
Simulation on Reconfigurable Heterogeneous Architectures

Dipl.-Inf. Alexander Schöll, Prof. Dr. Hans-Joachim Wunderlich

Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany

Motivation

■ Emerging: **Heterogeneous computer architectures**

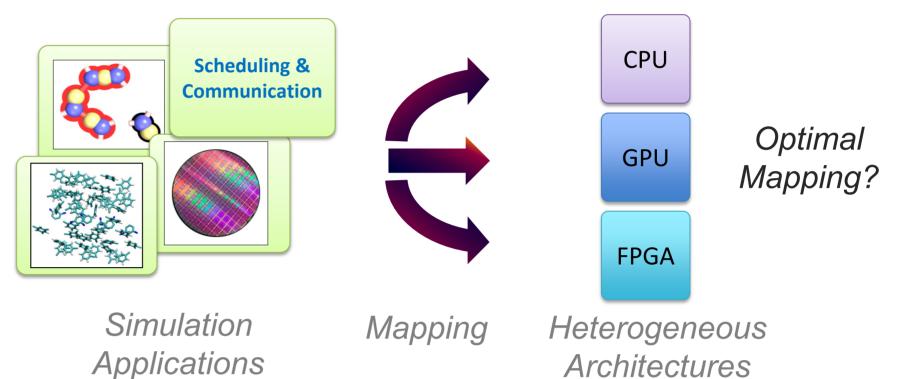
Overview of current heterogeneous architectures

Goal

Continuum Model

 Fast and fault-tolerant execution of simulation applications on runtime reconfigurable heterogeneous computer architectures

Molecular Model


Challenges

Reliability

- Simulation applications are often executed for days and months CMOS devices, manufactured in 14nm technology and below:
 - vulnerable to transient effects, process variations and latent defects, as well as stress and aging mechanisms
- Fault-tolerant execution, memories and communication are required
 - Focus: Fault-tolerant simulation algorithms

Achieving optimal performance

Performance depends on the combination of implementation and utilized architecture

Current Work

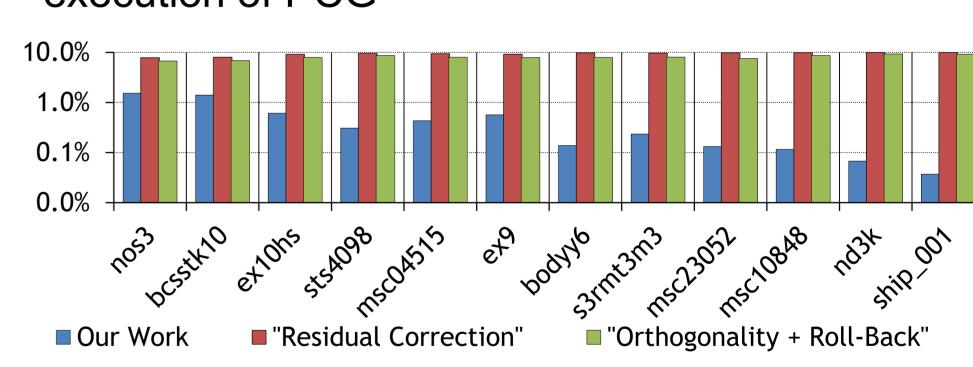
Efficient Fault-Tolerance for the Preconditioned Conjugate Gradient Method (PCG)^[1,2]

PCG is one of the most popular sparse linear system solvers (Ax = b)

Motivation

- Widely used in structural mechanics, computational fluid dynamics, electronic design automation
- PCG is still vulnerable to transient errors
 - Single errors may significantly increase computation times and **corrupt** the computed solution without indication to the user

Method: Error Detection


Exploitation of global orthogonality and residual relationships to derive an efficient error detection method

Method: Error Correction

- Adaptive error correction scheme
 - The **detected corruption** is evaluated and the most promising error correction technique is selected:
 - **Online** Correction
 - Complete or corrective rollback

Experimental Results

Experiments: Evaluation of **runtime overhead** for error detection compared to unprotected execution of PCG

Current Collaborations

Adaptive Parallel Simulation of a Two-Timescale Model for Apoptotic Receptor-

Clustering on GPUs^[4]

Cooperation with M. Daub • G. Schneider

Acceleration of Markov-Chain Monte-Carlo Molecular Simulations^[3]

Vulnerability of Multiscale and Multiphysics

Simulation Algorithms

■ Goal: Fault-tolerant techniques tailored to

multiscale/multiphysics algorithms

■ Now: Investigation of reliability issues

Model Coupling

Case Study: Multi-Scale Simulation of Materials

Cooperation with J. Castillo • J. Groß

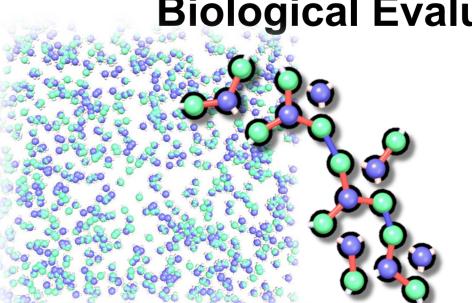
- Marcov-Chain Monte-Carlo (MCMC) simulations are the core of many tasks in thermodynamics
- Problem: Inherent serial dependencies make this method very hard to parallelize
- MCMC molecular simulation has been mapped to GPUs, exploiting parallel energy calculations and speculative evaluation of

Monte-Carlo moves ■ Speedups of up to 400x

Motivation

- Deeper understanding necessary for the activation of apoptosis (I.e. Decomposition of cells in multi-cellular organisms)
- **Simulation**: Dominated by extensive computing times
 - Large numbers of simulations required to draw reliable conclusions

Goals


- Reduction of computation time
- to obtain extensive and detailed conclusions about the clustering behavior

Computational Performance Results

Reduction of simulation time from hours to seconds

Computation times with different numbers of parallel instances on multiple GPUs					
Parallel Simulation Instances	4	8	16	24	32
Previous work (s)	2082	3045	5203	7591	9778
This work (s)	12	17	30	43	57
Setup with 2496 monomer, 2496 dimer and 1	1344 ligand	particles.			

Biological Evaluation

Evolution of ligand-receptor clusters in less than 0.5s

- A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, "Efficient On-Line Fault-Tolerance for the Preconditioned Conjugate Gradient Method", in Proceedings of the IEEE International On-Line Testing Symposium (IOLTS'15), Elia, Halkidiki, Greece, 6.-8. July 2015, pp. 95-100.
- A. Schöll, C. Braun, M. A. Kochte, and H.-J. Wunderlich, "Low-Overhead Fault-Tolerance for the Preconditioned Conjugate Gradient Solver", in Proceedings of the IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT'15), Amherst, MA, USA, 12.-14. October 2015, pp. 60-66.

C. Braun, S. Holst, J. Castillo, J. Groß, and H.-J. Wunderlich, "Acceleration of Monte-Carlo Molecular Simulations on Hybrid Computing Architectures", in Proceedings of the 30th IEEE International

Conference on Computer Design, ICCD'12, Montreal, Canada, 30. September-3. October 2012, pp. 207-212. A. Schöll, C. Braun, M. Daub, G. Schneider, and H.-J. Wunderlich, "Adaptive Parallel Simulation of a Two-Timescale Model for Apoptotic Receptor-Clustering on GPUs", in Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2014, Belfast, UK, 2.-5. November, 2014, pp. 424-431.