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Abstract 

This paper describes the integration of new tools for both test and synthesis of 
integrated circuits . The presented design system CADDY (Carlsruhe Digital 
Design System) automatically transforms a functional description into a circu it 
structure. Besides this logic synthesis the system also automatically integrates 
a complete or incomplete scan path. The software tool PROTEST (PRObabilistic 
TESTability analysis tool) determines the random testability of the 
combinational parts of synthesized circuits and suggests optimized input signal 
probabi lities to minimize the necessary test length. To generate these test 
patterns on chip a specific test hardware is proposed. 

1.0 Introduction 

The main purpose of the CADDY-system, described in section 2, is the automatic 
synthesis combined with automatic design for testability (ADFT) from a 
behavioural level description language as input (fig. 1.1). By generating circuits 
with integrated test hardware CADDY ensures, that the final resulting circuit is 
still correct by construction . Testability is aChieved by including Automatic 
Test Pattern Generation (ATPG). 

ThiS paper is the fin al form and no version of it 
Will be submitted for publication elsewhere . 
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Fig. 1,1; The basic structure of the synthesis system 

The increasing complexity of integrated circuits enhances the importance of 
testing by random patterns. ATPG by deductive procedures, even by modern 
algorithms like PODEM [GoeI81], is one of the most computing time consuming 
tasks in VLSI design. The reduction of the ATPG effort by transforming 
sequential circuits into combinational ones (e.g. by scan path, scan set, LSSD) 
oiten results in "too large" combinational circuits. Test pattern generation for 
integrated circuits with about 50.000 transistors requires already a computing 
time of some days [GoeI81]. 

The test of digital systems by random patterns allows to dispense with the 
generation of test patterns based on a description of the circuit structure. To 
analyse the random testability of circuits , the software tool PROTEST 
(Probabilistic Testability Analysis) was developed. In section 3 some basic 
algorithms and features are presented. 

In section 4 the integration of complete and incomplete scan paths is described. 

One of the most important features of PROTEST is that random patterns can be 
optimized for specific combinational circuits. The result of the optimization is 
a vector, assigning a specific probability between [0 ,1] to each primary input of 
the circuit. This yields a higher fault grading by a simultaneously minimized 
number of test patterns compared to the conventional random test with test 
patterns of the probability 0.5. In section 5 feed back shift registers are 
described, generating those adjusted test patterns and performing signature 
analysis. 
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The main tasks of the synthesis system are depicted in figure 1.2. 
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Fig. 1.2: Main tasks of test and synthesis 

At the end of the paper an example is presented to demonstrate the integration 
of the synthesis system and PROTEST, also generating the optimized 
probabilities. The results are validated by a static fault simulation. 

2,0 Synthesis 

High level synthesis gains increasing importance in the design of integrated 
circuits . Synthesis keeps away the details of the geometrical and electrical 
level and - more advanced - even the logical details from the designer. High 
level synthesis allows complete design automation from a behavioural 
specification to the layout. Therefore it is especially well suited for the rapid 
prototyping of hardware. 

Other advantages of automatic synthesis are less need for design verification 
through correctness by construction and the availability of Ie-technology to the 
non-expert designer. This offers not only economic advantages but also the 
possibility of protecting know-how. 

Several approaches of high level synthesis systems have been reported over the 
last years, their lack of efficiency prevents their use in an industrial 
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environment [UllmB4]. [CKRB4]. [DPSTB1]. [DSSTB2]. [KowaB4]. In our synthesis 
system we concentrated on the optimization of the synthesis algorithms during 
the last years [RoCaB5]. They are mainly based on data flow analysis [RoseB4]. 
The optimizations include 

- minimization of storing elements. 
- loop optimization. 
- global trade-ofts of concurrency and area and 
- rule based local transformations 
[DaJoBO].[PaschB5].[ZippB3]. 

2.1 The specification langyage 

The most important features of the specification language DSL (.Q.ig ital system 
language) [CaWeB4] which we use as input language for our 

synthesis system are: 

- A DSL program may include one applicative part and many imperative 
processes: 
Global actions not constrained to a certain point in time. such as resets . 
interrupts. etc. are naturally specified in the appljcative part. Sequential 
algorithms. finite automata and sequential behaviour in general are simply 
described by imperative processes. 

- Concurrency can be specified in DSL both at the level of single operations and 
between imperative processes. 

- Modularity and hierarchy in DSL is supported by a powerful abstraction 
mechanism. Like an abstract data type a DSL-module is defined by its interface 
(inputs and outputs) and the different functions which are available from the 
outside. 

- The delay of single operations or of groups of operations can be specified in 
absolute time or in clock cycles. This feature allows to specify timing 
restrictions for the synthesis. 

- In addition. global restrictions of timing. chip area. electrical parameters etc. 
can be specified in the overall part of a DSL program. 

2.2 Synthesis algorithms 

In our synthesis algorithms different techniques are combined. Data flow 
analysis is used to minimize the storing elements. Symbolic execution allows 
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the optimization of loops. By heuristic approaches and by some ideas from expert 
systems local and global optimizations of the synthesized structures are 
performed. 

Synthesis starts from the internal representation of the behavioural 
specification - the so called Flow graph - which is generated by the OSL 
compiler. In detail the Flow graph combines three different types of arcs sharing 
the operators as common nodes. The different arc types correspond to 

- the predecessor-successor relation of operations, 
- the connectivity relation of the operators by the operands and 
- the timing constraints between operations. 

The main synthesis steps consists of the data flow and control generation, the 
global and local optimization and finally the component binding. The generation 
of the control and the dataflow is described in in detail in [Rose84j. A summary 
can be found in [RoCa85j. 

Our efforts in the field of optimization should be briefly discussed here. The two 
main concepts are global and local optimization. Some examples of so called 
global optimizations are 

- evaluation of constant expressions only once 
- detection of common subexpressions 
- extraction of loop independent parts out of loops 
- "folding" of different occurrences of the same operator to only one 

component 
- realization of similar operators by an universal component (ex. ALU) 
- life time analysis to share registers 

Local optimizations include basic logical transformations at the 
NANO/NORIANO/OR/NOT level, where about 20 rules are implemented mainly 
based on [OaJ080j. Very effective are also local transformations on a higher 
level based on components (COM) like adders, counters, multiplexers (MUX), 
registers (REG), comparators etc. An example is given by figure 2.1. 

y 
Z 

Fig. 2.1; Example for local transformations 
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All the different optimization steps can be performed in any ordering and any 
cycles. Evaluation procedures allow backtracking to optimize the trade-off 
between chip area and speed requirements. 

The last synthesis step is the so called component binding [RoCa85). During this 
phase the optimized synthesis results. which are still technology independent. 
have to be mapped to technology specific components. Instead of using a fixed 
set of layout modules in a "closed" library the synthesis invokes structure 
generators that provide a practically unlimited number of building blocks. The 
structure generators are parametrized by the number of inputs and outputs. 
speed and area requirements. Structure generators are available for registers 
(with and without scan-path). adders (ripple carry or carry look-ahead). ALU·s. 
multiplexers. decoders. gates. drivers etc. Actually our structure generators 
provide an interface to the gate array. standard cell and general cell system 
VENUS from the SIEMENS AG [GHHS84). For a given structure VENUS generates a 
complete layout by automatic placement and routing. Currently we are 
interfacing our synthesis system with different silicon compilers. 

3.0 The probabilistic testability analysis tool PRQTEST 

The aim of the synthesis is to achieve the generation of testable circuits . All 
the automatic design for testability (ADFT) tools. described in section 4. can be 
controlled by the probabilistic testability analysis tool PROTEST. In the 
following all the essential features of this tool are summarized. details are 
given in [KuWu85).[Wu85). 

3.1 Estimation of the signal and fault detection probabilities 

Since computing signal probabilities is NP-hard [WuB4). PROTEST estimates the 
signal probabilities for each internal node of the network with linaer effort. 
based on the specific signal probabilities at the primary inputs of a 
combinational circuit. 

For the faults of the circuit. the probability is estimated. that a random pattern 
with a specific input signal probability detects this fault. To compute those 
estimations PROTEST offers some possibilities. which differ concerning their 
computing effort and attainable preciSion. respectively : it can be estimated. 
that the values of the faulty and fault-free circuit differ if a random pattern is 
applied or one can only apply a simple modeling of the signal flow [WU85). 

322 



3.2 Computing the test length 

Based on the fault detection probabilities PROTEST determines the number N of 
test patterns in order to achieve a required fault coverage with a demanded 
confidence. Let Pf be the probability that a fault fE F is detected by a random 
pattern. The probability P that all faults of F are detected by N random patterns 
can be computed by [Wu84] 

(1) P:= IT (1-(1-Pf}N). 
f E F 

It is assumed. that the detection of some faults forms statistically independent 
events, which is asymptotically fullfilled by increasing N. 

3,3 Optimizing the Input signal probabilities 

During a conventional random test all the input probabilities are 0.5. Let 
X:=<pjli E I> E [0,1]1 be a tupel that assigns for each primary input a specific 
signal probability and for each fault a detection probability Pf(x}. Then 

(2) IN(X) := 1T (1-(1-Pf(X))N) 
f E F 

is the probability, that N random patterns with input signal probability X detect 
all the faults of the circuit. PROTEST includes a heuristic procedure to 
determine a X with maximum IN' 

in order to validate the predicted detection probabilities, test lengths and fault 
coverages, PROTEST offers a package for static fault simulation. A static 
simulation is sufficient, since the synthesized circuits are synchroneous, and 
therefore time delays need not to be regarded. 

3.4 Complete and Incompiete scan paih 

The synthesiS system generates pure synchroneous, sequential circuits . An 
obvious way to achieve a structure, PROTEST can deal with is the use of the scan 
design technique. 

The complete scan path and the test control are impiemenied on the chip in a 
straightforward way, which is described in [KuWu85]. Deterministic or random 
generated test patterns are sequentially shifted in and test results are shifted 
out simultaneously. Each of those steps is followed by a single propagation step. 
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A further test option determines the synthesis of circuits with an incomplete 
scan path. The goal is to include the minimum number of storage elements into 
the scan path. that yields a sequential circuit of a given depth O. This depth is 
defined as the maximum number of connected storage elements between any two 
scan path elements. 

The sequential depth 0 determines the extent of the resulting iterative 
combinational network. which is in the order of 20 'n. n is the gate number of 
the original network. 

Identifying the minimum number of storage elements can be reduced to 
well-known partition problems of graph theory. The basic graph contains the 
dependencies between the storage elements of the circuit. It indicates whether 
there exists a direct or indirect (through combinational elements) connection 
between any two storage elements. 

4.0 Feedback shift register configuration 

The implementation of a special test pattern generator (TPG) is necessary. to 
obtain the proposed probabilities at each primary input of the combinational 
network. Signature analysis (SA) must be performed either. BILBOs (Buill in 
Logic Block Observers) [KMZ79] realize both TPG and SA. but only if probabilities 
of the input signals of 0.5 are needed. 

The following chapter outlines the necessary modifications and extensions of 
BILBOs. in order to dispense with this restriction. 

4.1 The length of the basic test pattern generator (BPG) 

The number of the required test patterns determines the length of a feedback 
shift register: a linear feedback shift register (LFSR) of length N can generate up 
to 2N_1 different test patterns [HeLe83]. Figure 4.1 shows the typical structure 
of a LESR. 
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Fig. 4.1; Structure of a LFSR 

Such a LFSR is one part of the needed test hardware. the so called "basic pattern 
generator" (BPG). AU the generated TPs have the probability 0.5 at each position. 

4.2 The offered probabilities 

At this point we have a certain amount of 1-bit-registers which are logical "1" 
with the probability of a half. These are the basis to generate the required 
probabilities unequal 0.5. Figure 4.2 shows the probabilities, the proposed test 
hardware can produce and the correspondent logic operations (ANDfOR) to 
generate those values. 

(p=0.5) 
10.1"3 1 0.5625 

A 0.25 1 N 0.3125 
D 1 0.625 1 n .R1:>S 

0.5 ... 

0 1 0.375 I I Q.Hlf!l 
0.6875 R 1 0.75 1 

'I 0.875 1 U,4;:J(O 
(p=0.5) 0.9375 

Fig, 4,2; Probabilities and their generation 

For example in order to generate logical "1" with the probability 0.4375, you 
need a 3-input-OR with input probabilities of 0.5 and a 2-input-AND. The inputs 
into this gate are the result of the OR-gate (0.875) and a probability of 0.5. In 
summary, 4 probabilities of 0.5 are required, which can be branched off the BPG. 

325 



The precision the input probabilities can be adjusted is 0.0625. This value has 
proved to be sufficient. since fault detection probabilities depend linearly on the 
input sinal probabilities [Wu86). 

4.3 The Independency of the test vectors 

The results of PROTEST are computed under the assumption of independent 
values for logiC "1" and "0" between each position of the test patterns. The 
correlations between those pOSitions should be minimized. These correlations 
heavily depend on the choice of the sampling points of the BPG. 

The algorithm to determine such pOints. yields in pairs minimized correlations. 
A good choice are such feedback points whose summarized distancies yield a 
maximum value. Because sampling points must also be feed back points. the 
number of feed backs of the BPG is maximized with regard to the resulting 
maximal period. which has to be long enough. The algorithm is described in detail 
in [KuWu84). the whole test hardware is illustrated in the example (fig. 5.3). 

4.4 The aeneration of the probabilities 

Let us assume. probabilities of 0.25 (twice). 0.75. 0.375. 0.625. 0.8125 and 
0.1875 are required. Figure 4.3 shows the structure of the corresponding 
"register chain". consisting of 3 "register classes". 

11(0.5) 

12(0.5) 13(0.5) 14(0.5) 

Fig. 4.3: An example of a "register chain" 

All the 4 inputs 11 .. 14 have the probability 0.5 and are originated in the BPG. In 
order to be independent within each register class and between the other 
classes. it is necessary to feed back the register classes. The amount of register 
classes determines the amount of the additional EXOR gates. 

To generate all the possible 14 specific probabilities. 4 register chains are 
necessary containing 7 register classes. Each of those probabilities is generated 
only once and is marked in the tree (fig. 4.2). This guarantees that by each new 
register chain a probability of the tree is generated which is not marked up to 
this pOint. 
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5,0 An example 

Currently we are synthesizing a PROLOG processor based on Warren's "abslract 
PROLOG machine" [TiWa84). An important condition which must be evaluated very 
efficiently is the so called "trail"-condition: 

IF (A< B) OR (A>CANDA<D)THEN . . . 

This condition decides the binding of variables and is based on the 16·bit 
pointers A, S, C and D pointing to different stacks. The structure which is 
automatically generated by our synthesis system is described in fig. 5.1 . 

D 1(1..- C • B A 
+ , + + + 

REGISTER I REGISTER I REGISTER I l- I- REGISTER &ale 

I CON· 
+ + + • TROL 

3:1-MUX ::>. , 2:1-MUX 
16,; 16 , + + " 

<XM'ARATCJ 

r-
LJ= 

I I 
+ output 

Fig. 5.1 : Block diagram of the circuit 

The final result of the comparisons is valid at the end of the third clock phase 
after the input data are valid. The control part consists of 2 D-flipflops and has 
three states. The transistor count of the combinational part of the circuit is 
about 3.600. 
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5.1 testability analysis and optimlzatjon 

The test by conventional random patterns with signal probability 0.5 results in 
only a poor testability of the circuit. In order to detect all the detectable faults 
with confidence 0.99, PROTEST determines 1.5 • 107 test patterns. 

The optimization procedure of PROTEST sets the tnput signal probabilities to 
specific values. In the optimized case PROTEST requires a necessary test length 
of only 6.170 test patterns. 

5.2 The static fault simulation 

In order to validate the results of PROTEST the circuit was simulated by two 
random pattern sets, one of them with signal probabilities 0.5, the other with 
the proposed optimized probabilities. 

fault 
coverage [%1 

100 

90 

80 

70 
60 

1 
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optimized 

pattern 
-'-"+C-J'---i----'I-+-+--+---!--I--+-" count 

2 

Fjg. 5.2: Fault coverage vs. pattern count 

Figure 5.2 shows the results of the fault simulation with pattern sets of length 
6.000. While the optimized patterns detected 98% of all the faults the not 
optimized patterns reached only a fault coverage of 89%. 
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5,3 The test pattern generator 

As decribed in section 4, a feedback shift register can be configured to generate 
the required signal probabilities. Figure 5.3 shows the register chains of the 
test hardware with the numbers and values of the required probabilities. The 8 
inputs in11 , ...• in14,in21 ... .in24 are originated in the BPG. which generates the 
necessary probabilities of 0.5. 

in11(0.5) Stimes 4 times 34 times 4 times 

in12(0.5) in13(0.5) in14(0.5) 

REGISTER CHAIN 1 

in21 (0.5) 
in22(0.5) 

in23(O.5) 

REGISTER CHAIN 2 

Fig. 5.3: The test hardware to generate specific probabilities 

6,0 Conclusions and fyrther research 

The integration of design and test into one design environment was described. 
The aim is a completely automatic synthesis of integrated circuits from a 
behavioural level specification including test hardware and generating also the 
test patterns. A small example showed some advantages of the applied 
techniques. 

Further research is focused especially on the implementation of a more efficient 
optimization including a flexible technology dependent rule base. Expert system 
concepts influence not only the design but also the test in our system. We are 
planning an expert system that effectively supports the selection of an 
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appropriate test strategy, e.g. self-test or not, circuit partitioning, random or 
deductive test pattern generation, etc. 

The development of some large applications like a Motorola 68000 processor and 
Warren's Prolog machine are being used to validate the system and to improve 
its performance. 
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