Zur Webseite der Uni Stuttgart

FAST – Zuverlässigkeitsbewertung durch „Faster-than-at-Speed Test“

seit 02.2017, DFG-Projekt: WU 245/19-1   

Moderne Fertigungstechnologien in der Nanoelektronik integrieren Milliarden von Transistoren mit Abmessungen von 14 Nanometern und darunter in einem Chip. Dies ermöglicht grundlegend neue Herangehensweisen und Lösungen in vielen Bereichen, bringt aber gleichzeitig fundamentale Herausforderungen mit sich. Ein zentrales Problem sind Frühausfälle, die immer wieder Rückrufaktionen erfordern und dadurch Kosten in Milliardenhöhe verursachen. Ein wichtiger Grund hierfür sind sogenannte schwache Schaltungsstrukturen, die zwar bei der Inbetriebnahme funktionieren, aber der späteren Belastung im Betrieb nicht gewachsen sind. Während sich andere Ausfallursachen, wie etwa Alterung oder externe Störungen durch einen robusten Entwurf bis zu einem gewissen Umfang kompensieren lassen, müssen drohende Frühausfälle durch Tests erkannt und betroffene Systeme aussortiert werden. Dazu werden Verfahren benötigt, die weit über den heutigen Stand der Technik hinausgehen.

Da die schwachen Schaltungsstrukturen unter Betriebsbedingungen zunächst korrekt funktionieren, müssen sie anhand nichtfunktionaler Indikatoren identifiziert werden. Neben dem Stromverbrauch im Ruhezustand und bei Schaltvorgängen sowie dem Verhalten bei variierender Betriebsspannung gehört das Zeitverhalten zu den wichtigsten Zuverlässigkeitsindikatoren. Im Hochgeschwindigkeitsbetrieb können kleine Abweichungen im Zeitverhalten einzelner Transistoren gemessen und als Fehlerindikator verwendet werden. Da hierfür ein Mehrfaches der eigentlichen Betriebsfrequenz angelegt werden muss, lassen sich herkömmliche Testmethoden nur sehr eingeschränkt einsetzen. Stattdessen müssen in folgenden drei Bereichen neue Methoden entwickelt und untersucht werden:

  1. Die Schaltung muss mit besonderen Ausstattungen für den prüfgerechten Entwurf (Design for Test / DFT) und den Selbsttest versehen werden, die auch bei Frequenzen jenseits der funktionalen Spezifikation arbeiten können.
  2. Der Testablauf muss so geplant werden, dass bei einer möglichst geringen Zahl von Testfrequenzen eine maximale Fehlererfassung in kurzer Zeit möglich wird.
  3. Mit einer geeigneten Metrik müssen quantitative Aussagen über die Erfassung möglicher schwacher Schaltungsteile getroffen werden. Eine besondere Schwierigkeit liegt hier in der Unterscheidung zwischen tatsächlich fehleranfälligen Strukturen und Abweichungen aufgrund zunehmender Variationen in der Nanoskalierung.

Da ein Hochgeschwindigkeitstest ganz besondere Anforderungen an externe Testautomaten stellt, ist es wesentlich, ihn durch eingebauten Selbsttest (Built-in Self-Test / BIST) zu unterstützen und auszuführen.

Mit der Lösung der drei genannten Probleme wird den immens steigenden nicht mehr wirtschaftlichen Kosten bei der Inbetriebnahme nanoskalierter Systeme, etwa durch „Burn-in“-Tests, begegnet und deren Einsatz in neuen Anwendungsbereichen unterstützt.

 

Publikationen

Journale und Tagungsberichte
Matching entries: 0
settings...
1. Aging Monitor Reuse for Small Delay Fault Testing
Liu, C., Kochte, M.A. and Wunderlich, H.-J.
Proceedings of the 35th VLSI Test Symposium (VTS'17), Caesars Palace, Las Vegas, Nevada, USA, 9-12 April 2017, pp. 1-6
2017
DOI PDF 
Keywords: Delay monitoring, delay test, faster-than-at-speed test, stability checker, small delay fault, ATPG
Abstract: Small delay faults receive more and more attention, since they may indicate a circuit reliability marginality even if they do not violate the timing at the time of production. At-speed test and faster-than-at-speed test (FAST) are rather expensive tasks to test for such faults. The paper at hand avoids complex on-chip structures or expensive high-speed ATE for test response evaluation, if aging monitors which are integrated into the device under test anyway are reused. The main challenge in reusing aging monitors for FAST consists in possible false alerts at higher frequencies. While a certain test vector pair makes a delay fault observable at one monitor, it may also exceed the time slack in the fault free case at a different monitor which has to be masked. Therefore, a multidimensional optimizing problem has to be solved for minimizing the masking overhead and the number of test vectors while maximizing delay fault coverage.
BibTeX:
@inproceedings{LiuKW2017,
  author = {Liu, Chang and Kochte, Michael A. and Wunderlich, Hans-Joachim},
  title = {{Aging Monitor Reuse for Small Delay Fault Testing}},
  booktitle = {Proceedings of the 35th VLSI Test Symposium (VTS'17)},
  year = {2017},
  pages = {1--6},
  keywords = {Delay monitoring, delay test, faster-than-at-speed test, stability checker, small delay fault, ATPG},
  abstract = {Small delay faults receive more and more attention, since they may indicate a circuit reliability marginality even if they do not violate the timing at the time of production. At-speed test and faster-than-at-speed test (FAST) are rather expensive tasks to test for such faults. The paper at hand avoids complex on-chip structures or expensive high-speed ATE for test response evaluation, if aging monitors which are integrated into the device under test anyway are reused. The main challenge in reusing aging monitors for FAST consists in possible false alerts at higher frequencies. While a certain test vector pair makes a delay fault observable at one monitor, it may also exceed the time slack in the fault free case at a different monitor which has to be masked. Therefore, a multidimensional optimizing problem has to be solved for minimizing the masking overhead and the number of test vectors while maximizing delay fault coverage.},
  doi = {http://dx.doi.org/10.1109/VTS.2017.7928921},
  file = {http://www.iti.uni-stuttgart.de/fileadmin/rami/files/publications/2017/VTS_LiuKW2017.pdf}
}
Created by JabRef on 06/12/2017.

Kontakt