 
0.5 
0.35 
0.4 
0.05 
0.45 
0.35 
0.25 
0.3 
0.4 
0.5 
0.05 
0.5 
0.95 
0.05 
0.95 
0.25 
0.5 
0.95 
0.1 
0.25 
0.2 
0.15 
0.95 
0.05 
0.5 
0.85 
0.05 
0.1 
0.25 
0.45 
0.7 
0.75 
0.05 
0.5 

107 0.65 
108-I 12 0.05 
113 0.3 
114 
115-19s i:: 
196 0.3 
197-200 0.5 
201-202 0.75 
203 0.4 
204-208 0.8 
209 0.85 
210-212 0.8 
213 0.5 
214 0.8 
215-218 0.85 
219 0.9 
220 0.15 
221 0.95 
222 0.25 
223-233 0.5 

Optimized input 
probabilities for 
the circuit C7552 

IIlpllls Probability 

1-2 0.5 
3 0.7 
4 0.95 
5 0.5 
6 0.75 
7 0.9 
8 0.95 
9 0.85 
10 
11 KS 
12 0:1 
13 0.05 
14 0.9 
15 0.1 

[TI80] The TTL Data Book; Texas Instruments, 1980 

[Will861 Williams, R.M.: “IBM Perspectives on the Electrical 
Design Automation Industry”, Keynote Address to the 23rd 
Design Automation Conference, Las Vegas 1986 

[Wu84] Wunderlich, H.-J.: Zur statistischen Analyse der 
Testbarkeit digitaler Schaltungen; Universitit Karlsruhe, Fakultit 
fiir Informatik, Intemer Bericht 18/84, 1984 

[Wu85] Wunderlich, H.-J.: PROTEST: A Tool for Probabilistic 
Testability Analysis; in: Proc. 22nd Design Automation 
Conference, Las Vegas, 1985 

[Wu86] Wunderlich, H.-J.: Probabilistische Verfahren zur 
Verbesserung der Testbarkeit synthetisierter digitaler 
Schaltungen; Dissertation an der Fakulttit fiir Informatik der 
Universitlt Karlsruhe, 1986 

[Wu871 Wunderlich, H.-J.: Self test using unequiprobable 
random patterns; submitted 

[WuRo86] Wunderlich, H.-J.; Rosenstiel, W.: On Fault 
Modeling for Dynamic MOS Circuits; in: Proc. 23rd Design 
Automation Conference, Las Vegas 1986 

16 
17-18 
19 
20 
21 
22 
23-26 
27 
28 

ti 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40-4 1 
42 
43 
44 
45 
46-48 
49 
50 
51 
52 
53 
54 
55 
56 
57-59 
60 
61 
62 
63 
64 
65 
66 

0.9 
0.05 
0.15 
0.25 
0.5 
0.95 
0.1 
0.95 
0.85 
0.1 
0.9 
0.95 
0.7 
0.3 
0.5 
0.45 
0.35 
0.05 
0.15 
0.05 
0.85 
0.05 
0.1 
0.85 

iii5 
0:65 
0.85 
0.9 
0.95 
0.85 
0.05 
0.95 

E5 
0.05 
0.2 
0.9 
0.1 
0.95 
0.85 
0.7 

67-68 0.5 
69 0.15 
70 0.85 

::. 
0.95 
0.35 

73 
74-76 ::985 
77-83 0.05 
84 0.1 
85 0.05 
86 0.95 
87-89 0.5 
90-93 0.05 
94 0.7 
95-96 0.95 
97-100 0.05 
101 
102-103 E5 
KM-109 0.95 
110 0.7 
111 0.95 
112 
113-116 KS 
117-118 0.05 
119-120 0.95 
121 0.05 
122 0.95 
123 0.75 
124-131 0.95 
132 0.05 
133 0.6 
134 0.95 
135-136 0.5 
137-140 0.05 
141-146 0.95 
147-148 0.05 
149-150 0.95 
151 
152-163 8:;s 
154 0.7 
155 0.95 
156 0.85 

157 0.05 
158-160 0.95 
161 0.9 
162-163 0.95 
164 0.7 
165-166 0.5 
167 0.95 
168 0.75 
169-172 0.05 
173 0.1 
174 0.15 
175-176 0.95 
177 0.85 
178 0.8 
179-181 0.05 
182-184 0.1 
185-186 0.05 
187 0.1 
188-i91 0.95 
192 0.65 
193 
194 Es 
195 0.9 
196 0.1 

197 198-199 8.Z5 
zoo-20 1 0:05 
202 0.9 
203-205 0.95 
206207 0.5 
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