
The Integration of Test and High Level Synthesis
in a General Design Environment

D.Schmid, R.Camposano, A.Kunzmann, W.Rosenstiel, H.-JWunderlich
Universitaet Karl sruhe and Forschungszentrum Informatik

Prof. D. Schmid, Postfach 6380, 0-7500 Karlsruhe
F. R. Germany

Phone: 721-608-3960

Abstract

This paper describes the integration of new tools for both test and synthesis of
integrated circuits . The presented design system CADDY (Carlsruhe Digital
Design System) automatically transforms a functional description into a circu it
structure. Besides this logic synthesis the system also automatically integrates
a complete or incomplete scan path. The software tool PROTEST (PRObabilistic
TESTability analysis tool) determines the random testability of the
combinational parts of synthesized circuits and suggests optimized input signal
probabi lities to minimize the necessary test length. To generate these test
patterns on chip a specific test hardware is proposed.

1.0 Introduction

The main purpose of the CADDY-system, described in section 2, is the automatic
synthesis combined with automatic design for testability (ADFT) from a
behavioural level description language as input (fig. 1.1). By generating circuits
with integrated test hardware CADDY ensures, that the final resulting circuit is
still correct by construction . Testability is aChieved by including Automatic
Test Pattern Generation (ATPG).

ThiS paper is the fin al form and no version of it
Will be submitted for publication elsewhere .

31 7

DSl behavioural level

Flow graph(FG)

Synthesis ADFT PFOlEST:
Testability analysis _-----1 TP generation

- Si m ulation

.• . .•••.. •... geomelticallevel

Fig. 1,1; The basic structure of the synthesis system

The increasing complexity of integrated circuits enhances the importance of
testing by random patterns. ATPG by deductive procedures, even by modern
algorithms like PODEM [GoeI81], is one of the most computing time consuming
tasks in VLSI design. The reduction of the ATPG effort by transforming
sequential circuits into combinational ones (e.g. by scan path, scan set, LSSD)
oiten results in "too large" combinational circuits. Test pattern generation for
integrated circuits with about 50.000 transistors requires already a computing
time of some days [GoeI81].

The test of digital systems by random patterns allows to dispense with the
generation of test patterns based on a description of the circuit structure. To
analyse the random testability of circuits , the software tool PROTEST
(Probabilistic Testability Analysis) was developed. In section 3 some basic
algorithms and features are presented.

In section 4 the integration of complete and incomplete scan paths is described.

One of the most important features of PROTEST is that random patterns can be
optimized for specific combinational circuits. The result of the optimization is
a vector, assigning a specific probability between [0 ,1] to each primary input of
the circuit. This yields a higher fault grading by a simultaneously minimized
number of test patterns compared to the conventional random test with test
patterns of the probability 0.5. In section 5 feed back shift registers are
described, generating those adjusted test patterns and performing signature
analysis.

31 8

The main tasks of the synthesis system are depicted in figure 1.2.

"' (Flowgraph)

Estimati , I Data flow abstraction J SlQnat

l H fa.ult I
detection prob.

Data now graph (DFG)) PfOTEST
f

.1 [elermln"'lj I test lei1<1lh

DfG. f4 Automatic OFT I- .1 UptimlZlng me I analysis ·Scan·Path·lntegration r-t test Dattem sets

prctimization f-.l I-/oJI H test I ocal • Structure generators attems
global

4 Control part synthesis t...I Fault I 'L03E simulaUon

(STRLOO. ')
,

Fig. 1.2: Main tasks of test and synthesis

At the end of the paper an example is presented to demonstrate the integration
of the synthesis system and PROTEST, also generating the optimized
probabilities. The results are validated by a static fault simulation.

2,0 Synthesis

High level synthesis gains increasing importance in the design of integrated
circuits . Synthesis keeps away the details of the geometrical and electrical
level and - more advanced - even the logical details from the designer. High
level synthesis allows complete design automation from a behavioural
specification to the layout. Therefore it is especially well suited for the rapid
prototyping of hardware.

Other advantages of automatic synthesis are less need for design verification
through correctness by construction and the availability of Ie-technology to the
non-expert designer. This offers not only economic advantages but also the
possibility of protecting know-how.

Several approaches of high level synthesis systems have been reported over the
last years, their lack of efficiency prevents their use in an industrial

319

environment [UllmB4]. [CKRB4]. [DPSTB1]. [DSSTB2]. [KowaB4]. In our synthesis
system we concentrated on the optimization of the synthesis algorithms during
the last years [RoCaB5]. They are mainly based on data flow analysis [RoseB4].
The optimizations include

- minimization of storing elements.
- loop optimization.
- global trade-ofts of concurrency and area and
- rule based local transformations
[DaJoBO].[PaschB5].[ZippB3].

2.1 The specification langyage

The most important features of the specification language DSL (.Q.ig ital system
language) [CaWeB4] which we use as input language for our

synthesis system are:

- A DSL program may include one applicative part and many imperative
processes:
Global actions not constrained to a certain point in time. such as resets .
interrupts. etc. are naturally specified in the appljcative part. Sequential
algorithms. finite automata and sequential behaviour in general are simply
described by imperative processes.

- Concurrency can be specified in DSL both at the level of single operations and
between imperative processes.

- Modularity and hierarchy in DSL is supported by a powerful abstraction
mechanism. Like an abstract data type a DSL-module is defined by its interface
(inputs and outputs) and the different functions which are available from the
outside.

- The delay of single operations or of groups of operations can be specified in
absolute time or in clock cycles. This feature allows to specify timing
restrictions for the synthesis.

- In addition. global restrictions of timing. chip area. electrical parameters etc.
can be specified in the overall part of a DSL program.

2.2 Synthesis algorithms

In our synthesis algorithms different techniques are combined. Data flow
analysis is used to minimize the storing elements. Symbolic execution allows

320

the optimization of loops. By heuristic approaches and by some ideas from expert
systems local and global optimizations of the synthesized structures are
performed.

Synthesis starts from the internal representation of the behavioural
specification - the so called Flow graph - which is generated by the OSL
compiler. In detail the Flow graph combines three different types of arcs sharing
the operators as common nodes. The different arc types correspond to

- the predecessor-successor relation of operations,
- the connectivity relation of the operators by the operands and
- the timing constraints between operations.

The main synthesis steps consists of the data flow and control generation, the
global and local optimization and finally the component binding. The generation
of the control and the dataflow is described in in detail in [Rose84j. A summary
can be found in [RoCa85j.

Our efforts in the field of optimization should be briefly discussed here. The two
main concepts are global and local optimization. Some examples of so called
global optimizations are

- evaluation of constant expressions only once
- detection of common subexpressions
- extraction of loop independent parts out of loops
- "folding" of different occurrences of the same operator to only one

component
- realization of similar operators by an universal component (ex. ALU)
- life time analysis to share registers

Local optimizations include basic logical transformations at the
NANO/NORIANO/OR/NOT level, where about 20 rules are implemented mainly
based on [OaJ080j. Very effective are also local transformations on a higher
level based on components (COM) like adders, counters, multiplexers (MUX),
registers (REG), comparators etc. An example is given by figure 2.1.

y
Z

Fig. 2.1; Example for local transformations

321

All the different optimization steps can be performed in any ordering and any
cycles. Evaluation procedures allow backtracking to optimize the trade-off
between chip area and speed requirements.

The last synthesis step is the so called component binding [RoCa85). During this
phase the optimized synthesis results. which are still technology independent.
have to be mapped to technology specific components. Instead of using a fixed
set of layout modules in a "closed" library the synthesis invokes structure
generators that provide a practically unlimited number of building blocks. The
structure generators are parametrized by the number of inputs and outputs.
speed and area requirements. Structure generators are available for registers
(with and without scan-path). adders (ripple carry or carry look-ahead). ALU·s.
multiplexers. decoders. gates. drivers etc. Actually our structure generators
provide an interface to the gate array. standard cell and general cell system
VENUS from the SIEMENS AG [GHHS84). For a given structure VENUS generates a
complete layout by automatic placement and routing. Currently we are
interfacing our synthesis system with different silicon compilers.

3.0 The probabilistic testability analysis tool PRQTEST

The aim of the synthesis is to achieve the generation of testable circuits . All
the automatic design for testability (ADFT) tools. described in section 4. can be
controlled by the probabilistic testability analysis tool PROTEST. In the
following all the essential features of this tool are summarized. details are
given in [KuWu85).[Wu85).

3.1 Estimation of the signal and fault detection probabilities

Since computing signal probabilities is NP-hard [WuB4). PROTEST estimates the
signal probabilities for each internal node of the network with linaer effort.
based on the specific signal probabilities at the primary inputs of a
combinational circuit.

For the faults of the circuit. the probability is estimated. that a random pattern
with a specific input signal probability detects this fault. To compute those
estimations PROTEST offers some possibilities. which differ concerning their
computing effort and attainable preciSion. respectively : it can be estimated.
that the values of the faulty and fault-free circuit differ if a random pattern is
applied or one can only apply a simple modeling of the signal flow [WU85).

322

3.2 Computing the test length

Based on the fault detection probabilities PROTEST determines the number N of
test patterns in order to achieve a required fault coverage with a demanded
confidence. Let Pf be the probability that a fault fE F is detected by a random
pattern. The probability P that all faults of F are detected by N random patterns
can be computed by [Wu84]

(1) P:= IT (1-(1-Pf}N).
f E F

It is assumed. that the detection of some faults forms statistically independent
events, which is asymptotically fullfilled by increasing N.

3,3 Optimizing the Input signal probabilities

During a conventional random test all the input probabilities are 0.5. Let
X:=<pjli E I> E [0,1]1 be a tupel that assigns for each primary input a specific
signal probability and for each fault a detection probability Pf(x}. Then

(2) IN(X) := 1T (1-(1-Pf(X))N)
f E F

is the probability, that N random patterns with input signal probability X detect
all the faults of the circuit. PROTEST includes a heuristic procedure to
determine a X with maximum IN'

in order to validate the predicted detection probabilities, test lengths and fault
coverages, PROTEST offers a package for static fault simulation. A static
simulation is sufficient, since the synthesized circuits are synchroneous, and
therefore time delays need not to be regarded.

3.4 Complete and Incompiete scan paih

The synthesiS system generates pure synchroneous, sequential circuits . An
obvious way to achieve a structure, PROTEST can deal with is the use of the scan
design technique.

The complete scan path and the test control are impiemenied on the chip in a
straightforward way, which is described in [KuWu85]. Deterministic or random
generated test patterns are sequentially shifted in and test results are shifted
out simultaneously. Each of those steps is followed by a single propagation step.

323

A further test option determines the synthesis of circuits with an incomplete
scan path. The goal is to include the minimum number of storage elements into
the scan path. that yields a sequential circuit of a given depth O. This depth is
defined as the maximum number of connected storage elements between any two
scan path elements.

The sequential depth 0 determines the extent of the resulting iterative
combinational network. which is in the order of 20 'n. n is the gate number of
the original network.

Identifying the minimum number of storage elements can be reduced to
well-known partition problems of graph theory. The basic graph contains the
dependencies between the storage elements of the circuit. It indicates whether
there exists a direct or indirect (through combinational elements) connection
between any two storage elements.

4.0 Feedback shift register configuration

The implementation of a special test pattern generator (TPG) is necessary. to
obtain the proposed probabilities at each primary input of the combinational
network. Signature analysis (SA) must be performed either. BILBOs (Buill in
Logic Block Observers) [KMZ79] realize both TPG and SA. but only if probabilities
of the input signals of 0.5 are needed.

The following chapter outlines the necessary modifications and extensions of
BILBOs. in order to dispense with this restriction.

4.1 The length of the basic test pattern generator (BPG)

The number of the required test patterns determines the length of a feedback
shift register: a linear feedback shift register (LFSR) of length N can generate up
to 2N_1 different test patterns [HeLe83]. Figure 4.1 shows the typical structure
of a LESR.

324

TEST PATTERNS
t t t

FF
){:R

FF
){:R){:R){:R r-){:R

_1 f- - 1 FF =1 l- FF =1

E? 9
Fig. 4.1; Structure of a LFSR

Such a LFSR is one part of the needed test hardware. the so called "basic pattern
generator" (BPG). AU the generated TPs have the probability 0.5 at each position.

4.2 The offered probabilities

At this point we have a certain amount of 1-bit-registers which are logical "1"
with the probability of a half. These are the basis to generate the required
probabilities unequal 0.5. Figure 4.2 shows the probabilities, the proposed test
hardware can produce and the correspondent logic operations (ANDfOR) to
generate those values.

(p=0.5)
10.1"3 1 0.5625

A 0.25 1 N 0.3125
D 1 0.625 1 n .R1:>S

0.5 ...

0 1 0.375 I I Q.Hlf!l
0.6875 R 1 0.75 1

'I 0.875 1 U,4;:J(O
(p=0.5) 0.9375

Fig, 4,2; Probabilities and their generation

For example in order to generate logical "1" with the probability 0.4375, you
need a 3-input-OR with input probabilities of 0.5 and a 2-input-AND. The inputs
into this gate are the result of the OR-gate (0.875) and a probability of 0.5. In
summary, 4 probabilities of 0.5 are required, which can be branched off the BPG.

325

The precision the input probabilities can be adjusted is 0.0625. This value has
proved to be sufficient. since fault detection probabilities depend linearly on the
input sinal probabilities [Wu86).

4.3 The Independency of the test vectors

The results of PROTEST are computed under the assumption of independent
values for logiC "1" and "0" between each position of the test patterns. The
correlations between those pOSitions should be minimized. These correlations
heavily depend on the choice of the sampling points of the BPG.

The algorithm to determine such pOints. yields in pairs minimized correlations.
A good choice are such feedback points whose summarized distancies yield a
maximum value. Because sampling points must also be feed back points. the
number of feed backs of the BPG is maximized with regard to the resulting
maximal period. which has to be long enough. The algorithm is described in detail
in [KuWu84). the whole test hardware is illustrated in the example (fig. 5.3).

4.4 The aeneration of the probabilities

Let us assume. probabilities of 0.25 (twice). 0.75. 0.375. 0.625. 0.8125 and
0.1875 are required. Figure 4.3 shows the structure of the corresponding
"register chain". consisting of 3 "register classes".

11(0.5)

12(0.5) 13(0.5) 14(0.5)

Fig. 4.3: An example of a "register chain"

All the 4 inputs 11 .. 14 have the probability 0.5 and are originated in the BPG. In
order to be independent within each register class and between the other
classes. it is necessary to feed back the register classes. The amount of register
classes determines the amount of the additional EXOR gates.

To generate all the possible 14 specific probabilities. 4 register chains are
necessary containing 7 register classes. Each of those probabilities is generated
only once and is marked in the tree (fig. 4.2). This guarantees that by each new
register chain a probability of the tree is generated which is not marked up to
this pOint.

326

5,0 An example

Currently we are synthesizing a PROLOG processor based on Warren's "abslract
PROLOG machine" [TiWa84). An important condition which must be evaluated very
efficiently is the so called "trail"-condition:

IF (A< B) OR (A>CANDA<D)THEN . . .

This condition decides the binding of variables and is based on the 16·bit
pointers A, S, C and D pointing to different stacks. The structure which is
automatically generated by our synthesis system is described in fig. 5.1 .

D 1(1..- C • B A
+ , + + +

REGISTER I REGISTER I REGISTER I l- I- REGISTER &ale

I CON·
+ + + • TROL

3:1-MUX ::>. , 2:1-MUX
16,; 16 , + + "

<XM'ARATCJ

r-
LJ=

I I
+ output

Fig. 5.1 : Block diagram of the circuit

The final result of the comparisons is valid at the end of the third clock phase
after the input data are valid. The control part consists of 2 D-flipflops and has
three states. The transistor count of the combinational part of the circuit is
about 3.600.

327

5.1 testability analysis and optimlzatjon

The test by conventional random patterns with signal probability 0.5 results in
only a poor testability of the circuit. In order to detect all the detectable faults
with confidence 0.99, PROTEST determines 1.5 • 107 test patterns.

The optimization procedure of PROTEST sets the tnput signal probabilities to
specific values. In the optimized case PROTEST requires a necessary test length
of only 6.170 test patterns.

5.2 The static fault simulation

In order to validate the results of PROTEST the circuit was simulated by two
random pattern sets, one of them with signal probabilities 0.5, the other with
the proposed optimized probabilities.

fault
coverage [%1

100

90

80

70
60

1

I . not optimized

optimized

pattern
-'-"+C-J'---i----'I-+-+--+---!--I--+-" count

2

Fjg. 5.2: Fault coverage vs. pattern count

Figure 5.2 shows the results of the fault simulation with pattern sets of length
6.000. While the optimized patterns detected 98% of all the faults the not
optimized patterns reached only a fault coverage of 89%.

328

5,3 The test pattern generator

As decribed in section 4, a feedback shift register can be configured to generate
the required signal probabilities. Figure 5.3 shows the register chains of the
test hardware with the numbers and values of the required probabilities. The 8
inputs in11 , ...• in14,in21in24 are originated in the BPG. which generates the
necessary probabilities of 0.5.

in11(0.5) Stimes 4 times 34 times 4 times

in12(0.5) in13(0.5) in14(0.5)

REGISTER CHAIN 1

in21 (0.5)
in22(0.5)

in23(O.5)

REGISTER CHAIN 2

Fig. 5.3: The test hardware to generate specific probabilities

6,0 Conclusions and fyrther research

The integration of design and test into one design environment was described.
The aim is a completely automatic synthesis of integrated circuits from a
behavioural level specification including test hardware and generating also the
test patterns. A small example showed some advantages of the applied
techniques.

Further research is focused especially on the implementation of a more efficient
optimization including a flexible technology dependent rule base. Expert system
concepts influence not only the design but also the test in our system. We are
planning an expert system that effectively supports the selection of an

329

appropriate test strategy, e.g. self-test or not, circuit partitioning, random or
deductive test pattern generation, etc.

The development of some large applications like a Motorola 68000 processor and
Warren's Prolog machine are being used to validate the system and to improve
its performance.

Literatur

[Berg85 J T. Bergstraesser: Entwurf eines modifizierten
Zufallsmustergenerators, Studienarbeit, Universitaet Karlsruhe,
Informatik IV, September 1985

[CaTr84 J R. Camposano, L. Treff: STRUDEL: Eine Sprache zur Spezifikation
der Struktur digitaler Schaltungen Interner Bericht Nr.7/84,
Fakultaet fuer Informatik, Universitaet Karlsruhe, 1984

[CaWe84 J R. Camposano, R. Weber: DSL - Eine Sprache zur Spezifikation
digitaler Schaltungen Interner Berich!, Fakultaet fuer
Informalik, Universitaet Karlsruhe, 1984

[CKR84 J R. Camposano, A. Kunzmann, W. Rosensliel: Automatic Data Path
Synthesis from Behavioural Level Descriptions in DSL VLSI:
Algorithms and Architectures, Edited by P. Bertolazzi, F. Lucio
North Holland, 1985

[DaJoSO J J.A. Darringer, W.H. Joyner: A New Look at Logik Synthesis,
17th Design Automation Conference, Minneapolis, Minnesota,1980

[DPST81 J SW. Director, A.C. Parker, D.P. Siewiorek, D.E. Thomas: A Design
Methodology and Computer Aids for Digital VLSI Systems,
IEEE Transactions on Circuits and Systems, Volume CAS-28,
Number 7, July 1981

[DSST82 J SW. Director, J.P. Shen, D.P. Siewiorek, D.E. Thomas: The CMU
DNCAD Project Research Report No. CMUCAD-82-2, SRC-CMU
Center for Computer-Aided Design, Carnegie-Mellon University,1982

[GHHS84 J E. Goettler, L. Haschigh, E. Hoerbst, G. Sandweg: Entwicklung von
kundenspezifischen Schaltungen, Elektronik, Hefte 19 - 22, 1984

[Goel81 J P. Goel: An implicit enumeration algorithm to generate tests
for combinational logic circuits,
IEEE Trans. on Computers, Vol. G-30, No.3, March 1981

330

[Kowa84] T.J. Kowalski: The VLSI Design Automation Assistant:
A Knowledge-Based Expert System, Research Report
No. CMUCAD-84-29, Carnegie-Mellon University, April 1984

[HeLe83] J.H. Heckmaier, D. Leisengang: Fehlererkennung mit
Signaturanalyse Elektronische Rechenanlagen, 1983, Heft 3

[KMZ79] B. Koehnemann, J. Mucha, G. Zwiehoff: Built-In Test for Complex
Digital Integrated Circuits, In!. Test Conference 1979,pp.37-41

[KuWu84] A. Kunzmann, H.-J. Wunderlich : Steigerung der Effizienz beim
Test mit Zufallsmustern, Interner Bericht Nr. 19, Fakultaet fuer
Informatik der Universitaet Karlsruhe, November 1984

[KuWu85] A. Kunzmann, H.-J. Wunderlich: Design Automation of Random
Testable Circuits, Proc. ESSCIRC 1985, Toulouse

[Pasch85] R. Paschalaki: Lokale Optimierungen im DSL-Synthesesystem,
Studienarbeit, Institut fuer Informatik IV,
Universitaet Karlsruhe, 1985

[Rose84] W. Rosenstiel : Synthese des Datenflusses digitaler Schaltungen
aus formalen Funktionsbeschreibungen, Dissertation, Fakultaet
fuer Informatik, Universitaet Karlsruhe, VDI-Verlag, 1984

[TiWa84] E. TIck, D.H.D. Warren: Towards a Pipelined Prolog Processor
New Generation Computing, 2, 1984

[Tris84] E. Trischler: An Integrated Design for Testability and
Automatic Test Pattern Generation System: An Overview,
21th Design Automation Conference, 1984

[Ullm84] J.D. Ullmann: Computational Aspects of VLSI,
Computer Science Press, 1984

[Wu84] H. -J. Wunderlich: Statistical Analysis of Combinational
Networks, Interner Bericht Nr. 18, Fakultaet fuer Informatik,
Universitaet Karlsruhe, August 1984

[Wu85] H.-J. Wunderlich: PROTEST: A Tool for Probabilistic Testability
Analysis, Proc. of the 22nd Design Automation Conference, June
1985, Las Vegas

[Zipp83] R. Zippel: An Expert System for VLSI Design,
IEEE Conference on Circuits and Systems, 1983

331

