

Simulation on Reconfigurable Heterogeneous Architectures

Prof. Dr. Hans-Joachim Wunderlich, Dipl.-Inf. Alexander Schöll

Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Germany

Motivation

■ Heterogeneous computer architectures are integrated into single chips

Overview of current heterogeneous architectures

Upcoming: Reconfigurable Heterogenous Computer Architectures

Molecular Model

Vulnerability of Multiscale and Multiphysics

Simulation Algorithms

■ Goal: Fault-tolerant techniques tailored to

multiscale/multiphysics algorithms

Now: Investigation of reliability issues

Model Coupling

Case Study: Multi-Scale Simulation of Materials

Goal

Continuum Model

 Fast and reliable execution of simulation applications on innovative reconfigurable heterogeneous computer architectures

Challenges

- Reliability
 - Simulation applications are often executed for days and months
 CMOS devices, manufactured in 12nm technology and below:
 - vulnerable to transient effects, process variations and latent defects, as well as stress and aging mechanisms
 - Fault-tolerant execution, memories and communication are required
 - Focus: Fault-tolerant simulation algorithms
- Achieving optimal performance
 - Performance depends on the combination of implementation and utilized architecture

Current Work

Efficient Fault-Tolerance for the Preconditioned Conjugate Gradient Method (PCG)

Motivation

- PCG is one of the most popular sparse linear system solvers (Ax = b)
 - Widely used in structural mechanics, computational fluid dynamics, electronic design automation
- PCG is still vulnerable to transient errors
 - Single errors may significantly increase computation times and corrupt the computed solution without indication to the user

Method: Error Detection

Exploitation of global orthogonality and residual relationships to derive an efficient error detection method

Method: Error Correction

- Adaptive error correction scheme
 - Dependent on the detected corruption an online correction
 - ... or a rollback recovery is performed

Experimental Results

■ Experiments: Random injection of bit flips and comparison against error-free execution ()

Current Collaborations

Adaptive Parallel Simulation of a Two-Timescale Model for Apoptotic Receptor-Clustering on GPUs^[1]

Cooperation with M. Daub • G. Schneider

Motivation

- Apoptosis: Structured decomposition of damaged or infected cells in multi-cellular organisms
- Deeper understanding of the activation necessary
- Simulation: Dominated by extensive computing times
 - Significant computational requirements
 - Large numbers of simulations required to draw reliable conclusions

Goals

- Reduction of computation time
- to obtain extensive and detailed conclusions about the clustering behavior

Methods

- Simulation on multiple time scales for optimal balance between biological process resolution and computation costs
- Separation of particle dynamics
 - Adaptive refinement of time steps on each timescale in case of violations

Mapping of particle simulation to heterogeneous architectures

Computational Performance Results

Reduction of simulation time from hours to seconds

Computation times with different numbers of parallel instances on multiple GPUs					
Parallel Simulation Instances	4	8	16	24	32
Previous work (s)	2082	3045	5203	7591	9778
This work (s)	12	17	30	43	57
Setup with 2496 monomer, 2496 dimer and 1344 ligand particles.					

Biological Evaluation

Temporal evolution of ligand-receptor clusters in less than 0.5s

